An Efficient Optimal Task Allocation and Scheduling Algorithm
for Cyclic Synchronous Applications

Hee-Jun Park

and Byung Kook Kim

Department of Electrical Engineering
Korea Advanced Institute of Science and Technology
373-1 Kusongdong, Yusong-gu, Taejon, 305-701 KOREA
hjpark@rtcl.kaist.ac.kr, bkkim@ee.kaist.ac.kr

Abstract

We present an efficient optimal algorithm that
allocates and schedules cyclic synchronous tasks into
fully connected processors. We consider applications with
cyclic synchronous tasks with heavy communication
traffic, which run on multiprocessors with fully connected
communication network. We suggest the computing
period as the performance measure to minimize the
overall computation time. We use individual start policy
for task scheduling, and also introduce concepts and
characteristics of the local period and the global period.
To solve the complicated optimal scheduling problem in
an efficient way, we propose a new spatial scheduling
technique using scheduling space which represents all
possible schedules in multi-dimensional space. By using
spatial searching and enhanced branch-and-bound
technique, the optimal task allocation and schedule which
minimizes the computing period can be found efficiently.
Various examples and scheduling results show the
efficiency of the proposed algorithm.

1. Introduction

As the number of processing elements increases, fine
grained multiprocessors reveal more complicated
problems which decrease efficiency of parallel processing
such as bus arbitration for bus-based architectures [1],
network routing control for message-passing architectures
[2], and cache consistency [3].

Recent advances in semiconductor technology and
high-performance microprocessors such as deep
pipelining execution, scoreboarding, very-long-
instruction-word (VLIW), and on-chip parallel processors
enable developing small-scale multiprocessing systems
composed of very powerful processors which provide
many convenient features suitable for implementing
parallel computers. For example, TMS320C40 [4] from
Texas Instruments and ADSP-21060 [5] from Analog
Devices have many high-speed communication ports and
their compilers have special parallel processing libraries.
For on-chip parallel processors, a single TMS320C80 [6]

0-7695-0306-3/99 $10.00 © 1999 IEEE

78

contains five powerful, fully programmable processors
and is capable of over two billion operations per second
(BOPS). These examples show that small-scale
multiprocessing systems or on-chip parallel processors
became off-the-shelf and available for large-scale
applications that had been executed by massively parallel
computers. Hence, development of task allocation and
scheduling techniques suitable for small-scale
multiprocessing systems or on-chip parallel processors
became more indispensable.

Task scheduling methods are typically classified into
several subcategories as follows. Static scheduling
[9](10][11] balances the workload at compile time with a
predictable environment, while dynamic scheduling
[71(81112] performs scheduling techniques concurrently at
runtime which applies to unpredictable environment.
Since the execution time and communication time of most
computation intensive applications -- like simulation and
plant control -- are accurately measurable on digital signal
processors which have predictable architectures, the tasks
can be allocated and scheduled off-line, which reduces
run-time overhead.

The inter-processor communication is also one of
important components since communication delays
decrease the overall performance of parallel processing,
especially when a lot of data should be transferred among
tasks. Some papers take account of communication
behaviors. Veltman [15] defined a model that allows
communication delays between precedence-related tasks,
and proposed a classification of various submodels. More
accurate models was proposed in [13] that handle
sequential I/O and program execution as well as parallel
1/O and program execution within a processor. However,
the algorithm did not consider the contention problem on
communication links of multiprocessor system and thus
may produce an unrealistic schedule. Krishnan presented a
modified version of the algorithm which considers the
contention problem [14].

In this paper, we propose an efficient and systematic
algorithm that provides the optimal allocation and
schedule for cyclic synchronous tasks with heavy inter-
task communications on fully connected network, which

can be easily implémented in small-scale multiprocessing
systems or on-chip parallel processors.

Most of task allocation and scheduling algorithms
define the cost function as the sum of communication time
and execution finish time of applications. We propose the
computing period of overall systems as scheduling
performance measure, which is suitable to minimize the
overall repetitive computation time. The previous
researches like [11], [13], and [14] assumed that all
processors start execution at the same time. However,
some tasks can start earlier than others if all input data are
already available. We use such an individual start method
to decrease the computing period.

This paper is organized as follows: Section 2 explains
computational environment of target multiprocessor
architectures, describes new execution and
communication model for cyclic synchronous tasks, and
defines the optimal scheduling problem. Section 3
presents overview of the new scheduling algorithm. The
algorithm can be divided into two parts. Task allocating
algorithm using branch-and-bound with efficient forward
searching is presented in Section 4, and a spatial approach
to optimal scheduling is described in Section 5 using the
concept of local:period and global period. Experimental
results that reveal- the efficiency of our algorithm are
presented in Section 6. Finally, Section 7 summarizes our
conclusion.

2. Parallel Processing Models and Problem
Statement.

In this section, we present a realistic parallel
processing model and state our problem.

2.1. Hardware Environment

In fully connected multiprocessors, each processor has
communication links by which data can be directly
transferred to destinations without any complicated
control like routing or bus arbitration. Since all processors
are closely connected within one board or one chip,
communication sequences are assumed to be completely
reliable and predictable.

2.2. Execution Model for

Applications

Synchronous

Synchronous data flow (SDF) graph is introduced and
widely used for describing applications and developing
algorithms [16][17][18]. Fig. 1 depicts an example of
cyclic SDF graph,.and Fig. 2 shows its execution process
that we will consider. For example, simulation of fossil
power plants can be divided into several tasks, which are
synchronously executed and outputs are updated. By

79

investigating this characteristics of application, we can
assume that each arc of this SDF graph has unit delay,
hence that m-th data consumed by task B will be the (m-
1)-th data produced by task A when an arc is connected
from task A to task B. The process interaction pattern of
synchronous applications is described in [19]. We will
develop allocation and scheduling techniques for this
execution model which is suitable for plant simulation.

By analyzing real non-terminating application model,
we can say that simultaneous start of processors is not
efficient: Tasks which do not receive inputs from outer
world but from the previous iteration of the other tasks
can start immediately whenever all inputs are available
and the processor is idle. We can increase the utilization
of processors by adopting individual start, and the
computing period rather than the completion time can be
shortened.

-
Fig. 1. A cyclic synchronous data flow graph.

° ° ° ®_' {m-1)-1h iteration

m-th iteration

{m+1)-th iteration

Fig. 2. Delayed execution model of the cyclic SDF graph.

Fig. 3 depicts two scheduling examples of the SDF
graph in Fig. 1, which shows improvement of the
computing period by individual start. If tasks 1, 3, and 4
are allocated to processor 1 and task 2 is allocated to
processor 2. The simultaneous start in Fig. 3(a) is
scheduled to start first tasks of two processors at the same
time f, while Fig. 3(b) shows individual start that the first

two tasks start at different time, ¢, and ¢,. Let G, and G,

denote the computing period in each case. G, is same as

total processing time or completion time, which was
defined as the cost function in {13] and [14]. However, as
we can see in Fig. 3(b), individual start allows
overlapping different iterations at the same time, and

computing period can be shortened to G, by individual
start. We adopt this individual start policy and present a
method that find the best start-time differences between

processors, which minimizes the computing period.
¥ Gi o Gt |

processor 1

processor 2

communication

procossor 1

processor 2

communication Ly

[m-tn iteration
[tmet)-tn neration

Fig. 3. Computing period. (a) simultaneous start;
(b) individual start.

2.3. The Optimal Scheduling Problem

The SDF graph of an application is defined by a set of
n, tasks T={T}, i=12,---,n, with execution time E,

for task i, and communication costs M ={ M‘.‘j 1,
i=12,---,n,j=12,---,n,i# j where M,..j denotes the
communication time from task i to task j in the case that

they are allocated into different processors. A schedule
with n, processors is uniquely defined by execution
sequence of tasks S, and individual start time #, on each
processor k, k =1,---, n,.

For example, S, ={153 4 7} implies that processor 3
executes tasks in the order of 7 » T, - T, > T, > T,.
Let D,, denote the start-time difference of processor
and processor /, i.e.,

D, =~ 1)

S, and Dk‘, for 1<k,I< n, can be represented by a

D,’k =1 -t

matrix form such as

S=(5,5,. 8,5, } @)
0 DI,2 Dl,n
DZ,I 0 o DZ.n

D= ’ 3
Dn R Dn"2 0

Let L, ,(S,D,,) denote the local period of processors

k and ! in the case that we only consider tasks of
processors k and /, and communications between them.
Let G(S,D) be the global period representing the

80

computing period of the overall parallel processing system.
The global period is determined by the longest local
period, since the parallel processing system should
synchronously execute assigned tasks. Hence, the global
period becomes a function of S and D such that

G(S,D) =
LI,Z (S’ DI.Z) L1,3(s’ D1,3) Ll.n’ (s’ Dl,ll')
0 L,;(5.D,;) L, (S.D,,)
max . L
0 0 Ln =Ln (S’ Dn -1n)
@
The scheduling problem is to find § and D which
minimizes the global period satisfying execution

constraints. The optimal scheduling problem can be
described as follows.

Problem :
Given n, tasks with E, and M,., j on n, processors, find
the minimum global period G(S,D) with a feasible

schedule described by execution sequence S and start-
time difference D.

3. Overview of the Algorithm

The optimal scheduling is a complicated optimization
problem composed of both integer variable set S and
continuous variable matrix D. We suggest an algorithm
with three phases.

Phase 1. Task allocation iteration with branch-and-bound
technique.

Phase 2. Check lower bound of allocation to skip Phase 3.

Phase 3. Task scheduling to find the optimal global
period.

The first phase allocates tasks into processors using
branch-and-bound technique and searches for the better
execution sequence S, which will be explained in Section
4.1. The second phase checks the lower bound of child
branches at each node by examining feasibility using a
simple integer programming and decides whether the
branch will be fathomed or not as explained in Section 4.2.
The third phase computes the local periods and the global
period, and then use a spatial searching technique to find
the best start-time differences D in the given task
allocation. This phase will be explained in Section 5.

4. Allocating and Sequencing Tasks

We utilized a branch-and:bound method [20][22] to

find the optimal 'S”, and developed a separated tree
structure for allocating and sequencing tasks. The
allocating and sequencing tree structures in [13] and [14}]
have many redundant nodes that imply exactly the same
solution, so that the inefficient tree structures slow down
searching speed. To resolve this problem, we separate the
tree into two parts — allocating tree and sequencing tree.
The overall tree structure is shown in Fig. 4.

> »
<

allocating tree sequencing tree

Fig. 4. Allocating and sequencing tree.

4.1. Allocating Tree
Let o, denote the total execution time of tasks
allocated to processor j such that
o;= zsi,jEi &)
i=1

where 5,.’]. =1 if task i is allocated to processor j;

otherwise, 5,.’1. = 0. Assume that there are f tasks T}, T,,

-+, T, which are not allocated yet, and then we can know

the possibility of scheduling from the following integer
programming problem:

fon
Minimize 2 2 S,
i=l j=1

subject to
6, ++6,, 21 E¢

1711

()

+-+Eb, +0,2G,

S, +~-+82m” 21 ES,,

+---+E. S8

0,,+0,5G,

>

O+ +6,, 21 ES,, +-+ES, +0, <G,.

whére G:, denotes the minimum global period in the
current stage w of the searching process. The first f
constraints represent that all tasks should be allocated to
processors. The next n, constraints represent that
execution time of each processor should be smaller than
GM If there is no feasible solution for the problem, all
allocations of child nodes can not be scheduled below the

81

current global period G; in any case, hence all child
nodes are bounded.

4.2, Sequencing Tree

For a given task allocation at a leaf .node of the
allocating tree, sequencing process begins with a
sequencing tree. In the tree, branching represents that task
execution sequence of a processor is determined. For
instance, there exist four-time branching from the root of
the sequencing tree (leaf node of the allocating tree) to the
leaf node of the sequencing tree in case of four processors.

5. The Spatial Approach to the Optimal
Scheduling

The third phase of our algorithm which finds the
optimal D for a given task allocation S will be explained.

5.1. Local Period

The local period L, for processor pair (k,1) and
communication link k-/ can be defined by execution time
of each processor and communication delay as

Lk‘,(S, Dk.l) = maX[Exec. lower bound, Comm. lower baund]

(4 (4 (7)
= max[L, (), L,(S,D,)}.
L, () is not a function of D, , and is given by
L,(S)=max[Y8, E, 2.6,E] ®)
i=1

i=l
If all communication delays are completely absorbed
into execution time for all —e< D ,6 <o, then

L, (S,D,,) becomes L, (S) and remains a constant

value. However, in many cases, communication delays are
not negligible and contentions occur, and hence

L, ,(S.D,,) becomes to be determined by L ,(S,D,,).

L, (S,D,,) can be calculated by defining ready,

scheduled, completed, and due times as well as scheduling
communications. Hence, we assume that a communication
line is like a FIFO buffer, and we perform FIFO
scheduling. Each communication has a ready time, at
which the output data is generated from its source task and
become available for transfer. A due time is a point, at
which the destination task of the communication starts, so
that the communication should be completed beforehand.
If ready times and due times of all communications are
given, we can schedule communications and define
scheduled times and completed times with FIFO
scheduling.

Let 7, and T, be the tasks that are first executed on
processor k and processor [respectively. Then,
D, =start,, — start, ~where start, denotes start time
of task k£ on m-th iteration, and endk,m denotes end time

of task k on m-th iteration. Let Cl,-n,C"r be all
communications on link k-I. Let o, denote the source
task number of C, and B; denote the destination task
number of C,. Then, ready time r,, and due time d, , for
C, on m-th iteration are given by

®
(10

is defined as a

ra=end,

+L

‘init

d = start

5 = startg ,

ﬁ‘,m+l
for i=1,2,---,n_. Initial local period L, ,
sufficiently large value compared to L;,(S). Given ready
time and due time, we perform FIFO scheduling for
C,,---,C, . By definition of scheduled time s, and
completed time ¢, ,, ,

€m = Sim +Ma,../3,'

ism i

(1D
where M, , denotes the communication time from task

o, to task B,.

Fig. 5 shows an example of ready,
completed, and due times for a communication.

st ,

task a;

scheduled,

Starty, .

processor 1

processor 2

communication

D m-th iteration

] (m+1)-th iteration

Fig. 5. Ready, scheduled, completed, and due time.

L, ,(S,D,,) can be calculated by subtracting the

minimum difference of due times and completed times
from L__ as follows:

init

L, (S, D)=L

init

’ dn,.m —€

—min[d,, —e .,)
(12)

We define a portion in which the order of ready ~
ready and ready ~ completed does not vary. L;‘,(S, D)
for —o < D, ; <o is easily obtained by dividing D, , into
several portions like Fig. 6 and considering the
characteristics of the function. Let C,---,C, denote

communications that are transferred from processor k to
processor ! on link k-/ and C, . ,---,C denotes the

,
+l

communications that are transferred vice versa, where

82

n. =n,+n,. Divided portions can be obtained by an
algorithm, which is shown in Fig. 7 where function p(x)
is defined as

0
p(x)=
X

This algorithm starts from initial D” and then checks
portion boundaries on which order of ready ~ ready and
ready ~ completed change as Table 1 where 1<i<n,,

for x <0
. (13)
otherwise

n, +1< j <n_.. The number of finite portions n, +1 and

the boundaries of portions D ,[0],---, D, [n, —1] are

obtained by this algorithm.

/? boundary

1 4 - 1 »
T y y t »

DU P _
portion portion

portion

Fig. 6. Portion and boundary on D, ,.

Table 1. Three types of boundary on D, ,.

Boundary type Order change at the boundary

A fim ~hm >0 © 1, -, <0
B ';'.m _ej,m > 0 > '}.m _ej,m < O
C ei,m - ’:j,m >0 « ei,n; - ’:i.m <0

1. Setthe initial D* which is satisfying

max[en‘-»l,m’ “’" enr,m] < mln['],m’ T ';'.'”']
2. n, &0
3. dowhile(min[r, _ ,---,r 1<max[e,,---,e 1)

Run FIFO scheduling for D’ < D, < D' +& where € is
positive and € = 0
AD,,J « min[p(r,

im

)]

j=n +1 -, n,

~lm) P,

AD « min AD, wherei=1,--,n,
Vi ’

D“[nb] « D +AD
D'« D'+ AD
n, ++

end do

“€im), p(ei.m_ “lim

Fig. 7. The portion dividing algorithm.

Theorem 1: L, (S,D,,) can be represented as a form

of constant or constant+ D, , or constant—D,, and

J
remains the same form in a portion. _

Theorem 2: LZ ,(S,D,,) has no local minima for
—o0 < DU < oo,

(Proofs omitted due to space limitation.)

From Theorems 1 and 2, and Eq. (7), it is shown that
“the local period, L, (S, D,) is piecewise linear and has

no local minima for D, ,.

Global Period and Optimizaﬁon
Methodology in Scheduling Space

5.2.

If all local periods of processor-pairs are found, the
global period is determined by the longest local period

because applications allocated into processors are
synchronously executed. From D, , =D, - D,,, global
period of Eq. (4) becomes function of n, —1 independent
variables D, ,, D, ;,+-, D, such that
. . n,
G(S,D) =
L,8D,) L,5D) L, (SD,)
0 Lz.J(S’ D1.3 - Dl.2) Lz.n (S‘ Dl.n - Dl.z)
max . ' ’
0 0 0 L. &D,-D,)
(14)
Let a scheduling space denotes the n, —1 dimension
space whose axes are DI,Z’ Du, e D|,,. . Then, a

schedule can be mapped to a point in the scheduling space,
and this mapping is one-to-one. Hence, scheduling space

represents all feasible schedules for a given task allocation.

The scheduling space can be divided into two areas with
respect to the global period, G’. The first is called
schedulable area that satisfies G(S, D) < G’, so that it is
possible to make the schedule whose global period is not
larger than G’ in the schedulable area. The other is the
exterior of schedulable area where G(S,D)>G’.
Scheduling space has following two properties.

® More than two separated schedulable area can not
exist since G(S, D) has no local minima for D,

® There is' no schedule whose global period is not
larger than G’, if and only if scheduling area does

not exist for given G”.

AD),:

—p schedulable area
P

scheduling space

Fig. 8. Scheduling space and schedulable area.

83

Schedulable area can not be defined if there is a link
whose minimum local period is larger than G’. Otherwise,
schedulable area can be defined by n(n,-1)/2
inequalities:

L,(S,D,)<G’ L, (5D,)<G

0 0 Ln -1,n (S’ Dl.n - Dl,n —l) < G’

(15)
Since local periods are piecewise-linear and has no
local minima for D, ,, local periods are represented as a

table of D Lk,,(S, Du)- of

kil

D,,D;, -, Dl.n,, that satisfy Eq. (15) can be easily

1,2°

and Domains

found such that

! r 1 r
b, <D ,<b, bl.n,, < Dl,np s bl,np
: . 0
i r
0 bn,,-l,n,, < Dl,np - Dl,n,,—l < bnﬂ—l,np
(16)
Substitute non-negative variables Do‘l, Dy, DO‘nP

for D, ,, D,

1,20 Pz

D

b b
Ln,

bll,z £ Do.z - DO,I < blr.z

then we can get

i r
bl,n‘, < Do,n, =Dy, = bl.n,,

1 r
Y 0 bnp—l,np = DO,nP —DO,np—-] <bh

np=ln,

amn
Eq. (17) can be represented with the standard linear
programming form.

Ax2b
x20 9
where) _
-1 1 0 0
1 -1 0 0
A=|-1 0 1 o
1 0 -1 0
. x=[Dy,> Dyy» Dyys oo Do,n,,]
b= [bll,zs _bl,,2’ bxl,s’ - blr.z’ bll,4’ _b1,,4"' Y

We can know whether scheduling area exists or not, by
appending artificial variables and solving artificial
optimization problem of linear programming [21]. The
minimum G’, which has schedulable area, becomes the
optimal global period and all points in the schedulable
area are optimal schedules. The optimal schedules are
found by a simple binary search technique. Let G, = and

low

G,.. denotes lower and upper bounds of this binary

high
searching. They are initially given as
G, = max{ min L, (S, D“):I and Ghigh =G(8,0).
VkVI | —o<D, <o ’ !

Let G,, denote the global period associated with the best
feasible solution in a particular stage of the algorithm, and
then the boundary of G, becomes narrower and narrower

while running this algorithm until the optimal schedules
are found. The description of this algorithm is shown in
Fig. 9.

, G, « G(S8,0)

min high

Lk,l (S, D,):l
—oo<D, <oo

2. do while (Glugll -G, 21)

G' « (Ghrgh - Ghm')/ 2
if scheduling is feasible for G’

G, G

high

vk, Vi

1. G, « max[

else

G G

low
end do

3. it([G,, 1=[G,, | then
Gopl « |-Ghigh-|

if scheduling is feasible for [G
G, «[G, 1

else
Gopl « |-Ghigh-|
end if
end if

else
-l then

low

Fig. 9. The optimization algorithm in scheduling space.

6. Experimental Results

The task allocating algorithms were programmed in C
language on a pentium PC that is frequently used to
develop and compile DSP applications. For an example
application, a simulation of fossil power generation plants
which are introduced by [23] was employed. This
simulation contains a lot of floating-point operations like
partial differential equations and ordinary differential
equations. The application can be divided into tasks which
represent parts of power generation plants. Fig. 10 shows
the task graph of power generation plants, and detailed
information about execution times and communication
times are shown in Appedix.

We measured the processing time for finding the
optimal allocation. To analyze the algorithm for various
communication traffics, we ran the algorithm as to three
cases of communication rate — actual speed (Table 3), ten
times faster (Table 2), and ten times slower (Table 4).

84

These results indicate that as communication traffic
becomes heavier, the algorithm takes more time due to
complexity of communication scheduling. However, the
maximum processing time in these examples is 38 seconds,
which is acceptable since allocation and scheduling is
applied off-line.

Fig. 10. Task graph of fossil power plants.

Table 2. Experiment results for communication rate x 10
(light communication traffic).

Number of Proc':essing Number of Global
Exp. # time calculated .
processors (seconds) leaves period
1 2 15 14808 1054
2 3 10 37020 716
3 4 5 54296 532
Table 3. Experiment results for communication rate x 1.
Number of Proc?cssing Number of Global
Exp. # time calculated .
processors (seconds) leaves period
4 2 30 29616 1083
S 3 18 69104 729
- 6 4 38 345520 550
Table 4. Experiment results for communication rate x 0.1
(heavy communication traffic).
Number of Proc?essing Number of Global
Exp. # time calculated .
processors (seconds) leaves period
7 2 29 29616 3106
8 3 34 155484 1792
9 4 37 404752 1410

7. Conclusion

New spatial approach to optimal task allocation and
scheduling problem is presented with the global period as
our performance index. We defined the global period, and
pointed out that the global period can be enhanced by
individual start policy. To solve such a complicated
optimization problem, local periods of communication
links are calculated first, and then optimal start times of
processors are found using scheduling space and linear

programming. The experimental results show that our
algorithm is fast enough and practical for real applications.

(1
[2]

(31

f4]

[5]

(6l

(7]

(8]

(9]

(10]

{11]

[12]

[13]

[14]

[15]

[16]

[17]

References

Kai Hwang, Advanced Computer Architecture, McGraw-
Hill, 1993.

Ronald P. Bianchini, John Paul Shen, “Interprocessor
Traffic Scheduling Algorithm for Multiple-Processor
Networks”, IEEE trans. Computers, vol. C-36, no. 4, pp.
396-409, 1987.

David Cullar, Jaswinder Pal Singh, and Anoop Gupta,
Parallel Computer Architecture, Morgan Kaufmann, 1997.
TMS320C4x Parallel Processing Development System
Technical Reference, Texas Instruments, 1993.
ADSP-2106x SHARC User’s Manual, Analog Devices,
1995.

TMS320C8x System-Level Synopsis, Texas Instruments,
1995.

Kumar K. Goswami, Murthy Devarakonda, and
Ravishankar K. lIyer, “Prediction-Based Dynamic Load-
Sharing Heuristics”, IEEE Trans. Parallel and Distributed
Systems, vol. 4, no. 6, pp. 638-648, 1993.

Min-You Wu, “On Runtime Parallel Scheduling for
Processor Load Balancing”, IEEE trans. Parallel and
Distributed Systems, vol. 8, no. 2, pp. 173-186, 1997.
Edward Ashford Lee and David G. Messerschmitt, “Static
Scheduling of Synchronous Data Flow Programs for
Digital Sugnal Processing”, IEEE trans. Computers, vol.
C-36, no. 1, pp. 24-35, 1987.

C. V. Ramamoorthy, K. M. Chandy, and Mario J.
Gonzalez, “Optimal Scheduling Strategies in a
Multiprocessor System”, IEEE trans. Computers, vol. C-
21, no. 2, pp. 137-146, 1972.

Gilbert C. Sih and Edward A. Lee, “A Compile-Time
Scheduling Heuristic for Interconnection-Constrained
Heterogeneous Processor Architectures”, IEEE trans.
Parallel and Distributed Systems, vol. 4, no. 2, pp. 175-
187, 1993.

Davari, S., and S. K. Dhail, “An On Line Algorithm for

Real-Time Tasks Allocation”, Proc. IEEE Real-Time .

Systems Symp., pp. 194-200, 1EEE, Los Alamitos, CA,
1986.

Konstantinos Konstantinides, Ronald T. Kaneshiro, and
Jon R. Tani, “Task Allocation and Scheduling Models for
Multiprocessor Disgital Signal Processing”, IEEE trans.
Acoustics, Speech, and Signal Processing, vol. 38, no. 12,
pp. 2151-2161, 1990.

C. S. R. Krishnan, D. Antony Louis Pirtyakumar, and C.
Siva Ram Murthy, “A Note on Task Allocation and
Scheduling Models for Multiprocessor Digital Signal
Processing”, IEEE trans. Signal Processing, vol. 43, no. 3,
pp. 802-805, 1995.

B. Veltman and B. J. Lageweg,
Scheduling with Communication Delays”,
Computing, vol. 16, pp. 173-182, 1990.

J. B. Dennis, “‘Data Flow Supercomputers”’, Computer, vol.
13, Nov. 1980.

W. B. Ackerman, “Data Flow Languages”, Computer, vol.
15, Feb. 1982.

“Multiprocessor
Parallel

85

(18]

{19]

[20]
[21]
{22]

(23]

Watson and J. Gurd, “A Practical Data Flow Computer”,
Computer, vol. 15, Feb. 1982.

Nayeem Islam, Distributed Objects: Methodologies for
Customizing Systems Software, IEEE Computer Society
Press, 1996.

Stanley Zionts, Linear and Integer Programming,
Prentice-Hall, 1974.

David G. Luenberger, Linear
Programming, Addison-Wesley, 1984.
R. S. Garfinkel and G. L. Nembhauser,
Programming, Wiley, 1972.

W. Ordys, A. W. Pike, M. A. Johnson, R. M. Katebi, and
M. J. Grimble, Modeling and Simulation of Power
Generation Plants, Springer-Verlag, 1994.

and Nonlinear

Integer

Appendix
Information about the task graph of power generation
plants:
Task # Task Name Task # Task Name

1 Gas turbine-1 8 Steam turbine-2
2 Boiler-1 9 Condenser-2
3 Steam turbine-1 10 Feedwater-2
4 Condenser-1 11 Gas damper
5 Feedwater-1 12 Steam spilt
6 Gas turbine-2 13 Controller
7 Boiler-2

E={E,E,E, - E,}

={164,421,77,145,213,164,421,77,145,213, 24, 24,10}

M, =38M . ,=20,M,,=40,M, K =20,

M,,=36,M,,=16M, =32, M, =12,

M, =34,M =14 M =38 M , =20,

M, ,=40,M, 6 =20, M, =36 M, =16,

M, ,=32,M, =12, M, , =34 M

=14,

10,13

M,,=42,M =42,M,, =26M,, =26,

MU,] =16, M13,2 =20, Mn,a =14, M13,4 =12, M|3,5 =14,

M., =16M,, =20,M,, = 14, M., =12, M

=14

13,10

The other communication costs are zero.

