
 

  
Abstract— Service-oriented computing which provides flexible 

composition of various applications using multiple reusable 
services has getting more attractive. We propose a service 
oriented wireless sensor networks toolbox, which encapsulates 
complexities of sensor networks and enables simple service 
compositions using an intuitive GUI. We utilize sensor networks 
as a collection of services that are discovered and coordinated by 
users. Service metadata which are self-describing service 
capabilities and interfaces are defined and exposed via our service 
metadata repositories. A service oriented sensor network toolbox 
consisting of sensor networks, an intuitive GUI application that 
retrieves metadata for discovered services and helps users to 
composite various roles are presented. 

 
Index Terms—service oriented computing, sensor network, 

sensor metadata, networked physical world 

I. INTRODUCTION 
HOUGH wireless sensor networks have been adopted in 
varieties of application fields, they tend to be considered 

tools for complex engineering or scientific tasks. Because 
dealing with wireless sensor networks is not easy and it often 
requires good knowledge of embedded system, sensors, and 
networking, they have been less considered for consumer 
products. 

As opposed to established wireless sensor networks which 
are tightly coupled with specific applications, service-oriented 
computing paradigm enables flexible composition of various 
applications using multiple reusable services [1]. Service 
oriented computing uses services as fundamental elements for 
developing applications, and basic service operations such as 
publications, discovery, selection, and bindings are provided in 
order to help flexible compositions [1]. 

Since service oriented computing allows flexible software 
compositions using loosely coupled services with applications, 
there have been increasing efforts for adopting a service 
oriented computing paradigm into wireless sensor networks. In 
a service-oriented WSN application, each activity (sensing, 
aggregation, service discovery, etc.) is implemented as a 
separate service [2]. Since these services are open and 
self-descriptive, various services from different venders can be 
utilized together. Services may consist of multiple sensor nodes, 
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and they are reusable and shared among multiple applications 
[3]. Service oriented sensor provides interoperability, 
scalability, and reusability of sensors [3].  

Underlining technology for service oriented computing is 
self-describing metadata that explains services. Services 
expose relevant metadata so that applications or users can use 
them to understand the service capabilities and interfaces. 
However, very little work has been done on supporting such 
important metadata effectively in service oriented sensor 
networks while most service oriented sensor network 
researches focused on software abstraction layers. Some 
featured works are a middleware platform for pervasive spaces 
[4], management architecture [5], and programming 
frameworks [2]. Although a few other works [6-9] addressed 
problems of service interfaces, descriptions and web service 
based architecture, they tended to leverage established service 
oriented computing technologies such as OSGi [14] and web 
services for sensor networks. 

However, service oriented computing operations such as 
service metadata publications, discovery, and binding cannot 
simply apply to sensor networks due to resource limitations of 
each sensor node. It is inefficient for every sensor node to store 
its metadata in precise memory or to have software layers to 
support web services.  

Our works are distinguished from previous works in that we 
design Internet based metadata architecture that stores metadata 
and allow users to download it. To associate services consisting 
of one or a group of sensor nodes with service metadata, we 
adopted a networked physical world approache [10] that uses 
unique identifiers, information servers, and identifier resolving 
system. Based on Internet based metadata architecture, 
specifically, we present a sequence of service composition 
processes from service discovery, service browsing and event 
based service planning, to result interpretations. 

We paid attention to possibilities of sensor networks used for 
general users without professional knowledge about wireless 
sensor networks. Thus, we design and implement a software 
toolbox consisting of various services which encapsulates 
complexities of sensor networks and an intuitive GUI to 
composite applications using services. Discovering available 
services and exposing their capabilities are supported via our 
identification mechanism and Internet metadata architecture. 
Our service oriented approach enables easy utilization of sensor 
networks for smart home environments. We also show how our 
service metadata approach is helpful for optimization of sensor 
network communications.  
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II. THE NETWORKED PHYSICAL WORLD 
Auto-ID Center that is a predecessor of current Auto-ID Labs 

envisioned a world in which all electronic devices are 
networked and every object, whether it is physical or electronic, 
is electronically tagged with information pertinent to that object 
[10]. The networked physical world utilizes physical tags to 
enable all physical objects to act as networked nodes. 

Taking advantage of the networked tag or nodes, realization 
of networked physical world depends on three main 
components; global identifiers, information servers and 
identifier resolvers. The information about physical object is 
stored in networked information servers. A globally unique 
identifier acts as a pointer to the appropriate object information 
servers. An identifier resolver called the object name service is 
used to locate the desired information server with given an 
identifier. 

The paradigm of networked physical world aimed at diverse 
ubiquitous automated applications, especially for supply chain 
management. We adopted the idea of networked physical world 
and extend it for the service oriented sensor networks.  

III. SERVICE ORIENTED SENSOR NETWORKS 

A. Service discovery 
Since services in wireless sensor networks are not permanent 

or static, but changeable according to sensor node replacements 
due to exhausted battery, topology changes or movements of 
sensor nodes. Service discovery allows consumers to know 
available services at the time of service compositions. Service 
discovery depends on unique identifiers of servicing sensor 
nodes. Network address and MAC address in wireless sensor 
networks are identifiers for sensor nodes and network 
interfaces respectively. However, network addresses are 
basically changed as network topology changes, and MAC 
address does not give any useful information about the 
associated service. For such reasons they are not suitable for 
service discovery. 

As a result additional service identifiers for identifying each 
servicing sensor nodes are needed. They should be application 
level names so that they are not changed even if configurations 
or topologies of sensor networks are changed. In addition, to 
coordinate services from different venders the identifiers need 
to be globally unique. Electronic product code (EPC), which is 
defined by EPCglobal [12] is used for leveraging information 
technologies in a supply chain, is best suited for our realizations 
for mentioned requirements. EPCs can be considered a kind of 
application keys to globally identify services and discover the 
sensor node. Among several EPC formats we adopt 96 bits EPC 
format which consists of version (8 bits), sensor node 
manufacturer (28bits), product (24 bits), and sensor node serial 
number (36 bits).  

For the discovery purpose, base station maintains up-to-date 
service identifier tables, which list global identifiers of 
discovered services (sensor nodes). Service identifier table 
consists of service identifiers of discovered sensor nodes, and 
the table is maintained by our service discovery protocols. To 
maintain the service identifier list service discovery 

mechanisms are designed: 1) registration by sensor nodes; 2) 
update by sensor nodes; and 3) active discovery. Among three 
methodologies, registration and update are passive while active 
discovery is actively operated by the base station.  

After sensor nodes are turned on, they interchange hello 
messages with base station to check the interoperability.  Then, 
sensor nodes send registration(identifiers) message to base 
station to notify their new existence. The communication 
negotiation is done in preset time p seconds with maximum 
retries r. After time expires or maximum retries r failed, the 
registration will be tried again after default update expire time 
q.  

The update procedure is same with the one of the registration, 
but it is issued only if sensor nodes have any change (such as 
leaving the network) or update time q expires. However, there 
are possibilities which sensor nodes leave the network without 
update messages, or registration failed with unexpected errors. 
To actively figure out this situation quickly as soon as possible, 
base station sends active discovery(identifiers) message to 
sensor networks in periodic time s or when user requests.  

Since the service identifiers are not adopted for 
communications in a sensor network, actual communications 
between sensor nodes and the base station are done using nodes’ 
network address. For this purpose the base station stores 
identifiers along with corresponding network address and 
continuously updates them so that users can communicate with 
sensor nodes using network addresses. 

B. Service browsing 
Since service identifiers do not give any idea about the 

sensor nodes or services except for simple identifications, it is 
required to retrieve information about services for discovered 
identifiers. Service metadata consist of attributes-values pairs, 
and they self-describe all aspects of services: sensor nodes, 
sensors, sensor data, and applications. 

Thus service metadata, defined as data about services, gives 
the idea about functional operations of them. The typical 
example of sensor network service metadata includes sensor 
type, sensing unit, measurement range, sensitivity, coefficients, 
product description, serial number, aggregation capabilities, 
message format, and calibration information. Sensor metadata 
is essential for accessing sensor nodes, and understanding 
sensing data and events; they are used for a number of service 
utilization operations such as service browsing, service 
planning, service optimization, and result interpretations.  

The service metadata is described in XML for high level 
interoperability and data centric presentations of metadata, but 
XML description requires almost 10 times bigger size than 
description using custom defined encoding [13]. A simplified 
example of XML format is shown in Table 1 for an illustration 
purpose. 

It is clearly big burden for resource scared sensor nodes to 
store them and transfer it to a remote base station via 
error-prone radio channels. To avoid this problem we store 
service metadata in distributed Internet repository instead of 
tiny sensor node memory. 

The repository, which we call service metadata repository 



 

maintains metadata for services and allows users to query them 
with target service identifiers. Thus inputs to service metadata 
repository are identifiers and outputs are service metadata for 
desired service identifiers. Service metadata repository is 
different with UDDI used in some early service oriented sensor 
networks works [6-9]. UDDI is used for looking up specific 
services using UDDI queries, while main goal of service 
metadata repository is providing users with service metadata 
using service identifiers. In addition, service metadata 
repositories may be maintained by sensor nodes manufacturer 
or service providers. 

Resolving mechanism changes service identifiers to location 
of relevant service metadata repositories. We adopt object 
name service (ONS) for this purpose. Domain name service is a 
resolver that maintains the mapping from URL to IP address or 
vice versa, while object name service translates EPCs to 
address of Internet repository in EPCglobal architecture 
framework. Our resolving operations are identical with domain 
name service, excepting they are configured to translate service 
identifiers to the corresponding location of service metadata 
repository to meet our requirements. Resolving process is 
hidden to users, and it can be considered special software 
functions, which implement distributed hierarchical 
translations and return relevant address f(N) of service metadata 
repository for given service identifiers N. Figure 1 and Figure 3 
show conceptual service metadata architecture. 

 
<profile name=prototype>  

 <sensor number=1>  
 <type>flame</type>  
 <application>fire alarm</application>  
 <peakCount>30mA</peakCount>  
 <sensitivities>5000cpm type</ sensitivities >  
 </sensor> 
 <sensorNode>  
 <chipset>atmega 128L</chipset> 
 <networkStack> ZIGBEE </networkStack>  
 <watchdog> 8sec</watchdog>  
</sensorNode > 
<sensorData > 
 <serviceRepresentation> 
  <description>Response of Get Temperature</description> 
  <responseId>2</responseId> 
  <field order="1"> 
   <description>nodeId</description> 
   <type>integer</type> 
  </field> 
  <field order="2"> 
   <description>command</description> 
   <value>response_get_temp</value> 
   <type>text</type> 
  </field> 
  <field order="3"> 
   <description>result</description> 
   <type>integer</type> 
  </field> 
 </serviceRepresentation > 

<sensorEvent> 

<primitiveEvent> 
<description> This is a flame sensor </description> 

<eventLevel> 4 </eventLevel> 
<value>Flame</value> 
</primitiveEvent> 

</sensorData> 
</profile> 

Table 1 Sensor metadata example 

Figure 1 service metadata repository 

C. Service planning 
As results of service discovery and browsing, available 

service list from sensor nodes are automatically detected, and 
their capabilities (sensor types, sensing accuracy, sensing units, 
duty cycle, etc.) are graphically displayed with icons. The icon 
is also provided by service metadata repository, and the user 
can set the logical name of each sensor node to ease 
configurations.  

Events produced by one sensor node are internally linked to 
other events. For example, services using flame detection, 
temperature/humidity sensor, smoke sensor, and IR sensors are 
used to composite complex event that attempt to deal with “fire 
alarm” or “intruder event”. User may connect multiple fire 
detection services to SMS alarm service in order to notify 
emergency when fire detection service returns fire events. An 
intuitive GUI allows user to easily configure composite events, 
while encapsulating complex rule processing internally. The 
actual realization of composite events is hidden to users. The 
complexities of complex event and variety of supported rules 
are dependent upon applications, and detail complex event 
processing is not addressed here due to page limits. Figure 2 
shows service planning. 

 

 

Figure 2 service planning 



 

 

EPC Network 
address Expiration (sec)

01.0000389.000
162.000169740 0 300

01.0000389.000
162.000169741 43 300

.. .. ..

 
Figure 3 service oriented sensor networks 

 

D. Service optimization 
The service plans which are defined by users are internally 

changed into message primitives for query disseminations. 
Because available list of services and their capabilities are 
known by service discovery and metadata browsing, various 
optimizations can be applied according to sensor types, cost of 
query and sensing, arithmetic processing, and network 
topology. For example, user can send query primitives to only 
relevant sensor nodes (e.g., sensor nodes which have target 
services such as IR sensors). 

We used a communication method selection algorithm that 
estimates the routing cost of broadcasting and unicasting with 
considerations of number of receiving sensor nodes. When a 
base station sends the same packet to more than threshold a 
number of nodes in a network, broadcasting a packet is more 
efficient than unicasting multiple packets. On the other hand, 
unicast is more efficient than broadcasting when the sink node 
sends the same packet to less number of nodes than threshold a 
in the network. The proposed selection algorithm provides an 
efficient cost evaluation for communications.  

The Select_Method() function described in Table 2 is the 
algorithm for the sink node to select the more efficient way for 
the given destination set. It compares the route cost between 
unicast and broadcast using the number of required hops to 
transmit as the metric. For simplicity, this function assumes that 
the network is stable enough to communicate without failure. 
Therefore, the required number of hops to propagate a 
broadcast packet is the same as the total number of nodes in the 
network.  

Since calculation of route cost depends on the network 
protocol, the Calculate_Hops() function is proposed based on 
the ZigBee network protocol. In ZigBee protocol, every 
potential parent is provided with a finite sub-block of the  

 
address space, which is used to assign the network addresses 

to its children. 
 

Table 2. Algorithm to select communication method 

 
Given nwkmaxChildren (Cm), nwkmaxDepth (Lm), and 

nwkmaxRouters (Rm), we can compute the function Cskip(d) 
as the size of the address sub-block distributed by each parent at 
depth d as follows:  

11( )
1

Lm dCm Rm Cm RmCskip d
Rm

- -+ - - ×
=

-
 

For example, the kth router and nth end device shall be 
assigned the network address by their parent at depth d as in the 
following equation.  

( ) ( 1) 1 (1 )

( )  (1 - )
k parent

n parent

A A Cskip d k k Rm
A A Cskip d Rm n n Cm Rm

= + × - + £ £

= + × + £ £
 

Because of the hierarchical address assignment scheme, any 
device with address A at the depth d has the destination device 
with address D if the following equation is satisfied.  

Select_Method(dstAddr) 
Input: Set of dstAddr (d1, d2, …, dk), total number of nodes n 
Output: Unicast or Broadcast 
Begin 
1. totUnicastHops = 0 
2. totBroadcastHops = n 
3. for i = 1 to k 
4.      totUnicastHops += Calculate_Hops(di, 0, 0) 
5. end for 
6. if (totUnicastHops < totBroadcastHops) 
7.     return Unicast 
8. else 
9.     return Broadcast 

10.end if 
End 



 

( 1)A D A Cskip d< < + -  
This Calculate_Hops() function in table 2 is the algorithm to 

get the depth of the destination using the characteristic of 
ZigBee tree routing [11]. This function is a recursive function 
that has the arguments dstAddr, startAddr, curDepth. A 
startAddr is the address of the ancestor node at curDepth for the 
given destination dstAddr. It is started with startAddr 0 and 
curDepth 0 by calling from the Select_Method() function, and 
returns the route cost, that is, a required hops to transmit to the 
given destination dstAddr.  

 
Table 3. Algorithm to find a hop counts to the destination  

Calculate_Hops(dstAddr, startAddr, curDepth) 
Input: dstAddr, startAddr, curDepth 
Output: depth_dstAddr 
begin 
1. if (dstAddr = startAddr) 
2.    return curDepth 
3. else 
4.    for i = 1 to Rm 
5.       if (dstAddr is within address space of ith router) 
6.          return Calculate_Hops (dstAddr, ith router, curDepth+1) 
7.       end if 
8.    end for 
9.    if (Cm-Rm > 0) 

10.      if (dstAddr is the end device of startAddr) 
12.         return curDepth+1 
13.      end if 
14.  end if 
15.end if 
end 
 
* Address space of ith router = (startAddr+Cskip[curDepth]*i+1 , 
startAddr+Cskip[curDepth]*(i+1)+1) 
* Address space of end device of startAddr = (startAddr+Cskip 
[curDepth]*Rm+1, startAddr+Cskip[curDepth]*Rm+Cm-Rm) 

E. Service Interpretations 
Sensor nodes which get request messages from a base station 

respond to it. The response messages depend on sensor data 
representations defined in service metadata, but it basically 
includes service identifiers, subscription numbers to distinguish 
them among multiple responses. It is possible for users to make 
historical queries because the base station parses response 
messages and stores service results such as sensing data or 
events. If sensing value in response messages needs calibration 
or additional information processing service metadata gives 
instructions for it. As a simple example, raw sensing value read 
from analog to digital converter can be calibrated into 
temperature value with user readable Fahrenheit degree. 
 

IV. CONCLUSION 
We presented a service oriented wireless sensor networks 

toolbox, which encapsulated complexities of sensor networks 
and enabled simple service compositions using an intuitive 
GUI. We utilized sensor networks as a collection of services 
that were discovered and coordinated. Service metadata that 
self-described both service capabilities and interfaces were 

defined and exposed via our service metadata repositories. A 
service oriented sensor network toolbox consisting of sensor 
networks, an intuitive GUI application that helped users to 
composite various roles were presented.  

We stored metadata in Internet servers and provided a clue to 
find service metadata from service identifiers. Based on 
metadata architecture, we presented a sequence of service 
composition processes including service discovery, service 
browsing, service planning and optimization. 
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