
 1

Abstract—Wireless sensor networks are becoming more and
more common in the ubiquitous computing era. The applications
of sensor networks are diverse and they are employed in areas
such as smart homes, military, ITS, fire monitoring, factory
automation, and so on. However, sensor networks are generally
battery powered and thus, low power consumption is required
for prolonged use. In this paper, we propose a distributed low
power scheduling algorithm for sensor nodes to determine its
active time slots in a TDMA mechanism working on top of a
slotted CSMA network. The performance evaluation shows that
an extremely small duty cycle is achieved by the proposed
algorithm with a tradeoff in data delay in a sensor network
application.

Index Terms—low power, scheduling, sensor network

I. INTRODUCTION

ireless sensor networks are becoming more and more
common in the era of ubiquitous computing. Sensor

networks are a kind of ad hoc network that is used for event
and environment monitoring. Sensor networks have a wide
range of possible usage from military applications to health
monitoring to smart homes to forest fire monitoring and many
other applications. Due to the requirements of small size and
ease of deployment, sensor nodes are battery powered thus,
low power consumption is very important as it is difficult or,
in some cases, impossible to replace the battery in deployed
sensor nodes.

Sensor network applications commonly used in real life
such as in smart homes, habitat monitoring, and smart farms,
all require a long lifetime as a fundamental characteristic of
the sensor network. The main source of energy in a sensor
node is a small battery but its main components such as the
microcontroller unit (MCU), radio frequency (RF) transceiver,
and many various types of sensors consume high power when
turned on. For example, a zigbee transceiver that is popularly
used nowadays draws about 20mA of current when active, so
the lifetime of a zigbee device with 2AA alkaline batteries can
not exceed 1 week without wake-up scheduling. Therefore,
low power scheduling is an essential element for the longevity
of sensor networks.

The low power scheduling algorithm depends on the sensor
network application. Sensor network applications can be
divided into event driven and continuous monitoring types [5].

This research was supported by the MIC(Ministry of Information and
Communication), Korea, under the ITRC(Information Technology Research
Center) support program supervised by the IITA(Institute of Information
Technology Advancement)" (IITA-2006-(C1090-0603-0047))

In the event driven based application such as fire detection,
gas leakage monitoring, and intrusion detections, cycle
(referred to as ‘epoch’) duration should be as small as several
hundred milliseconds in order to detect them. Moreover, the
synchronization among sensor nodes has to be considered in
the scheduling algorithm. In order to report the real-time data
to the base station, the other sensor nodes should be waken up
in order to relay the event information generated by a sensor
node that detects event. On the contrary, the sensor network
application for continuous monitoring requires neither small
cycle duration nor synchronization between nodes. Since the
delay from sensor nodes to the base station is not strictly
bounded in the continuous monitoring system, time
synchronization between sensor nodes is enough for the
wakeup scheduling in the network. That is, not all the nodes
need to wake up at the same time for a real-time data
transmission. So, a well designed wakeup scheduling
algorithm can optimize the needed wakeup time for a given
delay bound of an application. The various environment
monitoring, remote inspection systems and telematics
applications are examples of continuous monitoring
applications.

The low power scheduling algorithm can also be classified
by the scheduling method. In the centralized scheduling
algorithm, the base station collects all the topology
information of sensor nodes in a network and calculates the
optimal schedule for each node. Even if the scheduling in a
centralized method achieves the optimal wakeup schedule, it
cannot be applied to large scale sensor networks because of
the control packet overhead. Whereas the centralized method
is based on the collection of global network topology and
distribution of scheduling information for each node, the
distributed method adopts the method that each sensor node
itself determines its wakeup schedule based on the local
topology information. Since the control packet overhead is
much smaller than that in the centralized method, the
distributed method based scheduling algorithm is preferred in
a large network.

In this paper, we focus on the sensor network application
for continuous monitoring and try to minimize the wakeup
time of each node to prolong the lifetime of the network. The
proposed algorithm is a distributed low power scheduling
algorithm along with tree topology construction by the nodes.
When constructing the tree topology, every node chooses its
active time slot by itself. The topology and scheduling is
optimized for the application of sensor nodes where every
node monitors and reports information to the base station.

Distributed Low Power Scheduling in Wireless
Sensor Networks

Taehong Kim, Noseong Park*, Poh Kit Chong, Jongwoo Sung, Daeyoung Kim
Information and Communications University, Electronics and Telecommunications Research Institute*

{damiano, chongpohkit, jwsung, kimd}@icu.ac.kr, behack@etri.re.kr*

W

 2

This paper is organized as follows. Section II describes related
works on the low power scheduling algorithm. Section III
describes the network mode which we use, and section IV
shows the proposed algorithm including tree construction and
active time slot assignment algorithm. We evaluate the
proposed algorithm and conclude in section V and VI.

II. RELATED WORKS
There have been many researches on low power scheduling

since research into sensor networks started. Among the many
kinds of low power consumption techniques, wakeup and
sleep scheduling of nodes has been the area most researched
on to extend the lifetime of sensor networks. Shin [1] and Lee
[2] suggested beacon scheduling algorithm on IEEE 802.15.4.
In their papers, every node transmits a beacon which includes
its neighbor’s addresses and allocated slots, periodically.
When a node attempts to join the network, it receives the
beacons from it neighbors and obtains 2-hop neighbor
information by interpreting beacons. It selects one of the
available slots that are not used in 2-hop neighbors; therefore,
every node can achieve time synchronization and low power
schedule as well as avoiding beacon collision. However, the
beacon only period that is used for wakeup scheduling
consumes a big portion of the superframe duration; this causes
every node to waste energy during the beacon only period in
every cycle. The proposed algorithm also causes a large delay
in the sensor network application when all sensor nodes send
data to the base station because it requires many cycles to
forward data from the lower levels to the base station.

There are also many papers [3-6] that concentrate on the
low power scheduling algorithm in the sensor network
application for continuous monitoring. The common
application that almost papers assume is that all the sensor
nodes report one data in a cycle under the tree topology. Choi
et al [3] proposed a scheduling mechanism on the sensor
network assuming the above sensor network application. They
show that the optimal number of slots for both string and tree
topology is 3(n-2) slots for n nodes. Under the condition that
all the nodes send the data one time in a cycle, they minimized
both the needed number of slots in a cycle and active slots.
However, the base station computes the scheduling for all
nodes, and sends it back. As we mentioned in the introduction,
this kind of centralized approach cannot be applied to large
scale sensor networks.

The papers [4-6] proposed tree construction and slot
allocation algorithm to achieve low power consumption. [4]
proposed a way to assign predefined slots to each sensor node
assuming both single and multiple base stations. Sichitiu [5]
suggested a scheduling algorithm where every node can set its
own schedule by using the RTS/CTS based control packet.
When the node joins to the network, it sets up the route path
and its transmission time to the parent node. When the
acknowledgement for RTS/CTS based control packet is
returned at a given time, the joining node sets it as its
transmission time. However, the number of available slots is
restricted and the network setup time is delayed if duration of

a cycle is relatively smaller than the required time for the
number of nodes in a network.

Our proposed low power scheduling algorithm fully uses
the characteristics of tree topology such as hierarchical routing,
maximum number of children of a parent node, and maximum
depth of a tree. So, we can predefine the number of slots in a
cycle that can support all the data transmission of all the
sensor nodes in a network. By using predefined active time
slots for each level, sensor nodes can easily choose its active
node slot as well as avoid collisions with packets from a node
in another tree level. Moreover, the slot assignment algorithm
is designed to avoid the collision with the packets from a node
in a same tree level.

III. NETWORK MODEL
The proposed algorithm assumes that every sensor node

reports its sensing data once every cycle. The network is
constructed by the nodes themselves; the tree topology is
designed to make reporting from sensor nodes to the base
station efficient. The minimum duration of a cycle, which we
use in the proposed algorithm, can be determined by the
maximum number of nodes in a network. Because all the
nodes know the constraints such as maximum number of
children, maximum depth of a tree, they can allocate the
memory for storing the schedule information. The schedule
information considers the situation that the network has an
acceptable maximum number of nodes. For each time
schedule, information is already given for sending, receiving,
and forwarding from a specific sensor node. Each node can be
differentiated by its tree level and its active time slot selected
when joining. Thus, those slots may be set as idle in so far as a
specific node does not join.

The schedule information for every time slot at the start
time is initialized as idle slot. When sensor nodes join the
network, they choose an active time slot in their tree level.
According to a node’s tree level and active time slot, they can
calculate specific time slot to send the data and update their
time schedule information for this time as send slot. Then,
they notify their new joining to its ancestor node, from the
parent to the base station. When the ancestor nodes receive the
notification message, they calculate the specific time slot for
receiving and forwarding data, and set them as receive slot
and forward slot respectively. After finishing the tree
construction phase, every sensor nodes including the base
station wake up at the time slots labeled as send slot, receive
slot, or forward slot to report periodic information.

In order to achieve the main goal of minimizing power
consumption, our proposed algorithm has the following
characteristics:

- Optimal number of active slots: All the sensor nodes
including base station wake up only when they are scheduled
to send, receive, or forward the data.

- Collision free schedule: No node can transmit data that
possibly interferes with a transmission from a certain node to
its parent node.

The network scheduling is a form of TDMA working on

 3

top of a slotted CSMA network. During the tree construction
phase, the control packets used in joining procedure are
transmitted as CSMA manner, and data gathering phase works
as TDMA because sensor nodes are activated at a start of their
active slot.

IV. PROPOSED SCHEDULING ALGORITHM
The proposed scheduling algorithm is a kind of distributed

scheduling algorithm based on a tree topology that fully
utilizes the characteristics of the tree topology such as the
level of each node, the maximum number of children a parent
can have (maxChild) and the maximum number of tree level
(maxDepth). In the proposed algorithm, the basic structure and
duration of a network schedule is predefined according to the
network constraints maxChild and maxDepth. For example, a
network schedule is divided into maxDepth number of periods,
and the size of each period is determined by the value of
maxChild. In order to understand the proposed scheduling
algorithm, the basic structure of a network schedule should be
understood first.

A. Structure of Schedule
The structure of a network schedule for a string topology in

Fig. 1 can help us understand the structure of a schedule for a
tree topology. Suppose that the transmission range cannot
reach the node in a 2-hop distance, the schedule for a string
topology can be calculated like Fig. 2. [3]

Fig. 1 String Topology

The network schedule shown in Fig.2 is composed of a

level schedule for every level. These in turn are composed of
level slots. Since all the data from each level will finally reach
the base station at level 0, the nodes at the lower level wake
up more frequently. In order to avoid collision, each sending
level must be separated by two other levels. In other words,
only one level is active every 3 levels; so, it requires 3 level
slots for every level to send the data. For example, the data at
level 1 and 4 goes up to upper level at the first level slot, data
at level 2 and 5 goes up at the second level slot, and data at
level 3 and 6 goes up at the third level slot. At the next three
level slots, all the data goes up to upper level again. Therefore,
the generated data at each level goes up to upper level every 3
level slots. So, we define 3 level slots as a period. For instance,
the network in Fig. 2 above requires 6 periods in order to relay
the data from the last level 6 to the base station.

Fig. 2 Network Schedule

In the network schedule in Fig 2, sensor nodes wake up to
send and forward the data at the marked level slots. The
number of active level slots in a level schedule for each level
can be computed by 3k + (level-1) mod 3, where k is between
0 and maxDepth-level. Nodes sleep during their inactive level
slot times.

In order to extend the network schedule for a string
topology to a tree topology, the number of node slots in a
level slot (NumNodeSlots) and data size at each period should
be considered. Because there are more nodes in a level
compared to a string tolopology, for NumNodeSlots, the
minimum requirement is the number of maximum children
that a parent can have (maxChild). This is because only one
child can send data to its parent at a time. If more slots than
the maximum number of same level neighbors are given, all
the neighboring nodes in the same level have different node
slots. As shown in Fig. 3, the last joined node selects a node
slot in order not to overlap with other node’s node slot in the
same level if NumNodeSlots is enough.

Fig. 3 (a) Node Slots at NumNodeSlots 3 (b) Node Slots at NumNodeSlots 4

In the tree topology, the amount of transmitted data

increases as the data arrives from higher levels. For instance,
the node at level 1 sends the data amount of 1 in the first
period, because it transmits only its own data. In the second
period, the node will forward the data which was received
from its children in the first period. The size of the data in the
second period is a maximum of maxChild. In this manner, the
data size at each period can be computed as (maxChild)period-1.

We can compute the level schedule for every level in the
general tree topology by considering both NumNodeSlots and
data size at each period, as follows:

() (()%)
k

t k

t 1
3 maxChild NumSlots maxChild NumSlots level 1 3

=

⋅ ⋅ + ⋅ ⋅ −∑
(0 period k max Depth level)≤ ≤ −

Fig. 4 Equation of Level Schedule for a Tree Topology

Every node chooses one active node slot among available

node slots (1 ≤ active node slot ≤ NumNodeSlots) when
joining the network. The detailed algorithm to construct the
tree topology and to choose the active node slot will be
explained in the next section IV. (B). Based on the level
schedule equation in Fig. 4, they can compute their own node
schedule by adding (active node slot-1)·the data size at each
period into the level schedule. The parent node can calculate
its children’s active time in a similar manner, and set related
slots as active slot in order to receive and forward the data.
The proposed scheduling algorithm in a view point of a node
is described in the Fig. 5.

 4

B. Tree Construction and Slot Assignment Algorithm
In this algorithm, every node sets the schedule information

for each time slot. The schedule information that is used in the
proposed algorithm is as follows.

- idle slot: The node keeps the idle mode to save the power
consumption.

- send slot: The node generates its own data to report to a
base station.

- receive slot: The node receives data from its child or
descendant node.

- forward slot: The node forwards data stored in the
receive buffer.

Because all the sensor nodes and base station keep the
information of network configuration such as maxDepth,
maxChild, and NumSlots before it is started, they allocate the
memory for the schedule and set the schedule information for
all the time slots as idle slot when they are turned on.

The tree topology is constructed from the broadcast of the
base station. The base station broadcasts the ‘construction
message’ to build the tree topology. In the ‘construction
message’, the node’s tree level and its active node slot
information is included.

On receiving the ‘construction message’, the node waits a
random period in order to find the potential parent node which
has shortest-hop to the base station and to overhear the tree
level and active node slots of neighbors. After the period is
over, the node chooses its parent, determines the tree level,
collects unused node slot between 1 to NumNodeSlots among
its neighbors in a same level, and sends a ‘join request
message’ to the parent node. The parent node, on receiving the
‘join request message’, sends a ‘join response message’ after
assigning the active node slot among available slots in both
parent node and child node. The reason the parent node
assigns the child’s active node slot is to prevent a hidden
terminal problem. Although the child node tries to avoid the
used slots by overhearing the ‘construction message’ from its
neighbors, children which can not communicate directly may
choose the same active node slot. If the parent node has
already maxChild number of children, it denies the new
joining and recommends finding another parent node.

When the joining node receive the ‘join response message’
from the parent node, it sets its active node slot, calculates its
active time based on level schedule and its active node slot,
and update the schedule for that time to sent slot. Then, it
sends ‘notify joining message’ to its ancestor nodes from its
parent to the root node. The ancestor nodes finishing the
joining procedure transmit the ‘construct message’ to allow
joining of child nodes.

When the ancestor nodes receive ‘notify joining message’,
it updates the schedule for the time slots prepared to receive or
forward data of descendant nodes, to receive slot or forward
slot. The reason we use the feedback mechanism like ‘notify
joining message’ is to reduce the number of active slots.
When the nodes prepare the slots to receive and forward data,
it can be wasted if the slots are not utilized. With this
mechanism, the needed active time slot for any network

topology can be said to be the minimum.

Distributed Low Power Scheduling Algorithm

Begin
1. receive the ‘construction message’
2. while (random period is not expired)
3. record tree level, active node slot from rebroadcast of neighbor
4. end while
5. while (period is expired and parent node denied)
6. send join request message after choosing the parent node and

its depth, and collecting unused slots among its neighbors in
same depth

7. end while
8. record its active node slot the parent node assigned
9. schedule to send data based on level schedule and its active

node slot, and notify its ancestor node
10. ancestor nodes updates the schedule to receive and forward the

data from descendant node
11. transmit ‘construction message’ to accept its child node
12. if (data gathering cycle is started)
13. send and forward the data in its active time every cycle
14. end if
End

Fig. 5 Tree Construction and Slot Assignment Algorithm

V. PERFORMANCE EVALUATION
We evaluate the performance of the proposed algorithm

based on the duty cycle at data gathering period and average
delay from sensor node to base station. For the simulation, we
used the NS-2 simulation tool. The networks agents we used
in the simulation are IEEE 802.15.4 and ZigBee. Since the
ZigBee network protocol has many commonalities with the
proposed algorithm such as limiting maximum children (Cm)
and maximum tree depth (Lm), following hierarchical routing,
we selected IEEE 802.15.4 and implemented ZigBee’s tree
routing for multi-hop communication from sensor nodes to the
base station. In the simulation environment, we set the
network size as 100mx100m and transmission range as 10
meters. Every node has identical transmission range and they
are randomly deployed. The packet size generated by every
sensor node is 100bytes, and the duration of one slot is
20msec. We set the network configuration maxChild and
maxDepth as 4 and 5 respectively for all simulation.

For the tree construction procedure in the proposed
algorithm, we modified frame structure of several commands
packet such as beacon, association request, association res-
ponse. The beacon, association request, association response
packet are matched with ‘construction message’, ‘join request
message’, join response message’ in the proposed algorithm
respectively. So, in the beacon payload, the node’s tree level
and its active slot is added to let neighbor nodes know.
Association request packet and response packet is added as
the available slot list and assigned node slot respectively.
Once the coordinator that has the role of base station starts to
construct the network, other sensor nodes discover the
neighbor information such as their tree level and active time
slots by using the scan procedure. After selecting the potential
parent node, it sends association request with the available slot
list. The parent node checks its available slots for children and

 5

the lists the child node that wants to be assigned, and sends an
association response with a matched slot.

For the ‘notify joining’ in the tree construction phase and
data reporting in data gathering phase, the routing follows the
ZigBee’s tree routing. All the sensor nodes set the destination
as 0 to send the packet to the base station; then, sensor nodes
and its ancestor nodes forward it to their parent node
according to destination address.

0

0.25

0.5

0.75

1

1.25

1.5

10 20 30 40 50 60 70 80 90 100

Number of Nodes

D
u
ty

 C
yc

le
 (

%
) Level1

Level2

Level3

Level4

Level5

Fig. 6 Average Duty Cycle in Each Level

Fig. 6 shows the average duty cycle in each tree level. The

network configuration NumNodeSlots=5, and the number of
slots in a cycle is calculated as 5115. As the number of nodes
in a network increase, the duty cycle in each level increase
together. It is because the active slot is allocated only when
the nodes joins. Since the nodes in a lower level have to relay
the data of higher levels, average duty cycle in lower level is
higher than that in higher level. Even if the duty cycle
increases as the number of nodes in a network increases, the
duty cycle is still less than 1.5% for 100 nodes.

0

10

20

30

40

50

60

2 3 4 5 6 7 8

NumLevelS lots

P
a
c
k
e
t

L
o

s
s
 R

a
te

 (
%

)

0

5

10

15

20

25

30

A
ve

ra
g

e
 D

e
la

y
(s

e
c
)

LossRate

Avg.Delay

Fig. 7 Packet Loss Rate versus Average Delay

Fig. 7 shows the relation between NumNodeSlots and

packet loss rate and tradeoff between NumNodeSlots and
average delay. The number of nodes in a network is 60 nodes.
As we mentioned in Section VI, if NumNodeSlots is not
enough to assign unique active node slot to every node in a
tree level, they may select the same active node slot and send
the data at the same time. Therefore, the packet loss rate is
higher as the NumNodeSlots is smaller. However, when
NumNodeSlots is higher than 5, the packet loss rate becomes
stable with 1%. The average delay is measured as the average

delay from sensor node to the base station. Since
NumNodeSlots affects both duration of a cycle and the size of
each period, the average delay increases as NumNodeSlots
increases. The cycle duration for NumNodeSlots 5 and 8 is
about 100 sec and 180 sec respectively. Even though such a
big cycle may be an issue in event driven sensor network
applications, it is not a problem in sensor network applications
for monitoring.

0

0.1

0.2

0.3

0.4

10 20 30 40 50 60 70 80 90 100

Number of Nodes

A
ve

ra
g

e
 D

u
ty

 C
yc

le
 (

%
)

0

5

10

15

20

25

A
ve

ra
g

e
 D

e
la

y
(s

e
c
)

Avg.DutyCycle

Avg.Delay

Fig. 8 Average Duty Cycle and Average Delay

Fig. 8 shows the average duty cycle and average delay

according to the number of nodes in a network. The network
configuration NumNodeSlots is set to 5 to simulate the
condition that all the data from the sensor nodes comes to the
base station. The reason the average duty cycle increases is
because the number of nodes in a network increases. However,
the average duty cycle is still significantly smaller relative to
the increase in the number of nodes in a network, whereas the
average delay increases to 23 sec when the number of nodes is
100. The average delay has a tendency to increase as the
number of nodes increases. Since the structure of the schedule
is already defined, and data from higher levels are delivered in
higher periods as in Fig. 2, the average delay increases as the
number of nodes in higher levels increases. However, this is
allowed for sensor network applications for continuous
monitoring because the delivery time is not a critical fact in
this type of applications.

VI. CONCLUSION
We proposed a distributed low power scheduling algorithm

based on the tree topology. Every node can calculate its active
time schedule based on the level schedule and its active node
slot. The proposed algorithm makes the duty cycle of the
nodes optimal by allocating active node slots for only
necessary data transmission. It is achieved by dynamically
allocating active node slots for the notification of joined nodes
and not by allocating the active node slot in advance.

If the NumNodeSlots is equivalent to the maximum number
of neighbors in the same level, we can guarantee reliable data
gathering. Otherwise, in dense networks where there are many
interfering nodes, we can expect that much of the sensing data
will be duplicated and therefore will be filtered out using
CSMA in the node slots in the network. Thus, the user can
choose proper NumNodeSlots to get reliable data gathering

 6

with consideration to the network topology.
If the sensor network application is tolerant to the big duty

cycle and large delay, then the network lifetime can be
maximized by the proposed low power scheduling algorithm.

REFERENCES
[1] Yongsik Shin, “MAC/PHY Specifications on MEW (Mewsh-Enabled

Wireless Sensor Network) Technology,” proposal of ISO/IEC JTC1
[2] Myung Lee, Huai-Rong Shao, Ho-in Jeon, “Combined Beacon

Scheduling Proposal to IEEE 802.15.4b,” in IEEE 802.15.4b proposal
[3] Hongsik Choi, Ju Wang and Esther A. Hughes, “Scheduling on Sensor

Hybrid Network,” in IEEE ICCCN 2005
[4] Andreea Berfield and Daniel Mossé, “Efficient Scheduling for Sensor

Networks,” The 1st Internation Worshop on Advances in Sensor
Netowkrs 2006.

[5] Mihail L. Sichitiu, “ Cross-Layer Scheduling for Power. Efficiency in
Wireless Sensor Networks,” INFOCOM,. 2004.

[6] B. Hohlt, L. Doherty, and E. Brewer. "Flexible Power Scheduling for
Sensor Networks," IPSN 2004.

[7] Diba Mirza, Maryam Owrang, Curt Schurgers, "Energy-efficient
Wakeup Scheduling for Maximizing Lifetime of IEEE 802.15.4
Networks," International Conference on Wireless Internet
(WICON’ 05), Budapest, Hungary, pp. 130 - 137, July 2005

[8] Q. Cao, T. Abdelzaher, T. He and J. Stankovic, “Towards Optimal.
Sleep Scheduling in Sensor Network for Rare-Event Detection,” The.
4th International Symposium on Information Processing in Sensor
Networks, 2005.

[9] D. Mirza, M. Owrang, C. Schurgers, "Energy-efficient. Wakeup
Scheduling for Maximizing Lifetime of IEEE. 802.15.4 Networks", Proc.
International Conference on. Wireless Internet (WICON’ 05), Budapest
(Hungary), pp.130-137, July 2005.

[10] Pollin S, et al., “Performance analysis of slotted IEEE 802.15.4 medium
access layer,” Technical Report, DAWN Project, Sep. 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

