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요   약 

본 논문에서는 빠른 서포트 벡터 분류를 위해 신경망을 사용하는 방법을 제안한다. 주어진 학습 데이터를 통해 낮은 학습 
오류를 가지는 다단계 신경망을 얻으면 출력층을 제외한 은닉층은 주어진 문제를 선형분리 가능하게 하는 특징 추출기로 
간주 할 수 있다. 많은 계산시간을 요하는 커널 맵 대신 이를 사용해서 빠른 서포트 벡터 분류를 가능하게 하였다. 

 
1. Introduction 
Support vector machines (SVMs) are recently introduced as a method for 
pattern classification and regression. They have shown impressive 
performance in many problems [1], [2] and have been widely accepted as 
one of the strongest classifiers. The application areas of the SVM are, 
however, limited because of its high run-time complexity which is 
mainly caused by expanding the solution in terms of kernel map. Here we 
propose to use an artificial neural network (ANN) as a replacement of 
kernel map. Training an ANN on a given problem to achieve low training 
error and taking up to the last hidden layer makes the given problem 
linearly separable and enables application of linear SVMs. To avoid the 
resulting overfitting of the ANN feature extractor, optimal brain surgeon 
(OBS) algorithm is adopted as an implicit regularization. The method is 
evaluated based on the color texture-based license plate (LP) detection 
problem. 
 
2. Brief Overview of Support Vector Machine Classifier 
For the pattern classification problem, from a given set of labeled training 
examples (xi,yi)∈RN×{±1}, i=1,…,l, an SVM constructs a linear 
classifier by determining the separating hyperplane that has maximum 
distance to the closest points of the training set (called margin). The 
appeal of SVMs lies in their strong connection to the underlying 
statistical learning theory. According to the structural risk minimization 
principle [3], a function that can classify training data accurately and 
which belongs to a set of functions with the lowest capacity (particularly 
in the VC-dimension) will generalize best, regardless of the 
dimensionality of the input space. In the case of separating hyperplanes, 
the VC-dimension h is upper bounded by a term depending on the margin 

 and the radius of the smallest sphere R including all the data points as 
follows [3] 
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Accordingly, SVMs approximately implement SRM by maximizing ∆  
for a fixed R (since the example set is fixed). The solution of an SVM is 
obtained by solving a QP problem which shows that the SVM as a linear 
classifier is represented equivalently as either 

( ) ( )bf +⋅= wxx sgn        (2) 
or 

                                                 
1 This bound (called radius margin bound) holds in only linearly separable case. 
For the generalization of this bound for linearly non-separable case, readers are 
referred to Sec.4.3.3 of [11]. 
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where ’s are a subset of training points lying on the margin (called 
support vectors (SVs)). 

*
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The basic idea of nonlinear SVMs is to project the data into a high-
dimensional Reproducing Kernel Hilbert Space (RKHS) F which is 
related to the input space by a nonlinear map  [2]. An 
important property of an RKHS is that the inner product of two points 
mapped by 

FN →Φ R:

Φ  can be evaluated using kernel functions 
( ) ( ) ( ) ,       (4) yxyx Φ⋅Φ=,k

which allows us to compute the value of the inner product without having 
to carry out the map Φ  explicitly. By replacing each occurrence of inner 
product in Eq. (3) with kernel function (4), the SVM can be compactly 
represented even in very high-dimensional (possibly infinite) spaces: 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

bkyf
l

i
iii

*

1

*, xxx αθ .2    (5) 

To gain an insight into the performance of SVMs, an SVM with the 
polynomial kernel of degree 2 ( ) was applied to the LP 
detection problem [4]. The objective is to classify each pixel in an image 
into plate class or non-plate class based on their local color texture 
properties (RGB values of surrounding square image patch (11×11)). The 
SVM was trained on approximately 20,000 plate and non-plate patterns. 
The training set was initialized with 2,000 patterns sampled from a 
database of 100 vehicle images and is augmented by performing 
bootstrapping [5] on the same database. The trained SVM was composed 
of around 1,700 SVs and showed 2.7% training error rate. For testing, 
another set of 10,000 plate and non-plate patterns were collected from 
350 vehicle images which are distinct from the images used in training. 
The SVM achieved 4.4% error rate with processing time of 1.7 sec. on 
10,000 patterns (which corresponds to approximately 24 sec. for 
processing a 320x240-sized image). In terms of classification accuracy, 
the SVM was superior to several other existing methods (Sec. 4) and is 
suitable to LP detection application. However, the processing time of the 
SVM is far below the acceptable level. The main computational burden 
lies in evaluating the kernel map in Eq. (5) which is in proportional to the 
dimensionality of the input space and the number of SVs. In the case of 

( ) ( )2, yxyx ⋅=k

                                                 
2  The architecture of nonlinear SVM can be viewed from two different 

perspectives: one is the linear classifier lying in F and is parameterized by  (w,b) 
(cf. Eq. (2)). Another is the linear classifier lying in the space spanned by the 
empirical kernel map with respect to the training data (k(x1,⋅),…, k(xl,⋅)) and is 
parametereized by (α1,…,αl*,b) (cf. Eq. 2). The second viewpoint characterizes the 
SVM as a two-layer ANN. 
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polynomial kernel, this implies 1,700 inner-product operations in 
processing a single pattern. 

There are already several methods to reduce the runtime complexity 
of SVM classifiers, including reduced set method [2], cascade 
architecture of SVMs [6], etc. The preliminary experiment with reduce 
set method has shown that at least 400 SVs were required to retain a 
moderate reduction of generalization performance,3 which is still not 
enough to realize a practical LP detection system. The application of 
cascade method is beyond the scope of this work. However, it should be 
noted that cascade architecture is independent of a specific classification 
method and can be directly applied in the method proposed in this paper. 
 
3 Combining artificial neural networks with support vector machines 
Recall that the basic idea of the nonlinear SVM is to cast the problem 
into a space where the problem is linearly separable and then use linear 
SVMs in that space. This idea is validated by Cover’s theorem on the 
separability of patterns [7],[8]: 
 

A complex pattern-classification problem cast in a high-dimensional 
space nonlinearly is more likely to be linearly separable than in a low-
dimensional space 
 

The main advantage of using high-dimensional spaces to make the 
problem linearly separable is that it enables analysis to stay within the 
class of linear functions and accordingly leads to the convex optimization 
problem. On the other hand, as a disadvantage, it requires the solution to 
be represented in kernel expansion since one can hardly manipulate the 
solution directly in such spaces. 

The basic intuition in using the ANN is to cast the problem into a 
moderately low-dimensional space where the problem is still (almost) 
linearly separable. In other words, we perform Φ  explicitly and 
construct the linear SVM in terms of the direct solution (2) rather than 
the kernel representation (3) in the range of Φ . This reduces the 
computational cost when the dimensionality of the corresponding feature 
space is lower than the number of SVs. As demonstratd in many practical 
applicatins [8], ANNs has an ability to find a local minima in the 
empirical error surface. If it once achives an acceptably low error rate, it 
is guranteed that the problem in the space constructed by up to the last 
hidden layer is (almost) linearly separable since the output layer is simply 
a linear classifier (Fig. 1). The final classifier is then obtained by 
replacing the output layer of the ANN with a linear SVM. 
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Fig.1. Example of two-layer ANN (single hidden layer). 

 
However, this strategy alone does not work as examplified in Fig. 2: 

for a two dimensional toy problem, an ANN with two hidden layers of 
size 30 and 2 is trained: (a) plots the traing examples in the input space 
while (b) plots the activation of the last hidden layer corresponding to 
training examples in (a). The ANN feature extractor (up to the last hidden 
layer) did make the problem linearly separable. At the same time, it 
clustered training examples almost perfectly by mapping them (close) to 
two cluster centers according to class labels. Certainly, the trained ANN 
failed to generalize. This is an example of overftting occurred during the 

                                                 
3 The reduced set method tries to find an approximate solution which is expanded 
in a small set of vectors (called reduced set). Finding the reduced set is a nonlinear 
optimization problem which in this paper, is solved using the fixed point iteration 
method. For details, readers are referred to [2]. The less number of SVs than 400 
produced significant increase in the error rate. 

feature extraction. In this case, even the SVM with capicity control 
capability does not have any chance to generalize better than the ANN 
since all the information contained in the training set is already lost 
during the feature extraction. 

From the model selection viewpoint, choosing the feature map Φ  is 
an optimization problem where one control the kernel parameter (and 
equivalently the Φ ) to minimize the cross validation error or a 
generalization error bound. Within this framework, one might try to train 
simultaneously both the feature extractor Φ  and classifier based on the 
unified criterion of the generalization error bound. However, we argue 
that this method is not applicable to the ANN as Φ . Here we give two 
examples of error bounds which are commonly used in model selection. 

In terms of the radius margin bound (Eq. (1)), the model selection 
problem is to minimize the capacity h by controlling both the margin ∆  
and the radius of the sphere R. Since the problem of estimating ∆  from a 
fixed set of training examples is convex, both the ∆  and R are solely 
determined by choosing Φ . 

Let us define a map Φ  which maps all the training examples into 
two points corresponding to their class labels, respectively (Fig. 2(c)). 
Certainly, there are infinitily many extensions of Φ  for unseen data 
points, most of which may generalize poorly. However, for the radius 
margin bound, all these extensions of Φ  are equally optimal (cf. Eq. (1)). 

 
(a)      (b)      (c) 

Fig. 2. Example of overfiting occurred during feature extraction: (a) input data, (b) 
activation of the last hidden layer corresponding to the input data, and (c) extremal 
case of overfitting map. 
 

The span bound [9] provides an efficient estimation of the leave-one-
out (LOO) error based on the geometrical analyis of the span of SVs. It is 
characterized by the cost of removing an SV and approximating the 
original solution based on the linear combination of remaining SVs. 
Again, the Φ  in Fig. 2(c) is optimal in the sense that all training 
examples became duplicates of one of two SVs in F and accordingly the 
removal of one SV (one duplicate) does not affect the solution.4

Certainly, the example map in Fig. 2(c)  is unrealistic and is even not 
optimal for all existng bounds. However it clarifies the inherent 
limitation in using error bounds for choosing the Φ : when the Φ  is 
chosen based on a specific error bound from a large class of functions 
(containing very complex functions), there is no way to avoid overfitting. 
It should be noted that this is essentially the same problem to that of 
choosing the classifier in a fixed feature space F, whose solution suggests 
controlling the complexity5 of Φ  to avoid overfitting.6

There are already several methods developed for reducing the 
complexity of ANNs including early stopping of trainng, weight 
decaying, etc. We rely on the network pruning approach where one starts 
moderately large network with high complexity and prun the network 
based on the criteria of minimizling the demage of network. This type of 
algorithms does not have direct relation to any existing complexity 
control methods (eg., regularization). However, they are simple and have 

                                                 
4 It should be noted that the map in Fig. 2(c) is optimal even in terms of the true 
LOO error. 
5 While there are various existing notion of complexity of function class including 
VC-dimension, smoothness, the number of parameters, etc., no specific definition 
of complexity is imposed on the class of  Φ , since we will not directly minimize 
any of them. Accoridngly, the ‘complexity’ here should be understood in abstract 
sense and not be confused with VC-dimension. 
6 The reported excellent performances of model selection methods based on error 
bounds [3],[9] can be explained by the fact that the class of functions where the 
kernel is chosen was small (e.g., polynomial kernels or Gaussian kernels with one 
or few parameters). 
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advantage of providing the decomposition of chosing Φ  into two sub-
problems: 1) obtaining a linearly separable map and 2) reducing the 
complexity of the map while retaining the linear separability. 
 For the first objective, an ANN with one hidden layer of size 47 is 
trained based on the back-propagation algirithm. The use of only one 
hidden layer as the featuer extractor is supported by the architecture of 
the kernelized SVM where only one hidden layer (depending on the type 
of kernel function) is often enough to gurantee the linear separability. 
The number of hidden nodes is chosen based on trial and error: a fairly 
large network of 100 hidden nodes was initially constructed and is 
reduced by removing nodes by ones while retaining the training error 
similar to that of an SVM with degree 2 polynomial kernel. 

The trained ANN is then prunned based on the OBS algorithm which 
evaluate the demage of the network based on the quadratic approximation 
of increase of training error and prune it to obtain the minimal demage. 
Here we give a brief review of OBS. For more detail, readeres are 
referred to [10],[8]. 

The basic idea of OBS is to use the second order approximation of 
error surfaces. Suppose for a given configuration of weights w (cf. Fig. 1), 
the cost function E in terms of empirical error is represented baed on 
Taylor series about w: 

( ) ( ) ( ) ( ) ( )3

2
1 wwwHwwwgwww ∆+∆∆+∆+=∆+ OEE TT , 

where  is a perturbation applied to the operating point w and w∆ ( )wg  
and  are the gradient vector and the Hessian matrix evaluated at the 
point w, respectively. Assuming that the w is located at the local optima 
and ignoring the third and all higher order terms. We get the 
approximation of increase in the error E based on  as follows 
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The goal of OBS is to find the index i of a particular weight  which 
minimize 

iw
E∆  when  is set to zero. The elimination of  is equivalent 

to the condition 
iw iw

0=+∆ ii ww .       (7) 
To solve this constrained optimization problem, we construct the 
Lagrangian  

( ) ( )ii
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where λ  is the Lagrange multiplier. Taking the derivative of  with 
respect to , applying the constraint of (7), and using matrix inversion, 
the optimum change in the weight vector w and resulting change in error 
(optimal value of ) are obtained as 
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respectively, where [  is the (i,i)-th element of the inverse of the 

Hessian matrix . 
] ii,

1−H
1−H

The OBS procedure for construcuting the feature extractor Φ  is 
summarized in Fig. 3. 
1. Compute  1−H
2. Find the index i that gives the smallest sailency value . If the *  is larger 

than a given threshold, then go to step 4. 

*
iS iS

3. Use the i from step 2 to update all weights according to (8). Go to step 2. 
4. Retrain the network based on standard back propagation algorithm. 

Fig. 3. OBS procedure for prunning ANN. 
 

Although the OBS procedure does not have any direct 
correspondence to the regularization framework, the ANN obtained from 
the OBS will henceforth be refered to as the regularized ANN. 

4. Experimental Results 
The proposed method was tested using an LP image database of 450 
images. For details of experimental setting, readers are referred to [4]. 
For training the ANN+SVM classifier, 20,000 training examples which 
were used in training the base SVM classifier (Sec. 2.1) were used: the 
ANN was firstly trained on random selection of 10,000 patterns. Then, 
the linear SVM was trained on the output of the ANN feature extractor on 
whole 20,000 patterns (including 10,000 patterns used to train the ANN). 
The size (number of weights) of the ANN feature extractor was initially 
5,781 which were reduced to 843 after OBS procedure where the 
stopping criterion was 0.5% increase of training error rate. The testing 
environment was 2.2 GHz CPU with 1.2GB RAM. Table 1 summarizes 
the performances of various classifiers: the ANN and nonlinear SVM 
(with polynomial kernel of degree 2) have shown the best and worst error 
rates and processing times, respectively. Simply replacing the output 
layer of the ANN with an SVM did not provide any significant 
improvement as anticipated in Section 3, while the regularization of the 
ANN has already showed improved classification rate. The combination 
of the regularized ANN with SVM produced the second best error rate 
and the processing time which can be regarded as the best overall. 
 

Table 1. Performance of different classification methods. 
Classifier Error rate (%) Proc. time (10,000/ sec.) 

ANN 7.31 0.14 
ANN+SVM 6.87 0.14 
Regularized ANN 5.1 0.06 
Regularized ANN+SVM 4.48 0.08 
Nonlinear SVM 4.43 1.74 

 
5. Conclusions 
The problem of high run-time complexity of SVMs was approached by 
utilizing a regularized ANN as the feature extractor. In comparison with 
the standard nonlinear SVM, classification performance of the proposed 
method was only slightly worse while the run-time is significantly better. 
Accordingly, it can provide a moderate alternative to the standard kernel 
SVMs in real-time applications. 
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