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SUMMARY In this paper, an efficient node-level target classification
scheme in wireless sensor networks (WSNs) is proposed. It uses acous-
tic and seismic information, and its performance is verified by the clas-
sification accuracy of vehicles in a WSN. Because of the hard limitation
in resources, parametric classifiers should be more preferable than non-
parametric ones in WSN systems. As a parametric classifier, the Gaussian
mixture model (GMM) algorithm not only shows good performances to
classify targets in WSNs, but it also requires very few resources suitable to
a sensor node. In addition, our sensor fusion method uses a decision tree,
generated by the classification and regression tree (CART) algorithm, to
improve the accuracy, so that the algorithm drives a considerable increase
of the classification rate using less resources. Experimental results using
a real dataset of WSN show that the proposed scheme shows a 94.10%
classification rate and outperforms the k-nearest neighbors and the support
vector machine.

key words: target classification, sensor network, Gaussian mixture model
(GMM), classification and regression tree (CART), decision tree

1. Introduction

Target classification is one of the most important and de-
manding technologies used to achieve intelligent sensor net-
work systems. Recently, various research on the perfor-
mance improvement of classification have been conducted
[1]-[5]. It is commonly known that the computation cost
and performance of a classifier are in a trade-off relation-
ship. However, hardware and software resources are tightly
limited in wireless sensor networks (WSNSs). Thus, the com-
plexity of the classifier should be first considered.

In a WSN, acoustic, seismic, magnetic, and infrared
sensors have been mainly used for target classification [5].
Among them, both acoustic and seismic sensors perform a
central role for classifying targets in the WSN, while the
others have assistant roles [1]-[4]. This is because the mag-
netic and infrared sensors should assume a strictly prede-
fined path in a case of target classification, while the for-
mer do not have such a restriction. However, the signals of
acoustic and seismic sensors are very complicated as well
as hard to handle. Therefore, some technologies to classify
objects using acoustic and seismic signals with low costs in
WSNs are greatly required.

Most researches on the target classification in a WSN
extract spectral features based on the fast Fourier trans-
form (FFT) and classify objects with some type of frame-
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based classification algorithm such as the k-nearest neighbor
(kKNN) [11], the Maximum Likelihood (ML) [12], the sup-
port vector Machine (SVM) [13], etc. However, the compu-
tational complexity and required memory to run the classi-
fiers have not yet been investigated. Also, the characteristics
of sensed signals in a WSN have not been sufficiently stud-
ied.

This paper proposes the Gaussian Mixture Model
(GMM) algorithm as a classifier [6], and a decision tree,
estimated by the Classification & Regression Tree (CART)
algorithm [10], for sensor fusion in a sensor node. To ver-
ify the feasibility of being applied to a node in a real sen-
sor field, the complexities of the algorithms are analyzed.
Since a parametric algorithm requires generally much less
complexity than a nonparametric one, the GMM, as a para-
metric approach, is appropriate to WSN systems. In our ex-
periments, The GMM also outperformed other algorithms,
such as kNN and SVM. Also, the proposed fusion algorithm
improved the classification rate better than the other sen-
sor fusion methods, feature-level fusion and the Dempster-
Shafer method [18], while it having a low complexity. The
sampling rates, kinds of features, and feature dimensions
were considered since they are closely related to the per-
formance and the amount of resources. Our experiments
showed that the best classification rate could be achieved
at a 500 Hz sampling rate in the case of classifying some
moving vehicles, and that the mel-frequency cepstral coef-
ficients (MFCCs) [9] were superior to the spectral features
[2] in classification rates. Moreover, the features compris-
ing the 12th-order MFCC and its derivatives are the most
excellent among several of their combined features. Conse-
quently, we found that the proposed classification scheme is
the optimal one for application to a node.

The structure of this paper is as follows. Section 2 con-
tains a discussion of related works, and Sect. 3 describes our
proposed classification scheme. In Sect. 4, our data collec-
tion and experimental setup are illustrated, and the perfor-
mance of the proposed algorithm is experimentally com-
pared and evaluated with those of other algorithms. Fi-
nally, Sect.5 concludes our experiments and discusses fu-
ture works.

2. Related Works
There have been many researches on the target classifica-

tion in a WSN, and various algorithms and strategies have
been proposed [1]-[5], [18]. To improve the accuracy with
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minimum costs, not only efficient algorithms but also de-
centralized processing and data fusion strategies have been
recently proposed. Conspicuous researches on target classi-
fication that have used acoustic and seismic sensors thus far
are as follows.

Meesookho, et al. proposed a collaborative signal pro-
cessing and fusion algorithm in WSNs [1]. They used the
normalized energies of 16 frequency bands of the acoustic
and seismic signal spectra as feature parameters to classify
three types of military vehicles, An Assault Amphibian Ve-
hicle (AAV), Dragon Wagon (DW), and Light Armored Ve-
hicle (LAV). Two classifiers, kNN and ML, were exploited
in the experiments, and kNN outperformed ML. However,
kNN remains hampered by its computational complexity in
application to a real field of a WSN in spite of its simplicity.
In addition, they simply combined both acoustic and seis-
mic data by using higher dimensional feature vectors only
for improving the accuracy in a node. However, the method
needs more resources at the same time, so that it might be in-
appropriate to an indigent WSN system. Also, such a simple
feature-level fusion was inferior to a general decision fusion
across sensors in our experiments.

Marco et al. described a scheme of feature extraction,
target classification, and region-level information fusion [2].
They extracted spectrum-based feature vectors based on the
acoustic and seismic signals. The two features are a little
different, however. For the acoustic modality, they chose
the first 100 points and extracted 50-dimensional FFT-based
features with a resolution of 19.375Hz, while the seis-
mic features were extracted through choosing the first 50
points. The kNN, ML and SVM are experimented to clas-
sify moving targets, AAV and DW, and noise, so that the
SVM outperformed the others. However, the complexity of
each algorithm was not investigated. Although the SVM
showed the best performance, its complexity and amount
of required memory are not adequate to general WSN sys-
tems that allow small resources. For fusing the informa-
tion among nodes in a region, they made an experiment on
some distance-based fusions, such as the nearest neighbor
and MAP (Maximum A Posterior) Bayesian. However, they
did not consider any fusion scheme within a sensor node.

In this paper, the GMM algorithm is used for the tar-
get classification in order to improve the classification rate
in each sensor of a node. The sensor fusion using a deci-
sion tree, built by the CART algorithm, is then utilized to
improve the classification rate. We then analyze the perfor-
mance and the complexity of the proposed algorithms. In
addition, the performance variations according to the kinds
of features, the feature dimensions, and the sampling rates
are analyzed since they are tightly coupled with the amount
of required data to increase the efficiency.

3. Proposed Classification Scheme in a Node
3.1 Target Classification Using GMM Algorithm

The GMM algorithm has been successfully applied to text
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classification, image information retrieval, speech signal
processing, etc. [6],[7]. GMM-based classifiers in WSNs
can be employed in a node of a WSN in the same way as the
applications mentioned above.

Let x be an N-dimensional vector and p(x|a, u, X) be a
GMM with M component densities as Eq. (1).

M
Pl E) = Y anN x|, ) ()

m=1

where @, > 0, m = 1,..., M are the mixture weights, with
which the summation of «,, is 1, and N(x|u,,,X,), m =
I,..., M are the N-variate Gaussian densities with mean
vector p,, and covariance matrix X,. GMMs can assume
several different forms, depending on the type of covariance
matrices.

The parameters @; = (a;, 4;, =;) of the GMM should
be trained to apply the above classification procedure. It is
commonly performed by the EM algorithm [8] using train-
ing data. Let w(ilx ;) be the class conditional probability with
which the jth data x; is generated from the ith Gaussian
component. Estimations of the mixture weight «;, the mean
vector g; and the covariance matrix X; is carried out through
iterations of sequential parameter updating by from the fol-
lowing Eq.(2) to Eq.(5) for each component i. Through
these operations, the likelihood of the model converges to a
local maximum.
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3.2 Decision Tree-Based Sensor Fusion

There are two levels, the feature-level and the decision-level,
to fuse data of sensors in a node [15]. We compared those
levels with each other. In our fusion algorithm, the decision-
level fusion is done by using a decision tree constructed by
the CART.

The CART algorithm, proposed by Breiman et al. in
1984 [10], is a tree-building technique that could be ideally
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Fig.1  Process of sensor fusion using a decision tree.

Fig.2  Splitting algorithm of CART.

suited to the generation of information fusion rules among
sensors. Log likelihoods for all candidates scored by the
GMM algorithm are used as the input vector of the decision
tree, made by the CART, as shown in Fig. 1. In other words,
after the evaluation of log likelihoods of all candidates for
each sensor, they are normalized by the length of their own
detected event, respectively, concatenated with each other,
and inputted to the decision tree. Finally, the best candidate
is produced as a result.

The CART generally consists of three basic steps:
maximum tree building, tree pruning, and optimal tree se-
lection. A detailed description is as follows.

3.2.1 Construction of Maximum Tree

The first step is to build the maximum tree through splitting
the learning samples up to the last observations, i.e., when
terminal nodes contain observations only of one class. Let
1, be a parent node and # and ¢, be the left and right child
nodes of parent node ¢,, respectively. Consider the learning
samples with variable matrix X with M number of variables
x; and N observations. Let class vector ¥ comprise N ob-
servations with the total amount of K classes.

The classification tree is built in accordance with the
splitting rule, the rule that performs the splitting of learning
samples into smaller parts, as shown in Fig. 2.

Each data have to be divided into two parts with max-
imum homogeneity which is defined by the so-called impu-
rity function i(¢). Let x; be a variable j and xf be the best
splitting value of variable x;. Since the impurity of parent
node ¢, is constant for any of the possible splits, x; < xf,
j = 1,..., M, the maximum homogeneity of the left and
right child nodes will be equivalent to the maximization of
the change of impurity function Ai(¢) in Eq. (6).
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Ai(t) = i(t,) — Eli(t.)] (6)

where, 7, is the left and right child nodes of the parent node
t,. Assuming that P; and P, are the probability of the right
and the left nodes, Eq. (7) is obtained.

Ai(r) = i(tp) — Pii(1y) — Pyi(ty) (7

Therefore, at each node, the CART solves the maximization
problem given in Eq. (8).

arg max [i(t,,) - Pji(t)) — P,i(t,)] )
<k j=1,..M

Equation (6) implies that the CART will search through all
possible values of all variables in matrix X for the best split
question x; < x® that will maximize the change of impurity
measure Ai(?).

The Gini splitting rule is one of the most broadly used
algorithms. It uses the following impurity function i(¢) in
Eq. (9).

1) = Z pklnpdln) €))

k#l

where, k and [ are the class indices and p(k|t) is the condi-
tional probability of class k if we are in node 7. Applying
Eq. (9) to Eq. (8), we will get the following change of impu-
rity measure Ai(¢) in Eq. (10).
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Therefore, the Gini algorithm will solve the problem given
in Eq. (11).
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The Gini algorithm will search in the learning samples for
the largest class and isolate it from the rest of the data. The
Gini works well for noisy data.

3.2.2 Tree Pruning

Maximum trees may turn out to be of very high complex-
ity and consist of hundreds of levels. Therefore, they have
to be optimized by pruning insignificant nodes. There are
two punning algorithms: optimization by number of points
in each node and cross-validation. In the first algorithm, we
say that the splitting is stopped when the number of obser-
vations in a node is less than a predefined required minimum
Nyin- The second pruning algorithm, cross validation, is to
find the optimal proportion between the complexity of the
tree and misclassification error. It is achieved through the
cost-complexity function of Eq. (12)
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Ro(T) = R(T) +a(T) - min (12)

where, R(T) is a misclassification error of tree 7 and a/(T)
which is the complexity measure that depends on 7', which
is the total sum of terminal nodes in the tree. The value of o
is found through the sequence of in-sample testing when a
part of the learning sample is used to build the tree; the other
part of the data is taken as a testing sample. The process is
repeated several times for randomly selected learning and
testing samples.

3.2.3 Optimal Tree Selection

The maximum tree tends to overfit the learning dataset. The
goal in selecting the optimal tree is thus to find the cor-
rect complexity parameter « such that the information in the
learning dataset is fit but not overfit. The problem of finding
this value for @ can be solved by using either an independent
set of data or the technique of cross validation.

4. Experiments & Evaluations
4.1 Dataset & System Environments

In our experiments, the dataset, recorded in a real world
WSN environment for the DARPA SensIT (sensor infor-
mation technology) program [2], was utilized. The dataset
contains signals from three classes, two types of vehicles,
and background noise. The vehicles were a heavy wheeled
truck (DW) and a tracked vehicle (AAV). All signals were
sampled at 4,960 Hz and 16 bits per sample using the WINS
NG 2.0 nodes with acoustic and seismic sensors deployed
near a junction of three roads. The event signals, created
by ten runs for AAV and DW, and noise signals, collected
manually from background signals, were used toward the
experiments. An example of LPC (linear predictive coeffi-
cient) power spectra of acoustic signals characterizing those
objects is depicted in Fig. 3, where the LPC order was 30.
In estimating the LPC, the autocorrelation method and the
Levinson-Durbin algorithm were utilized [19]. Since the
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Fig.3  Spectral characteristics of acoustic signal for each target.
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constant false alarm rate (CFAR) detection algorithm given
by [2] is a kind of adaptive detection algorithm which de-
tects an event by using the energy information of signals,
some noise signals in a run could be higher than the events’
signals in another run, as shown in the low frequency range
of Fig. 3.

Basically, the MFCCs were extracted and used as fea-
tures because they are not only well-matched to GMM-
based algorithms, but because their performances are also
verified already. The dimension of the feature should be
considered in terms of the computational resources and will
be discussed in Sect. 4.3.

Figure 4 shows the structure of the node-level classifi-
cation process based on our proposed scheme. Firstly, target
intervals are detected by using the energy values of sensed
signals. For the intervals, the acoustic/seismic signals are
inputted to extract MFCCs. Then, length-normalized log-
likelihoods for AAV, DW, and noise are evaluated using the
corresponding GMM and the feature vectors. To compare
the classification performance of the proposed algorithm,
kNN and SVM were evaluated. In kNN, the number of
neighbors, k, was 100 and evaluated based on the L2-norm
distance, while the radial basis function (RBF) was used as
a kernel function of SVM [11],[13]. Given a training set
of instance-label pairs, SVM finds a separating hyperplane
with the maximal margin through the training process, and
then improves the performance by using the plane. In evalu-
ating the performance of the GMM, the number of mixtures
was four, and their parameters were trained by the expec-
tation maximization algorithm. The final step of the classi-
fication process is the decision tree. It is generated by the
CART and improves the classification rate by using the log-
likelihoods themselves from the GMM as its inputs.

4.2 Optimal Sampling Rate and Gaussian Mixtures

In the viewpoint of resource management, it is indispensable
to analyze the sampling rate in WSNs since it is closely re-
lated to the memory size and the amount of processing [16].
An optimal sampling rate should be obtained and applied
to a WSN system to reduce some unnecessary redundancy.
To estimate the optimal sampling rate, we re-sampled our
data at 100, 300, 500, 700, 1,000, 2,000, 3,000, 4,000 and
4,960 Hz, and evaluated the classification performance for
each frequency. Since even a small difference in sampling
rates may cause a significant variation in classification ac-
curacies at somewhat low sampling rates below 1 kHz com-
pared with the variation in relatively high sampling rates,
experimental intervals below 1 kHz are narrower than those
above the sampling rate.

Figure 5 shows the classification accuracies accord-

N\ [ Energy- Iy

Sensed —»| based | Extract b G,MM, Decision —» Results
X . Features Classification Tree

Signal Detection

Fig.4  Proposed node-level classification system.
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Fig.5  Accuracies according to the sampling rate.

Table 1  Classification accuracies according to the number of Gaussian
mixtures (unit:%).

ixture#
Sensor
Acoustic 83.28 | 87.44 | 89.76 | 88.70 | 88.46
Seismic 74.17 | 76.05 | 77.57 | 79.24 | 81.44

ing to the sampling rates for acoustic and seismic signals.
For each sampling rate, the number of Gaussian mixtures
was equally four, and the dimension of feature vectors was
24 consisting of the 12th-order MFCC and its derivatives.
It can be said that the optimal accuracy can be obtained
from approximately a 500 Hz in the case of classifying AAV,
DW and noise with acoustic or seismic signals. In other
words, some redundant information starts to be included
above 500 Hz sampling rate. This is because significant dis-
criminating characteristics are shown mainly below 500 Hz,
as depicted in Fig.5. If we consider the power consump-
tion problem of WSN systems, it seems unnecessary to in-
crease the sampling rate more than 500 Hz as in our exper-
iment. Interestingly, the performances below 300 Hz were
dramatically decreased regardless of the kind of sensors,
which seems that it is becoming more difficult that any sig-
nificant spectral information can be found below the fre-
quency. Some decreasing classification rates in higher sam-
pling rates occur because the number of Gaussian distribu-
tions is not optimal for each sampling rate. Finally, since the
performance of acoustic signals is superior to that of seismic
signals, it can be said that the quality of acoustic signals is
better than seismic signals for target classification in WSNs.

Because a Gaussian function basically consists of mean
and variance vectors, 1,728 bytes are additionally needed
per mixture if the 24th-order feature vector, three target
classes, and 4 bytes per parameter are used. Thus, we should
minimize the number of mixtures as much as possible. The
accuracies according to each of the number of mixtures are
shown in Table 1. When four mixtures are used, the best
classification rate of acoustic signals is obtained. The ap-
propriate number of mixtures improves the accuracy, but too
many mixtures can cause an overfitting problem which ag-
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Fig.6  Classification rates for each feature.

gravates the accuracy [14]. We can see such a situation by
comparing the accuracies with each other when four mix-
tures, eight mixtures, and sixteen mixtures are used. For
seismic signals, the best classification rate is produced with
16 mixtures.

4.3 Comparison of Performance According to Features

As mentioned before, the issues in terms of the kinds and
the dimensions of features should be analyzed in order to
reduce the amount of required resources [16].

We compared the performance of the MFCC with that
of the 36th-order spectral feature, named S36, modified
from [2]. In order to analyze the performance for the var-
ious dimensions of the MFCC, 12th-order MFCCs, named
M12(0) in our experiments, were basically extracted per
10 msec, and their 1st-derivatives, named M12(1), and 2nd-
derivatives, named M12(2), were properly concatenated as
feature parameters. In Fig. 6, M36, M24(0), M24(1), and
M24(2) represent static + Ist-derivatives + 2nd-derivatives,
static + 1st-derivatives, static + 2nd-derivatives, and 1st-
derivatives + 2nd-derivatives, respectively. No energy fea-
tures were considered in order to avoid false alarms caused
by noises with a high energy. In fact, since the complexity of
the MFCC extraction largely depends on the FFT (N log, N),
the complexity is similar to that of the existing spectral fea-
tures. The MFCCs are calculated using the inverse discrete
cosine transform of the logarithm of the mel-scaled filter
bank signal energies. Generally, they result in high per-
formances while using a low-dimensional signal represen-
tation.

Experimental results reveal that M24(0) shows the best
classification rate and outperforms the conventional spec-
tral features, although it uses a smaller feature dimension.
Among the 24th-order feature vectors based on the MFCC,
feature vectors containing static MFCC vectors show rela-
tively good performances.
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4.4 Comparative Analysis of Classifier Performances

The performance of the GMM algorithm was evaluated with
those of other classifiers, such as kKNN and SVM. The per-
formance of the GMM algorithm was produced using the
24th-order MFCC (M24(0)) and four mixtures per GMM
state. All of the experiments were performed using the 5-
fold cross validation method.

Figure 7 shows the comparative performances of the
vehicle classification according to the classifiers; The GMM
algorithm outperforms the others. The average classifica-
tion rates using acoustic/seismic signals at the sampling rate
of 500Hz were 72.03/68.09%, 75.32/70.48% and 89.76/
81.44% for kNN, SVM and GMM, respectively. We can
see that the GMM, as a parametric method, produces a sat-
isfactory performance compared to the other algorithms for
classifying moving vehicles in a WSN using acoustic and
seismic sensors.

4.5 Sensor Fusion Using a Decision Tree Generated by
CART Algorithm

Since targets have different signatures corresponding to
multiple modalities, e.g., acoustic and seismic, multimodal
fusion aims to aggregate such data optimally in order to im-
prove the overall classification performance. The rationale
is that individual modalities provide complementary infor-
mation. We focus on a node-level sensor fusion in this pa-
per. There are two methods to fuse heterogeneous sensors in
a node. One is to merge multiple features themselves, and
the other is to fuse various classification results. We experi-
mented on and compared those methods with each other.

In our study, the CART algorithm was used for the
sensor fusion since it can generate a binary decision tree
which produces the minimum classification rate for given
training data. The decision tree can utilize directly the log-
likelihoods themselves scored by the GMM, while the fa-
mous Dempster-shafer fusion algorithm needs some addi-
tional pre-processing steps [18]. To make a classification
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Table 2  Variable importance for sensor fusion in CART.
Variable Score
Log-likelihood of DW by an acoustic sensor 100.00
Log-likelihood of AAV by an acoustic sensor 93.20
Log-likelihood of noise by a seismic sensor 83.64
Log-likelihood of noise by an acoustic sensor 69.44
Log-likelihood of DW by a seismic sensor 38.24
Log-likelihood of AAV by a seismic sensor 13.31

tree by CART, the Gini algorithm was used to split a node
of the tree. Then, the 10-fold cross-validation method was
used to identify the subtree with the lowest misclassification
rate. The minimal size below which a node will not be split
is ten. A total of 28,080 log-likelihood vectors, which were
evaluated using the three target class GMMs for each sensor,
were used for the experiment.

Figure 8 shows the classification accuracy of the pro-
posed fusion scheme, and it is compared with that of the
Dempster-Shafer algorithm. Also, the accuracies before the
fusion are included. It is a commonly understood that any
fusion method should improve the classification rate of each
sensor itself. It is shown that the accuracy of an acoustic sen-
sor is rather higher than that of feature-level fusion, which
means that feature-level fusion is invalid in the case that the
discriminativeness of a sensor’s feature is significantly dif-
ferent from that of others. This causes even the superiority
of the best sensor to be aggravated. On the other hand, the
sensor fusion based on a decision tree, generated by CART,
produces a considerable improvement compared with the
accuracy of an acoustic sensor itself. In addition, the pro-
posed fusion algorithm outperformed the Dempster-Shafer
algorithm which is one of widely applied fusion schemes
in WSNs. Therefore, the proposed fusion algorithm can be
said to be a very effective method for node-level sensor fu-
sion.

Table 2 shows the importances of all variables used in
CART, which are relative values and are calculated based
on the contribution of variables in constructing the deci-
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Table3  Classification accuracy & Confusion matrix.
Number | Accuracy Confusion Matrix
Class -
of cases (%) AAV DW Noise
AAV 8,160 | 95.23 7,771 228 161
DW 7,680 | 90.04 488 6,915 277
Noise 12,240 | 95.89 90 413 | 11,737
Table4  Data size of trained results of classifiers. (unit: kByte)
kNN SVM GMM
1,333,858.21 264.28 2.50
Table 5  Average computing time per feature vector. (unit: msec)
kNN SVM GMM
103.965 30.011 0.009

sion tree [17]. AAV and DW can be identified by acous-
tic sensors better than seismic sensors, while noise can be
better classified by seismic sensors than acoustic sensors.
This means that acoustic sensors can receive significant help
from seismic sensors through sensor fusion in identifying
noise. The final classification accuracy of each target class
and the confusion matrix are shown in Table 3. Each target
has a satisfactory accuracy through our node-level classifi-
cation scheme. Finally, we can obtain 94.10% accuracy, a
4.34% improvement compared with the accuracy of acous-
tic sensors before fusion, which means 42.38% in an error
reduction sense.

4.6 Complexity Analysis

To apply a classifier to a sensor node with a hard limitation
of resources, its complexity should be as low as the allow-
able resources. Thus, this paper analyzes the complexity of
the proposed classification scheme experimentally.

In kNN, a typical nonparametric algorithm, the amount
of computation for classification increases in proportion to
the size of the training set. Such a nonparametric algorithm
usually has all instances as its trained set so that the size of
the trained set should be very huge and unable to be applied
to a sensor node directly. In the case of SVM, the informa-
tion of its support vectors retrieved as a result of training
increase in proportion to the size of the training set as well,
even though the size is smaller than that of kNN. In con-
trast to them, GMM, a parametric-based classifier, has the
parameters of its model as a trained result. Therefore, it can
have a constant number of parameters for classification re-
gardless of the size of the training set. Table 4 shows the
data size of each classifier produced by the training process
in our experiment. While kNN roughly needs 1.33 GBytes
and SVM 264 kBytes, GMM requires 2.5 kBytes which is a
very small amount of memory. This amount of resources is
appropriate for application toward general sensor nodes in
WSNs.

Table 5 shows the average computing time per feature
vector for each classifier measured by a Pentium-IV com-
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puter equipped with a 3.2 GHz CPU and 4 GBytes of mem-
ory. We can see that GMM complete the computation in a
very short time, while KNN and SVM require a huge amount
of computing time. We can conclude that the GMM has no
problem in being applied to a sensor node in the aspect of
computational speed.

Let us consider the complexity of the decision tree gen-
erated by the CART algorithm. It is usually very quick to
fuse some decision information based on a decision tree
since the tree algorithm is very simple [10]. The compu-
tational complexity in searching the tree is almost ignor-
able compared with those of the above classification algo-
rithms. Also, only parameters for node indexes, rules and
class labels need to be stored. In addition, by controlling the
number of tree nodes, the required memory size can be con-
trolled within an allowable range easily. In our experiments,
we used 49 splitting nodes and 50 terminal nodes in order to
obtain our results.

5. Conclusion & Future Works

In this paper, a node-level target classification scheme based
on the GMM algorithm was proposed, experimented on, and
evaluated using acoustic and seismic data in a WSN. As
a node-level classification performance, we can completely
obtain 94.10% accuracy, a very high rate, through the pro-
posed scheme.

The GMM algorithm is suggested as a classifier of
WSN systems, and we analyzed its complexity in order
to consider the feasibility of its being applied to a real
node in WSNs. We found that the GMM, as a paramet-
ric method, not only outperforms the other classifiers, the
kNN and SVM, but that it also needs a relatively small re-
source compared with them. The sensor fusion using a de-
cision tree, estimated by CART, shows a satisfactory im-
provement compared with the feature-level and Dempster-
Shafer fusion method even though the algorithm is simple
and needs a small amount of resources. According to our
analyses, the acoustic sensors are more useful for identify-
ing vehicles, AAV and DW, while the seismic sensors are
more useful to identify noise. In addition, this paper gives
a clue toward how high the sampling rate should become in
order to guarantee the classification accuracy in WSN appli-
cations. Also, the kind of feature and its dimensions should
be analyzed since they are closely related to the amount of
required resources. Thus, we can find the optimal classifica-
tion scheme which can be applied to a sensor node.

Our future works are to implement the proposed
scheme on a node in a real field of WSN systems, and to
employ a collaboration scheme among sensor nodes if nec-
essary.
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