

Abstract— Service-oriented computing which provides flexible

composition of various applications using multiple reusable
services has getting more attractive. We propose a service
oriented wireless sensor networks toolbox, which encapsulates
complexities of sensor networks and enables simple service
compositions using an intuitive GUI. We utilize sensor networks
as a collection of services that are discovered and coordinated by
users. Service metadata which are self-describing service
capabilities and interfaces are defined and exposed via our service
metadata repositories. A service oriented sensor network toolbox
consisting of sensor networks, an intuitive GUI application that
retrieves metadata for discovered services and helps users to
composite various roles are presented.

Index Terms—service oriented computing, sensor network,

sensor metadata, networked physical world

I. INTRODUCTION
HOUGH wireless sensor networks have been adopted in
varieties of application fields, they tend to be considered

tools for complex engineering or scientific tasks. Because
dealing with wireless sensor networks is not easy and it often
requires good knowledge of embedded system, sensors, and
networking, they have been less considered for consumer
products.

As opposed to established wireless sensor networks which
are tightly coupled with specific applications, service-oriented
computing paradigm enables flexible composition of various
applications using multiple reusable services [1]. Service
oriented computing uses services as fundamental elements for
developing applications, and basic service operations such as
publications, discovery, selection, and bindings are provided in
order to help flexible compositions [1].

Since service oriented computing allows flexible software
compositions using loosely coupled services with applications,
there have been increasing efforts for adopting a service
oriented computing paradigm into wireless sensor networks. In
a service-oriented WSN application, each activity (sensing,
aggregation, service discovery, etc.) is implemented as a
separate service [2]. Since these services are open and
self-descriptive, various services from different venders can be
utilized together. Services may consist of multiple sensor nodes,

Manuscript received August 15, 2008. This work was supported by Korea
Science & Engineering Foundation through the NRL Program.

Jongwoo Sung, Taehong Kim, Seonghoon Kim, Kyubaek Kim, Im Jang
Gwan, Daeyoung Kim are with Information and Communications University,
DAEJON, Korea (email: jwsung@icu.ac.kr, damiano@icu.ac.kr,
shkim1980@icu.ac.kr , lilin@icu.ac.kr, limg00n@icu. ac.kr, kimd@ icu.ac.kr).

and they are reusable and shared among multiple applications
[3]. Service oriented sensor provides interoperability,
scalability, and reusability of sensors [3].

Underlining technology for service oriented computing is
self-describing metadata that explains services. Services
expose relevant metadata so that applications or users can use
them to understand the service capabilities and interfaces.
However, very little work has been done on supporting such
important metadata effectively in service oriented sensor
networks while most service oriented sensor network
researches focused on software abstraction layers. Some
featured works are a middleware platform for pervasive spaces
[4], management architecture [5], and programming
frameworks [2]. Although a few other works [6-9] addressed
problems of service interfaces, descriptions and web service
based architecture, they tended to leverage established service
oriented computing technologies such as OSGi [14] and web
services for sensor networks.

However, service oriented computing operations such as
service metadata publications, discovery, and binding cannot
simply apply to sensor networks due to resource limitations of
each sensor node. It is inefficient for every sensor node to store
its metadata in precise memory or to have software layers to
support web services.

Our works are distinguished from previous works in that we
design Internet based metadata architecture that stores metadata
and allow users to download it. To associate services consisting
of one or a group of sensor nodes with service metadata, we
adopted a networked physical world approache [10] that uses
unique identifiers, information servers, and identifier resolving
system. Based on Internet based metadata architecture,
specifically, we present a sequence of service composition
processes from service discovery, service browsing and event
based service planning, to result interpretations.

We paid attention to possibilities of sensor networks used for
general users without professional knowledge about wireless
sensor networks. Thus, we design and implement a software
toolbox consisting of various services which encapsulates
complexities of sensor networks and an intuitive GUI to
composite applications using services. Discovering available
services and exposing their capabilities are supported via our
identification mechanism and Internet metadata architecture.
Our service oriented approach enables easy utilization of sensor
networks for smart home environments. We also show how our
service metadata approach is helpful for optimization of sensor
network communications.

Service Oriented Wireless Sensor Network
Toolbox for Consumer Applications

Jongwoo Sung, Taehong Kim, Seonghoon Kim, Kyubaek Kim, Jang Gwan Im, Daeyoung Kim

T

II. THE NETWORKED PHYSICAL WORLD
Auto-ID Center that is a predecessor of current Auto-ID Labs

envisioned a world in which all electronic devices are
networked and every object, whether it is physical or electronic,
is electronically tagged with information pertinent to that object
[10]. The networked physical world utilizes physical tags to
enable all physical objects to act as networked nodes.

Taking advantage of the networked tag or nodes, realization
of networked physical world depends on three main
components; global identifiers, information servers and
identifier resolvers. The information about physical object is
stored in networked information servers. A globally unique
identifier acts as a pointer to the appropriate object information
servers. An identifier resolver called the object name service is
used to locate the desired information server with given an
identifier.

The paradigm of networked physical world aimed at diverse
ubiquitous automated applications, especially for supply chain
management. We adopted the idea of networked physical world
and extend it for the service oriented sensor networks.

III. SERVICE ORIENTED SENSOR NETWORKS

A. Service discovery
Since services in wireless sensor networks are not permanent

or static, but changeable according to sensor node replacements
due to exhausted battery, topology changes or movements of
sensor nodes. Service discovery allows consumers to know
available services at the time of service compositions. Service
discovery depends on unique identifiers of servicing sensor
nodes. Network address and MAC address in wireless sensor
networks are identifiers for sensor nodes and network
interfaces respectively. However, network addresses are
basically changed as network topology changes, and MAC
address does not give any useful information about the
associated service. For such reasons they are not suitable for
service discovery.

As a result additional service identifiers for identifying each
servicing sensor nodes are needed. They should be application
level names so that they are not changed even if configurations
or topologies of sensor networks are changed. In addition, to
coordinate services from different venders the identifiers need
to be globally unique. Electronic product code (EPC), which is
defined by EPCglobal [12] is used for leveraging information
technologies in a supply chain, is best suited for our realizations
for mentioned requirements. EPCs can be considered a kind of
application keys to globally identify services and discover the
sensor node. Among several EPC formats we adopt 96 bits EPC
format which consists of version (8 bits), sensor node
manufacturer (28bits), product (24 bits), and sensor node serial
number (36 bits).

For the discovery purpose, base station maintains up-to-date
service identifier tables, which list global identifiers of
discovered services (sensor nodes). Service identifier table
consists of service identifiers of discovered sensor nodes, and
the table is maintained by our service discovery protocols. To
maintain the service identifier list service discovery

mechanisms are designed: 1) registration by sensor nodes; 2)
update by sensor nodes; and 3) active discovery. Among three
methodologies, registration and update are passive while active
discovery is actively operated by the base station.

After sensor nodes are turned on, they interchange hello
messages with base station to check the interoperability. Then,
sensor nodes send registration(identifiers) message to base
station to notify their new existence. The communication
negotiation is done in preset time p seconds with maximum
retries r. After time expires or maximum retries r failed, the
registration will be tried again after default update expire time
q.

The update procedure is same with the one of the registration,
but it is issued only if sensor nodes have any change (such as
leaving the network) or update time q expires. However, there
are possibilities which sensor nodes leave the network without
update messages, or registration failed with unexpected errors.
To actively figure out this situation quickly as soon as possible,
base station sends active discovery(identifiers) message to
sensor networks in periodic time s or when user requests.

Since the service identifiers are not adopted for
communications in a sensor network, actual communications
between sensor nodes and the base station are done using nodes’
network address. For this purpose the base station stores
identifiers along with corresponding network address and
continuously updates them so that users can communicate with
sensor nodes using network addresses.

B. Service browsing
Since service identifiers do not give any idea about the

sensor nodes or services except for simple identifications, it is
required to retrieve information about services for discovered
identifiers. Service metadata consist of attributes-values pairs,
and they self-describe all aspects of services: sensor nodes,
sensors, sensor data, and applications.

Thus service metadata, defined as data about services, gives
the idea about functional operations of them. The typical
example of sensor network service metadata includes sensor
type, sensing unit, measurement range, sensitivity, coefficients,
product description, serial number, aggregation capabilities,
message format, and calibration information. Sensor metadata
is essential for accessing sensor nodes, and understanding
sensing data and events; they are used for a number of service
utilization operations such as service browsing, service
planning, service optimization, and result interpretations.

The service metadata is described in XML for high level
interoperability and data centric presentations of metadata, but
XML description requires almost 10 times bigger size than
description using custom defined encoding [13]. A simplified
example of XML format is shown in Table 1 for an illustration
purpose.

It is clearly big burden for resource scared sensor nodes to
store them and transfer it to a remote base station via
error-prone radio channels. To avoid this problem we store
service metadata in distributed Internet repository instead of
tiny sensor node memory.

The repository, which we call service metadata repository

maintains metadata for services and allows users to query them
with target service identifiers. Thus inputs to service metadata
repository are identifiers and outputs are service metadata for
desired service identifiers. Service metadata repository is
different with UDDI used in some early service oriented sensor
networks works [6-9]. UDDI is used for looking up specific
services using UDDI queries, while main goal of service
metadata repository is providing users with service metadata
using service identifiers. In addition, service metadata
repositories may be maintained by sensor nodes manufacturer
or service providers.

Resolving mechanism changes service identifiers to location
of relevant service metadata repositories. We adopt object
name service (ONS) for this purpose. Domain name service is a
resolver that maintains the mapping from URL to IP address or
vice versa, while object name service translates EPCs to
address of Internet repository in EPCglobal architecture
framework. Our resolving operations are identical with domain
name service, excepting they are configured to translate service
identifiers to the corresponding location of service metadata
repository to meet our requirements. Resolving process is
hidden to users, and it can be considered special software
functions, which implement distributed hierarchical
translations and return relevant address f(N) of service metadata
repository for given service identifiers N. Figure 1 and Figure 3
show conceptual service metadata architecture.

<profile name=prototype>

 <sensor number=1>
 <type>flame</type>
 <application>fire alarm</application>
 <peakCount>30mA</peakCount>
 <sensitivities>5000cpm type</ sensitivities >
 </sensor>
 <sensorNode>
 <chipset>atmega 128L</chipset>
 <networkStack> ZIGBEE </networkStack>
 <watchdog> 8sec</watchdog>
</sensorNode >
<sensorData >
 <serviceRepresentation>
 <description>Response of Get Temperature</description>
 <responseId>2</responseId>
 <field order="1">
 <description>nodeId</description>
 <type>integer</type>
 </field>
 <field order="2">
 <description>command</description>
 <value>response_get_temp</value>
 <type>text</type>
 </field>
 <field order="3">
 <description>result</description>
 <type>integer</type>
 </field>
 </serviceRepresentation >

<sensorEvent>

<primitiveEvent>
<description> This is a flame sensor </description>

<eventLevel> 4 </eventLevel>
<value>Flame</value>
</primitiveEvent>

</sensorData>
</profile>

Table 1 Sensor metadata example

Figure 1 service metadata repository

C. Service planning
As results of service discovery and browsing, available

service list from sensor nodes are automatically detected, and
their capabilities (sensor types, sensing accuracy, sensing units,
duty cycle, etc.) are graphically displayed with icons. The icon
is also provided by service metadata repository, and the user
can set the logical name of each sensor node to ease
configurations.

Events produced by one sensor node are internally linked to
other events. For example, services using flame detection,
temperature/humidity sensor, smoke sensor, and IR sensors are
used to composite complex event that attempt to deal with “fire
alarm” or “intruder event”. User may connect multiple fire
detection services to SMS alarm service in order to notify
emergency when fire detection service returns fire events. An
intuitive GUI allows user to easily configure composite events,
while encapsulating complex rule processing internally. The
actual realization of composite events is hidden to users. The
complexities of complex event and variety of supported rules
are dependent upon applications, and detail complex event
processing is not addressed here due to page limits. Figure 2
shows service planning.

Figure 2 service planning

EPC Network
address Expiration (sec)

01.0000389.000
162.000169740 0 300

01.0000389.000
162.000169741 43 300

..

Figure 3 service oriented sensor networks

D. Service optimization
The service plans which are defined by users are internally

changed into message primitives for query disseminations.
Because available list of services and their capabilities are
known by service discovery and metadata browsing, various
optimizations can be applied according to sensor types, cost of
query and sensing, arithmetic processing, and network
topology. For example, user can send query primitives to only
relevant sensor nodes (e.g., sensor nodes which have target
services such as IR sensors).

We used a communication method selection algorithm that
estimates the routing cost of broadcasting and unicasting with
considerations of number of receiving sensor nodes. When a
base station sends the same packet to more than threshold a
number of nodes in a network, broadcasting a packet is more
efficient than unicasting multiple packets. On the other hand,
unicast is more efficient than broadcasting when the sink node
sends the same packet to less number of nodes than threshold a
in the network. The proposed selection algorithm provides an
efficient cost evaluation for communications.

The Select_Method() function described in Table 2 is the
algorithm for the sink node to select the more efficient way for
the given destination set. It compares the route cost between
unicast and broadcast using the number of required hops to
transmit as the metric. For simplicity, this function assumes that
the network is stable enough to communicate without failure.
Therefore, the required number of hops to propagate a
broadcast packet is the same as the total number of nodes in the
network.

Since calculation of route cost depends on the network
protocol, the Calculate_Hops() function is proposed based on
the ZigBee network protocol. In ZigBee protocol, every
potential parent is provided with a finite sub-block of the

address space, which is used to assign the network addresses

to its children.

Table 2. Algorithm to select communication method

Given nwkmaxChildren (Cm), nwkmaxDepth (Lm), and

nwkmaxRouters (Rm), we can compute the function Cskip(d)
as the size of the address sub-block distributed by each parent at
depth d as follows:

11()
1

Lm dCm Rm Cm RmCskip d
Rm

- -+ - - ×
=

-

For example, the kth router and nth end device shall be
assigned the network address by their parent at depth d as in the
following equation.

() (1) 1 (1)

() (1 -)
k parent

n parent

A A Cskip d k k Rm
A A Cskip d Rm n n Cm Rm

= + × - + £ £

= + × + £ £

Because of the hierarchical address assignment scheme, any
device with address A at the depth d has the destination device
with address D if the following equation is satisfied.

Select_Method(dstAddr)
Input: Set of dstAddr (d1, d2, …, dk), total number of nodes n
Output: Unicast or Broadcast
Begin
1. totUnicastHops = 0
2. totBroadcastHops = n
3. for i = 1 to k
4. totUnicastHops += Calculate_Hops(di, 0, 0)
5. end for
6. if (totUnicastHops < totBroadcastHops)
7. return Unicast
8. else
9. return Broadcast

10.end if
End

(1)A D A Cskip d< < + -
This Calculate_Hops() function in table 2 is the algorithm to

get the depth of the destination using the characteristic of
ZigBee tree routing [11]. This function is a recursive function
that has the arguments dstAddr, startAddr, curDepth. A
startAddr is the address of the ancestor node at curDepth for the
given destination dstAddr. It is started with startAddr 0 and
curDepth 0 by calling from the Select_Method() function, and
returns the route cost, that is, a required hops to transmit to the
given destination dstAddr.

Table 3. Algorithm to find a hop counts to the destination

Calculate_Hops(dstAddr, startAddr, curDepth)
Input: dstAddr, startAddr, curDepth
Output: depth_dstAddr
begin
1. if (dstAddr = startAddr)
2. return curDepth
3. else
4. for i = 1 to Rm
5. if (dstAddr is within address space of ith router)
6. return Calculate_Hops (dstAddr, ith router, curDepth+1)
7. end if
8. end for
9. if (Cm-Rm > 0)

10. if (dstAddr is the end device of startAddr)
12. return curDepth+1
13. end if
14. end if
15.end if
end

* Address space of ith router = (startAddr+Cskip[curDepth]*i+1 ,
startAddr+Cskip[curDepth]*(i+1)+1)
* Address space of end device of startAddr = (startAddr+Cskip
[curDepth]*Rm+1, startAddr+Cskip[curDepth]*Rm+Cm-Rm)

E. Service Interpretations
Sensor nodes which get request messages from a base station

respond to it. The response messages depend on sensor data
representations defined in service metadata, but it basically
includes service identifiers, subscription numbers to distinguish
them among multiple responses. It is possible for users to make
historical queries because the base station parses response
messages and stores service results such as sensing data or
events. If sensing value in response messages needs calibration
or additional information processing service metadata gives
instructions for it. As a simple example, raw sensing value read
from analog to digital converter can be calibrated into
temperature value with user readable Fahrenheit degree.

IV. CONCLUSION
We presented a service oriented wireless sensor networks

toolbox, which encapsulated complexities of sensor networks
and enabled simple service compositions using an intuitive
GUI. We utilized sensor networks as a collection of services
that were discovered and coordinated. Service metadata that
self-described both service capabilities and interfaces were

defined and exposed via our service metadata repositories. A
service oriented sensor network toolbox consisting of sensor
networks, an intuitive GUI application that helped users to
composite various roles were presented.

We stored metadata in Internet servers and provided a clue to
find service metadata from service identifiers. Based on
metadata architecture, we presented a sequence of service
composition processes including service discovery, service
browsing, service planning and optimization.

REFERENCES
[1] MP Papazoglou, D Georgakopoulos, “Service-Oriented Computing”,

Communications of the ACM, 2003
[2] Manish Kushwaha, Isaac Amundson, Xenofon Koutsoukos, Sandeep

Neema, Janos Sztipanovits, "OASiS: A Programming Framework for
Service-Oriented Sensor Networks”, 2nd International Conference on
Communication Systems Software and Middleware, 2007. COMSWARE
2007, 7-12 Jan. 2007

[3] Jie Liu1 ,Feng Zhao1, "Service-Oriented Computing in Sensor Networks",
Lecture Notes in Computer Science, 2005, Volume 3560/2005

[4] Jeffrey King Raja Bose Hen-I Yang Steven Pickles Abdelsalam
Helal, “Atlas: A Service-Oriented Sensor Platform: Hardware and
Middleware to Enable Programmable Pervasive“, 31st IEEE Conference
on Local Computer Networks, 2006

[5] Jaco M. Prinsloo, Christian L. Schulz, Derrick G. Kourie,W. H. Morkel
Theunissen, Tinus Strauss, Roelf Van Den Heever,Sybrand Grobbelaar,
“A service oriented architecture for wireless sensor and actor network
applications”, Proceedings of the 2006 annual research conference of the
South African institute of computer scientists and information
technologists on IT research in developing countries

[6] Marco Sgroi, Adam Wolisz, Alberto Sangiovanni-Vincentelli, Jan M.
Rabaey, “A Service-Based Universal Application Interface for Ad Hoc
Wireless Sensor and Actuator Networks”, whitepaper, UC Berkeley,
2004.

[7] Ayman Sleman , Reinhard Moeller, “Integration of Wireless Sensor
Network Services into other Home and Industrial networks”, Information
and Communication Technologies: From Theory to Applications, 2008.
ICTTA 2008. 3rd International Conference on

[8] Flavia Coimbra Delicato , Paulo F. Pires , Luci Pirmez, Luiz Fernando
Rust da Costa Carmo, “A Service Approach for Architecting Application
Independent Wireless Sensor Networks”, Lecture Notes in Computer
Science, 2005.

[9] Flavia Coimbra Delicato, Paulo F. Pires, Luci Pirmez, Luiz Fernando
Rust da Costa Carmo, "A Flexible Web Service Based Architecture for
Wireless Sensor Networks," icdcsw,pp.730, 23rd International
Conference on Distributed Computing Systems Workshops
(ICDCSW'03), 2003

[10] Sanjay Sarma, David L. Brock, Kevin Ashton, “The Networked Physical
World, Proposals for Engineering the Next Generation of Computing,
Commerce & Automatic-Identification,” Auto-ID Center white paper,
http://autoidlabs.org, 2006.

[11] T. Kim, D. Kim, N. Park, S. Yoo, T. S. Lopez, “Shortcut Tree Routing in
ZigBee Networks,” International Symposium on Wireless Pervasive
Computing, 2007.

[12] EPCglobal web sites, http://www.epcglobalinc.org/home.
[13] Sameer Tilak, Kenneth Chiu, Nael B. Abu-Ghazaleh, Tony Fountain,

Dynamic Resource Discovery for Wireless Sensor Networks" IFIP
International Symposium on Network-Centric Ubiquitous Systems
(NCUS 2005).

[14] OSGi Alliance, http://www.osgi.org/Main/HomePage

