Captions of Tables and Figures

- Table 1.
 Specifications of fiber optic sensors for cure monitoring.
- Table 2.
 Components of characteristic matrices of fiber optic sensors for cure monitoring.
- Table 3. Compressive strains during cool-down period.
- Figure 1. FGB/EFPI hybrid sensor.
- Figure 2. Directions and locations of fiber optic sensors embedded in a unidirectional laminate.
- Figure 3. Directions and locations of fiber optic sensors embedded in a symmetric cross-ply laminate.
- Figure 4. Directions and locations of fiber optic sensors embedded in a symmetric cross-ply laminate.
- Figure 5. Experimental set-up for cure monitoring.
- Figure 6. Curing cycle of graphite/epoxy composite in the autoclave molding.
- Figure 7. Strain measurement during cure process of a unidirectional laminate.
- Figure 8. Temperature measurement of a unidirectional laminate.
- Figure 9. Strain and temperature measurement of a symmetric cross-ply laminate.
- Figure 10. Strain and temperature measurement of a fabric laminate.

Specifications		Gage length	Bragg wave- length	Initial cavity length	CTE optical fiber	Thermo -optic coeff.
Symbol		L	λ_B	d_o	$lpha_{f}$	ξſ
Unit		mm	nm	μm	ppm/°C	ppm/°C
Unidirectional laminate $[0_{12}/\{0,90\}/0_{12}]_T$	Sensor 1	24.3	1532.003	664.56	0.5	6.2
	Sensor 2	24.5	1532.441	642.66	0.5	
Sym. cross-ply laminate [0 ₃ /{0}/0 ₃ /90 ₆ /{90}/90 ₆ /0 ₆] _T	Sensor 3	24.8	1532.050	660.55	0.5	6.2
	Sensor 4	23.9	1532.070	680.55	0.5	
Fabric laminate [Fabric ₈ /{0,90}/Fabric ₈] _T	Sensor 5	25.6	1536.135	587.53	0.5	60
	Sensor 6	24.0	1536.201	633.87	0.3	0.2

Table 1. Specifications of fiber optic sensors for cure monitoring.(Kang H K, Kang D H, Bang H J, Hong C S, and Kim C G)

Table 2. Components of characteristic matrices of fiber optic sensors for cure monitoring.

(Kang H K, Kang D H, Bang H J, Hong C S, and Kim C G)

Symbol		$P_{l\varepsilon}$	$P_{2\varepsilon}$	P_{1T}	P_{2T}
Unit		μ <i>ε/</i> μm	µɛ/nm	°C/µm	°C /nm
Unidirectional laminate $[0_{12}/\{0,90\}/0_{12}]_T$	Sensor 1	41.15	47.38	0	97.42
	Sensor 2	40.82	47.42	0	97.40
Sym. Cross-ply laminate [0 ₃ /{0}/0 ₃ /90 ₆ /{90}/90 ₆ /0 ₆] _T	Sensor 3	40.32	47.41	0	97.42
	Sensor 4	41.84	47.32	0	97.42
Fabric laminate [Fabric ₈ /{0,90}/Fabric ₈] _T	Sensor 5	39.06	47.47	0	97.16
	Sensor 6	41.67	47.30	0	97.16

 Table 3. Compressive strains during cool-down period.

(Kang H K, Kang D H, Bang H J, Hong C S	, and F	Kım C	G)
---	---------	-------	----

Laminate	Sensor	Compressive strain
Unidirectional laminate	Sensor 1	- 40 με
$[0_{12}/\{0,\!90\}/0_{12}]_T$	Sensor 2	- 4200 με
Sym. cross-ply laminate [0 ₃ /{0}/0 ₃ /90 ₆ /{90}/90 ₆ /0 ₆] _T	Sensor 3	– 280 με
	Sensor 4	– 380 με
Fabric laminate [Fabric ₈ /{0,90}/Fabric ₈] _T	Sensor 5	– 360 με
	Sensor 6	- 350 με
Unsym. cross-ply laminate [20] [0 ₆ /{0}/0 ₆ /90 ₆ /{90}90 ₆] _T	Sensor 7	– 330 με
	Sensor 8	- 320 με

Figure 1. FGB/EFPI hybrid sensor. (Kang H K, Kang D H, Bang H J, Hong C S, and Kim C G)

Figure 2. Directions and locations of fiber optic sensors embedded in a unidirectional laminate.

(Kang H K, Kang D H, Bang H J, Hong C S, and Kim C G)

Figure 3. Directions and locations of fiber optic sensors embedded in a symmetric cross-ply laminate.

(Kang H K, Kang D H, Bang H J, Hong C S, and Kim C G)

Figure 4. Directions and locations of fiber optic sensors embedded in a symmetric cross-ply laminate. (Kang H K, Kang D H, Bang H J, Hong C S, and Kim C G)

Figure 5. Experimental set-up for cure monitoring. (Kang H K, Kang D H, Bang H J, Hong C S, and Kim C G)

Figure 6. Curing cycle of graphite/epoxy composite in the autoclave molding. (Kang H K, Kang D H, Bang H J, Hong C S, and Kim C G)

Figure 7. Strain measurement during cure process of a unidirectional laminate. (Kang H K, Kang D H, Bang H J, Hong C S, and Kim C G)

Thermocouple (right axis)

150

Time (min)

(b) Strain measured by sensor 2.

200

250

30

<mark>•</mark> 0 300

-3000

-4000 L 0

50

100

Figure 8. Temperature measurement of a unidirectional laminate. (Kang H K, Kang D H, Bang H J, Hong C S, and Kim C G)

(b) Temperature measurement.

Figure 9. Strain and temperature measurement of a symmetric cross-ply laminate. (Kang H K, Kang D H, Bang H J, Hong C S, and Kim C G)

(b) Temperature measurement.

