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Abstract

We present a new measure called collidability mea-
sure for obstacle avoidance control of redundant ma-
nipulators. Considering moving directions of manip-
ulator links, the collidability measure is defined as
the inverse of sum of predicted collision distances be-
tween links and obstacles. This measure is suitable for
obstacle avoidance control since directions of moving
links are as important as distances to obstacles. For
dynamic redundancy resolution, null space control is
utilized to avoid obstacles by minimizing the collid-
ability measure. Also, by clarifying decomposition in
the joint acceleration level, we present a simple dy-
namic control law with bounded joint torques which
guarantees tracking of a given end-effector trajectory
and improves a kinematic cost function such as.coll-
idability measure. Simulation results are presented to
illustrate the effectiveness of the proposed algorithm.

1 Introduction

A robot manipulator is defined as redundant if it
possesses more degrees of freedom than are required
to achieve the desired position and orientation of the
end-effector. The redundancy of such manipulators
can be effectively used to keep within joint limits [1][2],

to avoid singularities [3], and to optimize various per-.

formance criteria. Also, we can utilize redundancy to
avoid obstacles in workspace [4]-[9].

For on-line obstacle avoidance control, many algo-
rithms have been proposed based on pseudoinverse
matrix [4]-[6]. Baillieul [7] proposed the eztended Ja-
cobian technique for solving the inverse kinematics
problem, and applied this technique to obstacle avoid-
ance for a class of planar robots and obstacles. In
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Khatib’s approach [8], redundant robots are controlled
directly in Cartesian space using a model-based con-
trol law, and obstacle avoidance is achieved using an
artificial potential field concept. An important feature
of this work is the use of simple geometric “primitives”
for representing obstacles. However, the selection of
representative points on manipulator links is not sim-
ple and the distance value doesn’'t mean the mini-
mum distance between link and obstacle. Rahmanian-
Shahri and Troch [9] presented a new method for
on-line collision recognition for robot manipulators.
For every link and every obstacle in the workspace,
a boundary ellipse is defined such that there is no col-
lision if the robot joints are outside these ellipses.

Many of the above mentioned redundancy resolu-
tion approaches require potential function of distances
between manipulator and obstacles. Most of the meth-
ods assumed that the necessary distance information
was given from a higher control level or could be ob-
tained from sensory devices. Gilbert, Johnson, and
Keerthi [10] developed an algorithm for computing
the Euclidean distance between a pair of convex poly-
topes. However, suggested distance algorithm is very
complex. In all cases, obstacle avoidance control is
acted even when manipulator links move away from
obstacles. We are going to remedy this problem by
considering moving directions of manipulator links
with respect to obstacles.

In this paper, We present a new measure called col-
lidability measure for obstacle avoidance control of re-
dundant manipulators. Using the collidability mea-
sure, we can reduce the magnitude of obstacle avoid-
ance action considerably, especially when manipula-
tor links move away from obstacles. Also, by clarify-
ing decomposition in the joint acceleration level, we
present a simple dynamic control law with bounded
joint torques which guarantees tracking of a given end-



effector trajectory while performing a subtask such as
decreasing collidability measure.

This paper is constructed as follows. In Section 2,
collidability measure is defined and derived. In Sec-
tion 3, dynamic obstacle avoidance control algorithm
is developed. Simulation results are presented in Sec-
tion 4 to illustrate the performance of the proposed
algorithm. This paper ends with concluding remarks
in Section 5.

2 Collidability Measure

Consider a redundant manipulator with n degrees
of freedom in m dimensional workspace (n > m). The
forward kinematics and differential kinematics of the
manipulator can be represented as

X £(9) 1
x. = J(0)d 2)

Il

where x, € R™ represents position and orientation
of the end-effector, @ € R™ represents joint variables,
f(8) € R™ is a vector function describing the manipu-
lator kinematics, and J(8) € R™*" is the end-effector
Jacobian matrix. The general solution of Eq. (2) is

O=Jx,+(I-J"))g (3)

where J* = JT(JJT)™! is the pseudoinverse of J,
I € R"*" is the identity matrix, and g € R™ is an
arbitrary vector in the joint-velocity space which can
be used to resolve the redundancy at the velocity level
in optimizing a suitable performance criterion.

We use A and O to denote the manipulator links
and obstacles respectively. The manipulator and ob-
stacles are represented by unions of objects as follows:

A= ] A, o= o (4)
i€la j€lo

Figure 1: Link object A; and obstacle object O;.

1817

where A;,i € In = {1,--- ,n} are manipulator links,
and O;,5 € In = {1,--- ,neg} are np obstacles. Con-
sider a link-obstacle pair as shown in Fig. 1. The
problem is to determine a joint trajectory 6(¢) of the
manipulator so that its end-effector can move along
the desired trajectory while the manipulator A is kept
away from obstacles O. Link A; is assumed to be a
cylinder, which can be described as an ellipsoid con-
taining the link centered at y;. in the link ¢ coordinate
frame described as [11]

Ai(0) = {Ty(0)y : (y — vie)TQT Qily ~ yic) < 1}( :
5
with
l/Tia O 0

Q; = 0 l/Tib 0 (6)
0 0 1/ri

where r;, and ry are scalar coefficients, and 7;(8) is
a homogeneous transformation matrix for link 4 coor-
dinate frame which consists of an orthogonal rotation
matrix R;(8) and a position vector p;(08) [12]:

ro - % O] @

Obstacle O; is assumed to be a general convex shape,
which can be described as a spherical object contain-
ing the obstacle with radius r; centered at x;. de-
scribed as

0; = {x: (x = x;0)7 8] Sj(x = x5c) <1} (8)

where

1/7‘j 0 0
Sj=| 0o 1// 0 |. (9)
0 0 1/7‘]‘

In order to determine a unique solution of Eq. (3),
an additional condition should be introduced, such as
minimization of a performance index. Hence, we in-
troduce a new performance measure called collidabil-
ity measure for obstacle avoidance considering moving
directions of manipulator.links and .obstacles, which
is defined as the inverse of sum of predicted collision
distances between links and obstacles.

Consider now the problem of finding the collidabil-
ity measure of the link ¢ and the obstacle j. For sim-
plicity of detecting collision between them, elliptical
link A; and spherical obstacle O; are viewed as ex-
panded elliptical link A; and shrunk point obstacle
0;, as shown in Fig. 2(a):

i {x:(x —xi)TQTQ(x — xic) < 1} (10)
{x:x=x} (11)

S >>>
I

J



where x;c = Ti(0)yic, and Q = (Q;' + S;*)7*R].
Next, define x. as relative position between x;. and
Xic

Xe = Xjo — Xie- (12)

We assume that instantaneous movement of x, at time
t is maintained during [¢, ¢ + 7] for small 7. Then, the
predicted motion of x, for primary task (tracking any
arbitrary trajectory) is represented as follows:

X (t+7) = x(t) + ve(t)T ' (13)
o) = %~ iy i (9

with
Ba(t) = J+(0)%a(t) (15)

where v,(t) is the velocity of x.(t), 84(t) is a desired
joint velocity, x4(t) is a desired end-effector velocity.

Elliptical link A; will collide with point obstacle O;
if the following conditions are satisfied.

VZQTQXC < 07
(veQT@xe)” - [Qvel*(1@x[* - 1) > 0. (16)

The predicted collision time ¢, is obtained by solving
(xe + tpve)TQTQ(x. + tyve) = 1. 17

Then, the predicted collision time ¢, and the predicted
collision point x, are obtained as

‘ch|2tp = _(VZ’QTQXC)

=/ (vTQTQx.)? — Qv 2 (|Qx.[* - 1)18)
Xp = X + tpVe. (19)

Using the predicted collision point x, € ./ii, predicted
collision points x;, € A; and x;, € O; are obtained as

Xip = Xic+RiQ7'Qx, (20)
Xje + (RiQi“lQ - D)xp. (21)

Xjp

Basically, the collidability measure ¢;;(8) is defined
as the inverse of the predicted collision distance |x;, —
X;jp|. In case Eq. (16) is not satisfied, collision will not
happen. To make smooth variation of ¢;;(8) beyond
the collision region, we assume the velocity vector v,
obtained by rotating v, to the origin, makes collision
between (?)]— and the boundary point of A;. As shown
in Fig. 2(b), by counterclockwise rotation of v, with
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(a) (®)

Figure 2: Collision between A; and éj (a) Predicted
collision point x, and (b) Boundary collision point x;.

respect to the vector lA(, vy can be obtained as follows:

(Qve) x (-Qx%c)

k= Qvo = Caxo] (22)
T -1 (ch)"(_’Qxc)
¢ = o (T auond

—cos™H (Pt — '?S;Pl_ ) (23)
vi = QT'Ry(dQv. (24)

where ¢ is the angle difference between Qv. and Qvy,
and Ryis the rotation matrix. Given the velocity vy,
the boundary collision time ¢, and the boundary col-

lision point x; on the elliptical link A; are obtained

as

iy =

@) (-@x) _ VIGxP T,
IQvel? |Qvel
Xp = X+ tpVp. (26)

Using the boundary collision point x; € fli, boundary
collision points x;; € A; and x;, € O; are obtained as

Xip = X+ R:Q7'Qxy 27
Xje + (RiQ;'Q — I)xy. (28)

Il

ij

Then, the angle difference between v, and (x; — x;p)
is obtained as

6= COS_I(VC (X — ij)) (29)

[Vellxip — x|
Next, a cubic polynomial of the form
9(8) = a0 + a1 + a2¢® + az¢® (30)

defined in 0 < ¢ < ¢mas, Where @ma, represents
the angular spline interval, can be splined to fit four



boundary conditions of

1
90) = %6 — Xjp]
. _ -1 dlxib _ ijl
O = TGr
9(Bmaz) 0 (31)
g(¢1naz) = 0.

The resultant cubic polynomial is

9(9) (39(0) + 29(0) ¢maz)4”

9(0) + g(0)¢ —

2

max

2 (29(0) + §(0) brmaz ).

max

(32)

Finally, we can get the collidability measure ¢;;(8) of
the link 7 and the obstacle j as

msey i Ea. (16) is satisfied
Cij @) = 9(#) if 0 < ¢ < b (33)
0 if > bmac:

The collidability measure between the manipulator
and obstacles is obtained as

>

i€la, j€Io

co) = ci;(8) (34)

‘3 Obstacle Avoidance Control

In this section, we derive a new dynamic redun-
dancy control algorithm considering joint torque sat-
uration. Differentiating Eq. (2), we obtain the differ-
ential relation between the end-effector acceleration
and the joint acceleration

%e = JO + JO. (35)
The general solution of Eq. (35) can be obtained using
pseudoinverse as
0=J (% —JO)+0n (36)
where 8y = (I — J*J)h is a vector in the null space
of J, and h € R™ is an arbitrary vector in the joint
acceleration space.

Consider the case where the solution of joint veloc-
ity is given as Eq. (3) with an arbitrary vector g € R™
and we want to obtain the solution of joint accelera-
tion. Differentiating Eq. (3), we obtain the differential
Eq. (36) and some relations between them.
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Proposition 1 Let’s decompose 0 into range space
component Op = J* (%, — JO) and null space com-
ponent O = (I — JtJ)h. Then

bn = (Bm), (@, (")
by = (DR 4 (D, (38)
h o= g+ ) @Ba-g).  (39)

By using J* =(I—J‘*J)J'T(JJT)*l.—J*jJJr (see Ma
and Hirose [14]), proving of proposition 1 is simple.

The general form of manipulator dynamics is given
by

M(0)6 +N(@0,0) =T (40)

where M(8) € R™*™ is a symmetric, positive defi-
nite inertia matrix, N(6,0) € R" is a vector contain-
ing nonlinear terms such as Coriolis, centrifugal, and
gravitational forces, and 7 € R" is a véctor of joint ac-
tuating torques. Given a desired trajectory, x4(-), we
want to choose T so that the actual trajectory tracks
the desired one, as well as achieving a subtask.

A dynamic control law to track a given workspace
trajectory is obtained using Egs. (36) and (40):

7= M {J* G+ Koe + Kpe — J0) + by} + N
(41)

where e £ x4 — X, is the tracking error, K, and K,
are constant feedback gain matrices, and ¢, is any
vector in the null space of J. If the manipulator does
not go through a singularity, then the control law Eq.
(41) guarantees that the tracking error converges to
zero[13].

Next, consider the case where we are given a vector
function g = aVC(0) € R™ for obstacle avoidance
and we want the null space joint velocity to track the
projection of g onto the null space of J, where « is a
gain constant. Since (I — J*J) projects vectors onto
the null space of J, this is the same as asking that

en 2 (I-J N)g -0y (42)
converge to zero. The following proposition shows how
to choose ¢ to get the desired result.

Proposition 2 Assume that the manipulator does
not go through a singularity. Let the control be given
by Eq. (41) with

dy =T ~J D{g+ (TN (Or —g) + Knen}
(43)



where K 1s a positive definite feedback matriz. Then
the tracking error e converges to zero and the joint
velocity converges to g in the null space of J, i.e.,
ey — 0.

Let the joint torque is bounded by

]Til < Ti,maz, 1 €1, (44)
where T; mar is the upper limit of each joint torque.

Decompose © as v = Tg + Ty where

Th=MJ* (%4 + Koo+ Kpe — J8) + N
TN = Moy

In some cases, excessively large null space joint torque
TN is required to achieve the given subtask. To pre-
vent such a case, ‘we utilize a saturation function as
follows.

(45)

Proposition 3 Define a torque saturation function

as
“Sat(ry) =min(1, a, )TN (46)
where
_ sgn((TN)i)Timaz — (TR)i
oy =
(rN)i£0i=1, ,n (Tn)i
(47)

Then, each component of the joint torque T = Tp +
Sat(Tn) satisfies the torque bound T; maz-

The purpose of this dynamic control law is to
make the self-motion or the null space joint velocity
On = (I — J*J)8 track the projection of g on the null
space of J, which is the same as asking that €5 should
converge to zero. This dynamic control law permits
end-effector trajectory tracking while decreasing the
possibility of collision via minimizing the collidability
measure.

4 Simulation

Consider a four-link manipulator moving in three
dimensional space with two spherical obstacles. We
choose parameters as follows: Link lengths I; = 1 m,
i =1,---,4; link masses m; = 10 kg, ¢ = 1,.-- ,4;
inertia parameters I; = 5/6 kgm?,i=1,--- ,4.

For dynamic obstacle avoidance control, simulation
is done with the desired trajectory, which is given as a
straight line Cartesian path starting and ending with
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(2)

Figure 3: Kinematic obstacle avoidance control with
collidability measure (a) Trajectories, (b) Joint veloc-
ities.

(2)

Figure 4: Kinematic obstacle avoidance control with
conventional measure (a) Trajectories, (b) Joint veloc-
ities.

zero velocity, with constant bang-bang type acceler-
ation/deceleration %4 = [<1 1 0]7 m/sec®. We
choose g = a1 VC + a2VH to minimize the collid-
ability measure C'(@) and maximize the manipulabil-
ity measure H(0) = /det(JJT), where a; 0.292
and ay = 0.1 are gain constants. Two spherical ob-
stacles do uniform motion, and the joint torque bound
Timaz = 300 Nm, i=1,--- ,4. Using dynamic con-
trol algorithm with the collidability measure, Fig. 3(a)
shows the resultant trajectory with moving obstacles.
Joint torques are shown in Fig. 3(b).

For comparison, obstacle avoidance control with a
conventional measure — inverse of minimum distance
— is simulated. In this case, Fig. 4(a) shows the resul-
tant trajectory with moving obstacles. Joint torques
are shown in Fig. 4(b). Fig. 5 shows that obsta-
cle avoidance control with the collidability measure is
economic, since it requires much less joint torque than
the conventional measure.

Some simulations are performed to reveal that our
control algorithm with the collidability measure re-
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Figure 5: Joint torque norm ||7||s for three cases.
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quires less null space control action for obstacle avoid-
ance, leaving more actions possible for improving
other measures such as manipulability measure.

5 Conclusion

We presented a new measure called collidability
measure for obstacle avoidance control of redundant
manipulators. Obstacle avoidance action is reduced
remarkably, since the collidability measure is obtained
based on the relative movements of manipulator links
and obstacles, and produces less null space control ac-
tion. We also presented simple dynamic control law
with bounded joint torque which guarantee asymp-
totic tracking of a desired trajectory while perform-
ing desired subtasks. This control law satisfies joint
torque bound, and allows reasonably large gain to
improve the system performance. Effectiveness of
the proposed collidability measure have been demon-
strated with some simulations.
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