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Abstract 

 
To extract as much accurate information as 

possible, especially in the case of a sparse sampling 
acoustic sensor network, the approach of time series 
can be effective. However, both problems of local time 
shifting and spatial variations should be solved to 
apply the time series analysis. This paper proposes the 
DTWC (DTW-Cosine) algorithm, as a time series 
manner, to solve the two problems and proves the 
performance through several experiments. We also 
considered acoustic variations, which can occur, by 
using data set mixed with various effects as input. Our 
experimental results show that the target classification 
rate of our algorithm not only outperforms the other 
time-warped similarity measure algorithms but it also 
has a robust performance over various volumes in 
combination with a smoothing technique. Since this 
proposed algorithm produces such a satisfactory result 
with sparse sampling data, it allows us to classify 
objects with relatively low overhead. 
 
1. Introduction 
 

The problems of target classification using sparse 
sampled data are one of the key issues of Wireless 
Sensor Networks (WSN) applications since WSN 
consists of a large number of low-power and 
inexpensive sensor nodes. When sensor nodes sense 
and transfer data to a base station (BS), the network 
cost might increase dramatically as the hop count 
increases. Especially, in the case of acoustic data 
which is so complicated and variable, it needs more 
numerous and dense data to obtain sufficient 
information. This is a problem since acoustic sensors is 
one of the most frequently used and performs a central 
role in a target classification system of WSN. The 
bigger the WSN is, the less data should be basically 
transferred to increase the life span. It is because the 
mechanism of sensing frequently and transferring all of 
the data causes the nodes to be exhausted very fast. So, 

the mechanism of sparse sampling should be 
considered 

Most of the researches [1,2] extracted features using 
the FFT and classified targets with some classification 
algorithms such as k-nearest neighbor (kNN), 
maximum likelihood (ML), support vector machine 
(SVM), etc. However, the FFT typically needs a high 
sampling rate and thus, a broader bandwidth network 
to transfer assuming a centralized processing scheme 
of WSN. To achieve a realistic acoustic WSN, the 
problem of how to get some meaningful information 
with sparse sampled data, which can not afford to serve 
any spectral information (see Figure 3), should be 
solved. Time series analysis could be an effective 
method for target classification with sparse sampling 
data when a specific pattern can be found in time-axis. 
Actually, the sounds of most WSN targets, tank 
engine, step, etc, have their own inherent patterns. A 
lot of research have been performed for this method, 
mainly to retrieve some patterns in a large database or 
to do data mining [5-7]. To classify targets with the 
manner of time series in acoustic WSNs, the local time 
shifting problem, named the problem of time warping 
matching, should be overcome as well. The DTW 
(Dynamic time warping), the LCS (Longest Common 
Subsequence) and the ED (Edit Distance) algorithms 
can be applied to solve the problem [6]. These 
algorithms or their variants are famous as well as 
frequently compared with each other in time series 
analysis [6, 7]. 

In this paper, we focus on target classification using 
a time series technique with several sound patterns of 
military targets in acoustic WSNs. The DTWC (DTW-
Cosine) algorithm is proposed as a new technique to 
solve the problems of local time shifting and the 
problem of spatial variations caused by different 
distance between a target and a node. Our data set are 
also made by adding various acoustic effects to each 
original signal to emulate some distortion effects 
which can occur. Moreover, the performance is 



analyzed over various acoustic volumes, i.e. sound 
pressures, to consider the spatial variations. 

The rest of this paper is organized as follows. 
Section 2 explains the DTWC algorithm, and the 
design of classification system using time series 
method is described briefly in Section 3. We 
empirically evaluate the performance of proposed 
algorithm in Section 4. Finally, Section 5 concludes 
our experiments and discussions for future works. 
 
2. DTWC (DTW-Cosine) algorithm 
 

As mentioned, two problems, local time shifting 
and spatial variations, should be solved to apply the 
time series manner to the classification system of 
WSN. The first problem arises when a sequence is 
shifted or has different lengths from the other. The 
other one is that all the signals from an object should 
be identified regardless of the strength of volume in a 
WSN. 

The first problem is solved by a time warping 
algorithm such as DTW, LCS [8], or ED [9]. Among 
the above algorithms, The DTW algorithm is 
representatively used to find the warped path through a 
matrix of points representing possible time alignments 
between two patterns [3]. It is because the DTW 
produces a matched array much easier than the others 
without any scaling problem. Given two time 
sequences X=(x1,x2,…,xm) and Y=(y1,y2,…,yn), the DTW 
algorithm fills an m by n matrix representing the 
distances of best possible partial path using a recursive 
formula: 
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where 1≤ i≤m, 1≤ j≤ n, d(i,j) represents the distance 
between xi and yj. D(1,1) is initialized to d(1,1). The 
alignment that results in the minimum distance 
between the two sequences has value D(m,n). The 
DTW distance between time series is the sum of 
distances of their corresponding elements. 

Many variants of DTW have tried just to find a 
more optimally matched array so far. In this case, the 
DTW algorithm coalesces with the Cosine algorithm to 
solve the second problem caused by distance, which is 
named DTWC. The Cosine similarity treats the 
matched pairs as components of an N-dimensional 
vector, and the similarity is the cosine of the angle 
between these sequences. Let x' and y' be a matched 
array respectively. It ranges from +1 to -1. A 
correlation of +1 means that they have a perfectly 
positive linear relationship with each other. Inversely, 
a correlation of -1 also means a perfect negative linear 

relationship, and 0 means there is no linear relationship 
at all. This similarity is given by Eq 2. 
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where ||x'|| and ||y'|| is the norm of x'i and y'i 
individually. 

Both of the Euclidean algorithm and the Pearson 
algorithm can be also combined to the DTW algorithm 
to compute a similarity. They are called DTWE (DTW-
Euclidean) and DTWP (DTW-Pearson) respectively. 
First, the Euclidean distance is just the sum of the 
squared distances of two vectors of observation. So, 
the less distance means the more similarity. The value 
of Euclidean similarity can be simply computed as Eq 
3. 
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The other Pearson similarity is a parametric 
measure of correlation and reflects the degree of linear 
relationship between two sequences that are on an 
interval or ratio scale [4]. The similarity is computed as 
Eq 4. 
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where mx' is a mean value of x'i and my' is a mean value 
of y'i respectively. It ranges from +1 to -1. A 
correlation of +1 means that they have a perfectly 
positive linear relationship with each other. Inversely, 
a correlation of -1 also means a perfect negative linear 
relationship and a correlation of 0 means there is no 
linear relationship as well. 

To compare the Cosine algorithm with the other 
similarity measure algorithms, the Euclidean and the 
Pearson, in WSN applications, suppose that there are 
three signals collected on a BS in a WSN as them in 
Figure 1. y1 and y2 can happen when a moving object 
is varying in distance to sensor nodes over time, which 
means a similarity measure algorithm should identify 
them. 
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Figure 1. Three signals for comparison of similarity 

measurement 



Referring to Table 1, the measures by the Euclidean 
algorithm represent distance values while the Cosine 
algorithm and the Pearson algorithm compute 
similarity. The Pearson and the Cosine similarity 
algorithms identify y1 and y2 while the Euclidean 
algorithm is unable to classify them well. On the other 
hand, y3 and the others may not be caused by the same 
object, which means they can be regarded as not 
exactly the same but similar. Table 1 shows that the 
Cosine similarity identifies minute differences while 
the Pearson similarity does not. An original signal 
should not be confused with the others to maintain the 
performance. That is why the former outperforms the 
latter and this will be further analyzed in Section. 4.3. 
Consequently, we can imagine that the Cosine 
similarity can represent the characteristics of signal in 
WSN better than the others. 

Table 1. Distance/correlation measures of three 
algorithms 

Algorithm Euclidean Pearson Cosine 
data1  data2 2.8025 1.0000 1.0000 
data2  data3 1.5875 1.0000 0.9622 
data3  data1 3.2211 1.0000 0.9622 

 
3. Design of classification system 
 

The overall system architecture consists of 
preprocessing, making reference, and classification 
parts, but the part that each reference model is 
modified associated with the size of input signal is 
different with the general classification system.  

When an input signal enters, it is scaled and 
smoothed to be against outliers and, each reference 
model is trimmed with the PAA algorithm in [10] 
associated with the number of the input data to 
compare with one another. It is because each input 
signal has its own length. The PAA algorithm uses the 
absolute values of an object’s signal to reduce the 
variation and the computational complexity since the 
signal comprises dense positive and negative values 
which are piecewise mixed up with each other.  

The PAA compresses or models a signal as follows; 
there is a reference of time series as X = x1, x2,…, xn. 
Let N be the size of the transformed time series we 
wish to work with (1 ≤  N ≤  n). For convenience, we 
assume that N is a factor of n. A time series X of length 
n is represented in N space by a vector 1, , nX x x= … . 
The ith element of X  is calculated by Eq. 5. 
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Simply stated, to reduce the data from n dimensions 
to N dimensions, the data is divided into N equi-sized 
"frames.” Consequently, each contour of the reference 
model is modeled through the PAA algorithm to 
compare with the input signal. 

 
4. Experiments and evaluations 
 

We first describe our experimental setup briefly and 
the optimal accuracies of the ED and the LCS are 
compared to the performance of the DTW. We then 
show the effectiveness of the proposed algorithm 
through several experiments. 
 
4.1. Experimental setup and data collection 
 

Three types of military targets - airplane, tank and 
soldier - are classified as shown in Figure 2. Each 
target's signal has been recorded with PCM (Pulse code 
modulation) signed 16 bit mono and consists of several 
local frames and has its own pattern. The sound of a 
soldier is a step sound which is very periodic and the 
duration of local frame is very short while the sound of 
an airplane is a-periodic and has a long local frame. 
The tank makes the sound of a-periodic explosions 
against a background of the sound of engine and 
wheels, which has a monotonous energy. We added 
some effects and noise which produces some distortion 
to the signals, e.g. various Doppler effects, some 
hissing noises by size, echo, flanger, mechanize, pitch 
change, some volume transforming effects(fade in/out), 
and time warping. We made 31 test data per target and 
totally have 93 test data. Each file is sampled at 10 Hz 
20 times and classified 1860 times against targets 
before obtaining the result.  
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Figure 2. Original signals of military targets. Each of 

them is assumed to have its inherent patterns 



Figure 3 shows the spectrogram of the used data which 
shows little frequency information is contained in the 
signal as a result of sparse sampling. Also, we found 
the accuracy rate of classification with spectral features 
converge into about 1 / N, where N is the number of 
candidates, below 100 Hz regardless of classifier.  
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Figure 3. Spectrogram of airplane signal sampled at 

100Hz with 80 points-STFT (Short-Time Fourier 
Transform) 

 
4.2. Comparison of Time warping algorithms 
 

Before comparing the effectiveness of three time 
warping algorithms, the ED, the LCS and the DTW, 
we experimented with the performance of the ED and 
the LCS with three levels of volume - low (-6.02dB), 
normal and double (6.02 dB). This is because the ED 
and the LCS should use a scaling threshold for time 
series data, which consist of numeric values, and 
compare with the DTW. We explored the performance 
by varying the value of the threshold from 0.02 to 0.2. 
As described in Table 2, the optimal threshold has a 
tendency to move following the level of volume. i.e., 
the threshold shifts to a smaller value in higher volume 
while it becomes larger in lower volume. Consequently, 
it is clear that the threshold cannot be easily 
established over volume. Table 2 also shows the 
comparison of the performance of the time warping 
algorithms. The DTW algorithm gives a similar 
performance with the ED and the LCS in normal and 
high volume and all of them have a poor performance 
in low volume. It means that an algorithm which can 
improve the performance, especially in the case of low 
volume, is needed. Fortunately, the DTW can easily 
produce a time-warped array which can be used by any 
similarity measure algorithm such as the Euclidean or 
the Cosine algorithm to improve the accuracy. 

Table 2. Comparison of time warping algorithms 

ED LCS Volume level 
δ % δ % 

DTW 

Double (6dB) 0.07 0.77 0.06 0.79 0.77 
Normal (0dB) 0.08 0.71 0.08 0.72 0.71 
Low    (-6dB) 0.1 0.51 0.1 0.51 0.45 
  - δ : Threshold, % : Accuracy 

 

4.3. Comparison of time warping similarity 
measure algorithms 
 

We explore the DTW combined with all similarity 
measure algorithms as illustrated in Section. 2. We 
then prove that the DTWC algorithm improves the 
performance in the area of low volume very effectively 
and outperforms the other algorithms as depicted in 
Figure 4. Although the performance of the DTW and 
the DTWE algorithm shows a good performance from 
3 to 9 dB, their performances are poor in lower 
volumes as well as have a tendency of degrading 
dramatically after 10 dB, which means they are largely 
dependent on the level of volume. 
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Figure 4. Comparison of time-warped similarity 

measure algorithms 
On the other hand, the DTWP and the DTWC have 
saliently better accuracies in low volume and are 
comparatively less affected by volume. The former is 
inferior to the latter over volumes. It is inferable that 
these results are ascribed to the difference between the 
capabilities of each similarity measure algorithm on 
modeling signals in WSNs as described in Section. 2. 
Considering a range from -10 dB to 10 dB, the 
accuracy of DTW-only is 60.84%, DTWE is 59.57%, 
DTWP is 64.97% and DTWC algorithm is 71.4% on 
the average. However, all of them including the 
DTWC algorithm degrade accuracy in higher and 
lower volumes. This state can be healed a little by 
smoothing techniques, which will be described in the 
next sub-section. 
 
4.4. Applying a smoothing technique to DTWC 
algorithm 
 

Smoothing techniques are helpful in improving the 
accuracy through avoiding distortions caused by odd 
elements. It is widely used for eliminating 
environmental noise. We experimented with two kinds 
of smoothing methods, the Rectangular smoothing 
(RS) and the Gaussian smoothing (GS). Taken as a 



whole, the former is shown to have a similar 
performance with the latter within an allowable error 
range in Figure 5 except for the number of smoothing 
elements required. It also seems that the more the 
volume approaches both limits, the larger the 
difference the effect of smoothing makes. So, it turns 
out to be effective in improving the accuracy in both 
lower and higher volumes. However, the Rectangular 
smoothing with more than 3 elements can be said to be 
almost analogous in effectiveness. It is because the 
excessive number of smoothing elements mitigates the 
characteristics of each target signal. As depicted in 
Figure 5, the performance is improved in lower 
volumes by a maximum of about 12.74% and in higher 
volumes by about 9.19% when the number of the 
Rectangular smoothing elements is 3 (marked as RS3). 
We also explored this smoothing technique applied to 
the other algorithms and found that the curve of DTW 
and DTWE algorithms did not become flatter, which 
means they still had a bad accuracy in both lower and 
higher volumes, and the performance of DTWP was 
mostly inferior to DTWC as well. 
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Figure 5. Comparison of the Rectangular smoothing 

and the Gaussian smoothing performances 
corresponding to the number of smoothing elements 

 
Table 3 shows the confusion matrix of targets 

corresponding to volumes. The accuracies of tank and 
airplane outperform soldier by and large because the 
width of pillars of signal from the soldier are so narrow 
that they often can not be sampled while the interval 
between them are so large that even skipping sampling 
once can be critical to the performance. The influence 
of volume is also shown to depend on the sort of sound. 
i.e. monotonous signals such as a soldier or an airplane 
is affected negatively by strong volume while 
complicated and variable signals such as a tank is 
positively affected. It is because more monotonous 
signal is modeled relatively better in lower volumes 
than in higher volumes. 

 

Table 3. Confusion matrix of DTWC algorithm with the 
smooth3 technique corresponding to volumes 

Classified
Object Volume Soldier Tank Airplane

Soldier 
Half 

Normal 
Double 

0.60484 
0.58548 
0.47258 

0.24355 
0.23710 
0.35484 

0.15161 
0.17742 
0.17258 

Tank 
Half 

Normal 
Double 

0.09677 
0.02742 
0.00484 

0.75968 
0.93065 
0.99032 

0.14355 
0.04193 
0.00484 

Airplane 
Half 

Normal 
Double 

0.01613 
0.00806 
0.00484 

0.03710 
0.06452 
0.16452 

0.94677 
0.92742 
0.83065 

 
Finally, the DTWC algorithm with RS3 produces an 

accuracy of 77.04% in low volume, 81.45% in normal 
volume and 76.45% in double volume, which means 
the proposed algorithm improved the accuracies by 
26.04% in the low volume (-6.02dB) compared to the 
ED and the LCS in Table2. Furthermore, it is obvious 
that the lower or the higher the volume, the better our 
algorithm performs compared to the other algorithms 
as shown in Figure 5. 
 
5. Conclusion and future works 

 
We proposed the DTWC algorithm as a time-

warped algorithm and designed the comparing scheme 
of a WSN classification system using the PAA 
algorithm. The experimental results demonstrate that 
the proposed algorithm produces satisfactory 
accuracies over volumes compared to other algorithms 
such as the ED, the LCS, the DTW-only, etc. It is 
inferable that, even though the time series technique 
can be effective only when each target has its own 
patterns of time series, the method of time series 
analysis can not only be valuable in a sparse sampling 
WSN but can also work collaboratively with the 
method of frequency analysis. We believe that this is 
the first work to introduce the manner of time series 
analysis without analyzing frequency for target 
classification in a sparse sampling acoustic WSN. So, 
we can say with certainty that our work could be a 
baseline for the research of target classification, 
detection or tracking using the time series approach in 
the future.  

Our future work will focus on applying physical 
features, the ZCR (Zero Crossing Rate), energy, etc, 
and multi-modal fusion to improve the accuracy since 
targets have different signatures from each other 
corresponding to multiple modalities, e.g. magnetic 
and seismic. The HMM (Hidden Markov Model) could 
also to it, the more sensor nodes, the better result could 
be expected by complementing each other.give us the 



capability to analyze more diverse, more general and 
longer signals. In addition 
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