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Abstract 

Unlike rigid parts, jlexible parts can be deformed by 
contact force during assembly. For successful assembly, 
informations about their deformation as well as possible 
misalignments between the holes and their respective 
mating parts are essential. Such informations can be 
acquired )om visual sensors. In case of deformable 
part assembb, the corrective assembly motion to 
compensate for such misalignments needs to be 
determined from the measured informations. In order to 
tackle these problems, authors 'previous work presented 
a visual sensing system for measuring parts deformation 
in any direction and misalignments. This paper presents 
a visual sensor-based error-corrective algorithm using 
a neural network and utilizing the developed sensing 
system. A series of experiments to compensate for the 
lateral misalignment are performed. The experimental 
results show that the proposed sensing system and the 
error-corrective algorithm are effective in the assembly 
tasks of deformable parts, thereby dramatically 
increasing the rate of success in assembly operations. 
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1. Introduction 

For successful assembly of flexible parts, 
informations about their deformation as well as possible 
misalignments between the holes and their respective 
mating parts are essential. However, because of the 
nonlinear and complex relationship between parts 
deformation and reaction forces, it is difficult to acquire 
all required informations from the reaction forces alone. 
Such informations can be acquired from visual sensors. 
Therefore, visual sensors are widely used in such tasks 
as assembly or handling of flexible parts. Compared 
with a variety of research in the area of rigid parts 

assembly [l], not much research has been done on 
flexible parts assembly [2]. In addition, none of the 
above works measured both of parts deformation and 
misalignment between the mating parts. Flexible parts 
assembly, however, requires three-dimensional 
measurement of parts deformation as well as 
misalignments between the occluded holes and their 
respective mating parts. Previously, the authors have 
presented a visual sensing system that can detect three- 
dimensional part deformation and misalignment [3 ]. 
And the authors have presented an algorithm to measure 
parts deformation and misalignments by using the 
sensing system in cylindrical peg-in-hole tasks [4]. 

In robotic assembly of flexible parts, the relationship 
between the measured informations on misalignment or 
part deformation and the corrective assembly motion 
becomes very complex, thus making its theoretical 
analysis not easy. Therefore, in case of flexible parts 
handling including assembly tasks, an AI-based method 
is frequently used. The authors have presented a neural 
net-based error-corrective algorithm that extracts the 
robotic corrective motion by using the information 
obtained from the visual sensing system [SI. In this 
paper,' a series of experiments to compensate for the 
lateral misalignment are performed. The purpose of this 
experimental works is to evaluate the effectiveness of 
the developed visual sensing system and the assembly 
algorithm. 

This paper is organized as follows: In section 2, the 
principle and the configuration of the visual sensing 
system are described. In section 3, the algorithm to 
measure parts deformation and misalignment is 
described. In section 4, a neural net-based error- 
corrective algorithm to compensate for lateral 
misalignment is described. In section 5, a series of 
experiments for misalignment compensation are 
performed. The experimental results and discussions are 
described. Finally, some conclusions are made in section 
6. 

2. A Visual Sensing System 
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Fig. l(a) illustrates the basic configuration of the 
sensing system. It is composed of a camera, a pair of 
plane mirrors, and a pair of pyramidal mirrors. In order 
to measure three-dimensional deformation by using a 
camera, two views are necessary, as shown in Fig. l(b). 
Fig. l(c) illustrates an image of a peg and a hole pair. 
Because four images that are reflected from each face of 
the pyramidal mirrors are projected onto the image 
plane of a camera, this system configuration is 
equivalent to that utilizing four cameras. This 
configuration allows the system to overcome self- 
occlusion. The design and implementation method has 
been presented in the previous work [3]. 
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Fig. 1. The schematic of the sensing system 

3. An Algorithm to Measure Part 
Deformation and Misalignment 

In order to assemble the flexible parts successfully, 
parts deformation in any direction and misalignments 
between mating .parts need to be measured. In this 
section, the algorithm to estimate parts deformation and 
misalignments by using a visual sensing system in 
cylindrical peg-in-hole tasks is described. Parts 
deformation can be represented by the shape of the 
center-line of a peg. Misalignment between mating parts 
is defined as the relative error between the center of a 
hole and the center of the bottom of a peg. 

In the case of a cylindrical peg with a circular cross- 
section, it can be assumed that its center-line is 
projected to the center-lines of its projected images [ 6 ] .  
Thus, parts deformation can be obtained by estimating 
the center-lines in two-dimensional peg images. 

3.1. Estimation of Part Deformation 

To estimate parts deformation, pegs must first be 

recognized in edge images. Their edges are extracted in 
the images taken by the proposed system, and classified 
into the sides and the bottoms of peg. The two center- 
lines in the images are then extracted. A center-line is 
composed of the midpoints between two side edges in 
one image. Next, corresponding points in two center- 
lines are found using epipolar constraint. Finally, from 
corrt:sponding points, the center-line of a peg is 
reconstructed in three-dimensional space. Fig. 2 shows 
the flow chart of the algorithm to estimate deformation 
of a cylindrical peg. 
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Fig. 2. Algorithm to estimate the deformation of a 
cylindrical peg 
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Fig. 3.  Algorithm to estimate misalignment 

3.2. Estimation of Misalignment 

To estimate misalignments between the holes and 
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their respective mating parts, the center of an occluded 
hole and the center of the bottom of a peg are evaluated. 
First, pegs and holes in images are recognized. Next, the 
center of an occluded hole is found using epipolar 
constraint. Next, the center of the bottom of a peg is 
found by using the same method. Finally, misalignment 
is calculated from the difference between a hole center 
and a peg center. Fig. 3 shows the flow charts of the 
algorithm to estimate misalignment and to estimate the 
center of an occluded hole. 

4. A Vision-Based Error-Corrective 
Algorithm 

4. I .  Simplified Relationship between Misalignment 
and Its Corrective Motion 

In order to obtain the relationship between 
misalignment and its corrective motion which is 
available for all tasks in flexible parts assembly, all of 
the related parameters have to be considered. The 
related parameters are the six components of the 
assembly errors and the six components of the error- 
corrective motion [ 5 ] .  However, the relationship among 
them is very complex. Besides, some parameters are 
difficult to find out their accurate values. Therefore, it is 
of advantage to obtain the simplified relationship related 
to only some parameters through several assumptions. 
Based on it, the general relationship that is available for 
more general tasks will be able to be obtained by 
considering more parameters. The simplified 
relationship will be obtained through following 
assumptions. 

Only one kind of part with the same properties and 
size is dealt with. Accordingly, the flexural rigidity 
EI is constant. 
By setting the 1-position of a robot uniformly during 
misalignment compensation, the reaction forces are 
maintained constantly. 
It is established that the upper end of the part is 
fixed, and that its lower end is free. Accordingly, 
the boundary conditions C,, are constant. 
The deformation shape of a part is uniform if its 
boundary conditions and the positions of its both 
ends are the same. Namely, the number of 
deformation mode is one. 
During misalignment compensation, the 
misalignment and the corrective motion which are 
related to the z-direction can be neglected. In other 
words, only the misalignment and the corrective 
motion on the horizontal plane are considered. 
The part to be assembled is generally deformed 
toward the center of its mating hole. 

By above six assumptions, the components to be 
considered are just the corrective motion m i ,  mih and 

the misalignment e,, * ,  8,, as shown in Fig. 4. The 
simplified relationship among them is expressed by 

It is difficult to find out the perfect relationship of Eq. 
( 1 )  due to its complexity and nonlinearity. Accordingly, 
it is advised to take advantage of the theory of artificial 
intelligence(A1). 
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Fig. 4. Misalignment and corrective motion in 
simplified relationship 

4.2. An Error-Corrective Algorithm 

Fig. 5 shows the block diagram of the neural net- 
based error-corrective algorithm. The assembly strategy 
is focused on how to find out the relations between the 
measured information [e., , 8 , ,  6' 3'' obtained from the 
visual'sensor only and the corrective motion [m:, mih 1 7  . 

This algorithm can be applied to the assembly tasks 
which satisfy the assumptions described in section 4.1. 
However, its concept will be able to be extended to 
more general tasks. 

It is assumed heuristically that the direction m i h  of a 
corrective motion is equal to the azimuth angle 4,, of 
the misalignment. Consequently, Eq. ( 1 )  can be divided 
into two equations, which are given by 
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where e,, , Q,, 4,, are measured by the visual sensing 
system, and the corrective action mer is estimated by 
the neural network. 
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Fig. 5. The block diagram of the neural net-based 
assembly algorithm 

This paper implements ' a multilayer feedforward 
network which has 2-4-2-1 nodes. Forty two sets of the 
input and output variables e,,, , B,, m; were selected 
as the training samples. Cylindrical urethane pegs were 
used in these experiments. They are 10 mm in diameter, 
and 60 mm long. The error backpropagation using the 
generalized delta rule is used to train the network. 

5. Experiments for Misalignment 
Compensation 

5.1. Experimental System 

To investigate the effectiveness of the proposed 
error-corrective algorithm, a series of experiments for 
misalignment compensation are performed. Fig. 6 shows 
the schematic diagram of the experimental system. The 
system consists of a SCARA robot, the visual sensing 
system, a vision board, a PC-based robot controller, and 
so on. The PC-based robot controller generates the 
control signals for actuating a robot manipulator by 
using the informations measured by the visual sensing 
system, and by using the corrective motion estimated by 
the neural network. In these experiments, the cylindrical 
urethane pegs with diameter d,, of 10.0 mm and the 
aluminium hole with diameter d,, of 10.53 mm. 
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Fig. 6 .  Schematic diagram of the experimental set-up 

T'he experiments to compensate for lateral 
misalignment were mainly performed. Also the 
experiments to compensate for the inclination error of a 
part and to insert a part into its mating hole were 
performed. 

5.2. Results and Discussions 

Fig. 7(a) shows the experimental results when e,,, = 1 
mm and c, = -2, 1, 4 mm. The e,,, denotes initial 
lateral misalignment, while the c, denotes the center 
position of the upper surface of a part. When e,, is 
small, the error in estimating a hole center using the 
implemented visual sensing system becomes large 
because the visible area of the hole is very small [4]. 
Figs. 7(al) and (a2) show large error between the 
prescribed value and the value measured by the sensing 
system in estimating a hole center. When c, = I ,  -2 mm, 
the lateral misalignment was compensated by one 
corrective motion. When c, = 4 mm, it was 
compensated by two times of corrective motion. The 
magnitude of the corrective motion estimated from the 
neural network is not equal to that of the actual 
corrective motion until misalignment compensation is 
actually accomplished. Also, the direction of the 
corrective motion is not consistent with the actual 
direction toward the hole center because of the 
measurement error by the visual sensing system. 
Nevertheless, the lateral misalignment was compensated 
successfully. This is due to the sufficient clearance 
between a part and its mating hole, which is larger than 
the estimation error or the measurement error. Another 
reason is that initially fitted part into its mating hole 
does not escape easily from the hole due to its 
deformation although the corrective motion is going on. 
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Fig. 7. Experimental results for misalignment 
compensation 

Fig. 7(b) shows the experimental results when e," = 4 
mm and c, = 1, 4, 7 mm. The error between the 
prescribed value and the measured value of e,,, , and the 
error between the estimated corrective motion and the 
actual corrective motion until misalignment 
compensation is actually accomplished are not large 
compared with those of the case e,,, = 1 mm in Fig. 7(a). 
When c, = 1 mm, the lateral misalignment was 
compensated by one corrective motion inferred from the 
neural network. When c, = 4, 7 mm, the lateral 
misalignment was compensated by two times of 
corrective motion. Misalignment compensation was 
accomplished at the beginning of the second corrective 

motion, because the difference between the estimated 
motion and the actual motion is not large in the first 
corrective motion m ,  . However, there is quite large 
difference in the second corrective motion in 2 .  This is 
due to the same reason as for the case e,, = 1 mm in Fig. 
7(a) because the bottom of the peg was moved near to 
the hole by m ,  . On the other hand, this successful 
compensation does not guarantee success in more 
general tasks such as high speed or high precision 
assembly. However, success rate of misalignment 
compensation in such tasks will be increased by 
considering more assembly relevant parameters in a 
neural net-based estimation system. 

Fig. 7(c) shows the experimental results when e,,, = 7 
mm and c, = 4, 7, 10 mm. Both the measurement error 
of e,,, by the sensing system and the error in the 
estimated corrective motion are not large. When c, = 7, 
10 mm, two times of corrective motion was required to 
compensate for the lateral misalignment. It was 
compensated at the beginning of the second corrective 
motion. These results are similar to those in Fig. 7(b). 
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Fig. 8. Experimental results for insertion into hole 
(e ,=7mm, c, .=7"m, q 4 = 4 5 0 )  

Fig. 8 shows the experimental results when e,= 7 
mm, c, = 7 mm and bh = 4 5 " .  The +h denotes the 
direction of lateral misalignment. The lateral 
misalignment in the state 0 was compensated to the 
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state @ by the first corrective motion m ,  . The 
inclination error in the state 0 was also compensated 
to the state @ by the subsequent corrective motion 
m ? ,  m ;. The states 0 and 8 show the part inserted 
into its mating hole by the robot motion m ,  , m, . 
Through these experiments, it was confirmed that the 
inclination error due to part deformation can be 
compensated even by the translational corrective motion 
alone, and that a part can be inserted into its mating hole 
after the lateral and inclination error are compensated. 
Fig. 8(b) shows the edge images of the part and its 
mating hole obtained by the visual sensing system from 
the states Q to @. 

From these results, it is confirmed that the proposed 
neural net-based error-corrective algorithm is efficient 
not only for lateral misalignment compensation, but also 
for inclination error compensation. And the similar 
concept will be able to be extended to the insertion 
process into a hole. 

6. Conclusions 

This paper presented a visual sensing system and an 
algorithm for measuring parts deformation and 
misalignments in cylindrical peg-in-hole tasks. And it 
proposed an error-corrective algorithm that can 
compensate for the misalignment between a part and its 
mating hole, based on the measured informations. With 
a simplified neural network-based estimation system 
under several assumptions, the training and performance 
verification of the network were performed. It was 
heuristically determined that the direction of the 
corrective motion is equal to that of misalignment. 
Finally, a series of experiments for misalignment 
compensation were performed. 

From these results, it is concluded that the sensing 
system and the error-corrective algorithm are efficient 
for misalignment compensation in flexible parts 
assembly. The algorithm will be able to be extended to 
more general tasks such as high speed or high precision 
assembly by taking into consideration more parameters 
as the inputs or outputs of the neural network. Further 
work will be made in this regard. 
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