
Power Aware Chain Routing Protocol for Data
Gathering in Sensor Networks

#Minh-Long Pham 1, Daeyoung Kim 1, Yoonmee Doh 2, Seong-eun Yoo 1
1Information and Communications University, Korea

{longpm, kimd, seyoo}@icu.ac.kr
2Electronics and Telecommunications Research Institute

ydoh@etri.re.kr

Abstract

To prolong the network lifetime, we propose an energy

efficient chain-based routing scheme and a distributed
algorithm for constructing the routing chain based on the
minimum cost tree. The chain construction algorithm
calculates the transmission cost based on received signal
strength. Therefore, it doesn’t require global knowledge of
nodes’ location information and provides more accurate
communication cost calculation among nodes under different
practical deployment environments. The proposed power
aware mechanism for leader node election in the chain
ensures more uniform energy consumption among nodes. The
simulation shows the new scheme provides more uniform
energy consumption among nodes and better active network
lifetime in different network settings as compared to previous
chain-based protocols.

1. INTRODUCTION

In recent years, the combined advances in wireless
communications, micro-electro-mechanical system (MEMS)
technology, and digital electronics have driven the growth of
wireless distributed sensor networks and this growth in turn
has opened a wide range of applications. Sensor networks
consist of a large number of tiny, inexpensive and constrained
sensor nodes with sensing, computing and wireless
communication capabilities. Since sensor nodes have limited
power supply and cannot be easily recharged or replaced
when batteries run out, the mechanism for efficient power
consumption is very important. Many researches have been
carried out for efficient energy consumption of sensor
networks at different levels: hardware, operating systems,
MAC, routing protocols, and so on.
Among the sources of energy consumption of sensor
networks, the energy consumption on RF communication
dominates. Therefore, routing protocols must be energy
efficient to prolong the lifetime of sensor networks. The
failure of a few nodes can cause sensor network to consume
more energy, and significant topology changes. So a routing
protocol also needs to balance the energy consumption of
nodes to maximize network lifetime as a whole. Network
lifetime can be measured by parameters such as time until
certain percentage of nodes die or time until network cannot

perform the assigned task. In this work, we consider the
network lifetime until the first node dies and the active
network operation time until halves of nodes die. When the
first node dies, the network topology may need to be changed,
and after halves of nodes die the network may not function
properly.
Many researches have been carried out for sensor networks
but the network protocols for sensor networks still need
further extensive and intensive explorations. Most of existing
routing protocols focus on one major technical issue whether
it is data-centric approach [5] or power efficient approach [1],
[2], [3]. In a typical monitoring application, after deploying
sensor nodes in the field, users would like to query the data
over a specific area for a certain time to monitor the status of
environment. Then sensor nodes periodically send data back
to the sink. In this kind of application the purpose of routing
protocol is to minimize total energy consumption so that the
lifetime of sensor networks as the whole can be prolonged as
much as possible. Chain–based routing protocols have been
proposed to reduce the total energy consumption for data
gathering. In [1], PEGASIS uses a greedy algorithm for
constructing the routing chain. In [3], authors provide a better
algorithm for constructing the energy efficient chain called
minimum total energy (MTE) chain. These chain construction
algorithms use centralized approaches for constructing the
chain and elect the leader node for transmitting data back to
the sink by taking turn. However, if the remaining energy of
each node is not taken into account in the leader election, the
nodes with low remaining energy will easily run out of energy
leaving just a small number of survival nodes performing the
sensing task. This is also not good from viewpoint of the
network lifetime as the whole. We need a more uniform
consumption of energy so that sensor nodes can be able to
work together most the time and die nearly at the same time.
To support this, we propose a power aware chain (PAC)
routing protocol for energy efficient data gathering from the
sensor field. The chain is constructed by using a distributed
algorithm based on the minimum cost tree. The transmission
cost among nodes is calculated using received signal strength
thus does not require global knowledge of nodes’ location
information. This calculation also closely represents the exact
transmission cost in different practical deployment
environments. Moreover, the proposed power aware
mechanism in leader election ensures more uniform energy

consumption among nodes than the previous approaches. Our
new chain construction algorithm along with power aware
mechanism for leader election provides longer network
lifetime and at the same time guarantees the better active
network operation time.
The rest of this paper is organized as follows: Section 2
reviews the related work in the literature. In section 3, we
describe the details of the proposed scheme. Section 4
discusses the performance evaluation. Section 5 concludes the
paper.

2. RELATED WORK

Researches for energy efficient routing protocols for sensor
networks have drawn increasing attention. One of the main
sources of energy waste in communication is the idle listening,
which consumes high energy almost the same as normal
receiving mode as observed in [6] and [7]. So one of the most
efficient mechanism for power saving is to turn off the radio
transceiver whenever it is possible. TDMA based MAC layer
protocol eliminates this kind of problems thus can be good
candidate for energy efficiency. Therefore, some routing
protocols have been developed based on TDMA MAC layer
to take advantages of energy conservation.
LEACH [2] is a cluster-based sensor network routing protocol
in which nodes are organized into clusters with one node
assigned as a cluster head for each cluster. Each node in a
cluster is assigned time slot to transmit data to the cluster
head. The cluster head then compresses all the received data
and transmits it to the sink thus reduces the number of direct
transmission to the sink. Since cluster heads consume more
energy than normal nodes, nodes take turn to become cluster
heads by using probability.
In LEACH, cluster heads still consume high energy because
they have to wake up all the time to receive data from all
nodes in their clusters.
PEGASIS [1] reduces the total communication energy
consumption compared to LEACH. PEGASIS organizes all
nodes into the chain using greedy algorithm by adding the
next closest node to the chain starting from the node farthest
from the sink. It assigns one leader node to transmit data to
the sink. Other nodes just transmit data to neighbour node
along the chain and aggregate data before continuing sending
data along the chain toward the leader node. It achieves better
lifetime than LEACH by about 100 to 200 percent.
In [3], the authors present a new centralized algorithm for
constructing the minimum total energy (MTE) chain. In each
step of chain construction, it searches all remaining nodes and
all possible insertion positions in the chain to select a node
and a corresponding position in chain that increases the total
transmission cost of the chain to the minimum amount. The
node is then inserted into the chain at that position. MTE
constructs the chain with smaller total transmission energy
cost than PEGASIS but has more computation complexity.
Also by dividing whole sensor field into four regions and
construct the chain in each region, MTE gains better

performance compared to PEGASIS in case of sparse-node
distribution.
Both PEGASIS and MTE approaches use centralized chain
construction. Firstly, their transmission cost calculation based
on distance may not reflect the exact cost in different practical
environments due to radio irregularity as indicated in [9].
Secondly, these centralized approaches may not scale well for
large network or large number of nodes. Moreover, after
sometimes nodes far away from the sink easily run out of
battery since they consume more energy to transmit to sink as
a leader. PAC addresses these issues by constructing the chain
using a distributed algorithm. The transmission cost is
calculated based on the received signal strength between
nodes thus reflects more accurately the actual transmission
cost between nodes in the field. By applying distributed
algorithm for chain construction, PAC can be applied to
larger networks and larger number of sensor nodes. Also, the
chain construction bases on signal strength to calculate the
transmission cost so that location information is not necessary.
Furthermore, the power aware mechanism in leader election
guarantees more uniform energy consumption among nodes.
So that all nodes work together and die approximately at the
same time, which provides better active network operation
time than the case where there are only few nodes still
function while almost other nodes have died.

3. POWER AWARE CHAIN (PAC) SCHEME

A. PAC system model
In this work, we consider the wireless sensor network that
consists of a sink and a large number of immobile sensor
nodes. Sensor nodes are deployed at monitoring area to
collect data back to a remote sink, which can be accessed by
end users as shown in Figure 1. To save energy sensor node
can adjust its transmission power using power control
mechanism. All sensor nodes can reach the sink. All the
nodes monitor the environment and periodically send sensed
data back to the sink.

For all the sensor nodes to energy efficiently send data to the
sink, we develop PAC, a power aware chain routing protocol.
In PAC, all nodes organize themselves into the energy
efficient chain with one node elected as leader node to
transmit data back to sink on behalf of all other nodes as
shown in Figure 2. Each node aggregates received data from
the previous node in the chain with its own collected data to
produce an aggregated data packet. After nodes are deployed,

Fig. 1: PAC Sensor Network Model Fig. 2: A Routing Chain

7

46

1

8

5

3

B S

2

Algorithm 1: Constructing the Minimum Cost Tree:

1.For each node i: Pi=∞ ; di=∞ ; parent=null; childList=null
2. BS broadcasts the initial ADV message (BS, 0)
3. Event: Node B receives an ADV message from node A (AID, PA)
If (PB > PA+PAB){
 PB=PA+PAB
 dB=αPAB
 parent =A
}
4. Event: Node B’s backoff timer expires
 Sends the JOIN message (BID) to parent A
 Broadcasts ADV message (BID, PB)
5. Event: Node B receives JOIN message (CID) from node C
 Add node C in the children list of B in the decreasing order of the cost
PBC
 Variables:

 PA, PB, PC , Pi: costs of node A, B, C, i to reach the BS
 PAB, PBC: cost between node A and B, and between B and C
 α: backoff coefficient
 dB: delay timer of node B

they will start the chain construction period as discussed in
section B. Then nodes collaborate to elect one leader node,
which is responsible to collect data from all the nodes and
transmit to the sink in the leader node election period. In
normal operation, data gathering is divided into iterative
rounds. In each round, every node in the chain is assigned a
time slot according to its position in the chain to receive and
send data. Data collection starts from one end of the chain
towards the leader node, and then from the other end towards
the leader node, finally the leader node combines the data and
send to the sink.
For example, as shown in Figure 2, node 1 sends data to node
2; node 2 combines received data with its own data and
forward it to node 3. After the data from node 3 reaches node
4, the same procedure occurs from node 8 through node 7, 6,
and 5 towards node 4. Node 4, as a leader, then combines
received data with its own data and sends fused data to the
sink. After certain number of rounds, the leader node election
is performed again to elect new leader node.

1 832 7 456 1 832 7 456

B. Chain construction algorithm
The chain construction consists of two steps: first building the
Minimum Cost Tree among all nodes and then traverse the
tree using depth first search to construct the chain.

7

4
6

1

8

5

3

BS

2

7

4
6

1

8

5

3

BS

2

7

4
6

1

8

5

3

BS

2

The Minimum Cost Tree is constructed as in Algorithm 1.
This tree construction algorithm is based on the algorithm for
finding minimum cost path from all nodes to the sink [4].
In previous work, each node only keeps the minimum cost to
reach the sink. This simplifies the state information stored at
each node. However, there may exist several paths towards
the sink with the same cost that may cause duplicated data
transmission to the sink. Also since the node when sending
data does not specify the exact receiver by just broadcasting

with the minimum cost, this leads to redundant overhearing
by nodes that are not involved in the real forwarding. We
overcome these problems in our algorithm by using feedback
messages to construct the tree explicitly. Thus after
construction finish, each node knows the exact relay node
(parent node) to forwards data to the sink and list of nodes
that it will relay data for (children nodes). Therefore,
transmission power is saved by adjusting to just the correct
receiver as compared to broadcast message in previous work.
This also removes the duplicate transmission to the sink and
overhearing of unwanted message.
First each node initialises both the minimum transmission cost
to the sink (either directly or relay through other nodes,
hereafter called function cost) and delay time to infinite. Sink
activates the tree construction by broadcasting the initial
advertisement message with the sender as BS and function
cost set to zero. When a node receives the advertisement
message, it calculates and updates its function cost. If the
sender’s function cost plus transmission cost between the
receiver and the sender is smaller than the receiver’s current
function cost, the receiver considers the sender as the relay
node to send data back to the sink, and the new function cost
is updated. The delay time is updated to proportional to the
transmission cost between the receiver and sender in case the
sender is chosen as the relay node. After the sleep delay, the
node wakes up and rebroadcasts the advertisement with its
own id as sender’s id and the cost as its function cost. It also
sends a JOIN message back to its relay node thus considers
the relay node as the parent node in the tree. This specifies the
exact parent node towards the sink thus eliminates redundant
overhearing and duplicate paths.
After all, the tree with the sink as the root is constructed. This
algorithm requires each node to send one broadcast message.
By this algorithm, the Minimum Cost Tree is constructed with
the path from each node to the sink is the minimum cost path.
Each node stores the parent node and list of children nodes
along with the associated transmission cost to them.
Once the Minimum Cost Tree construction is completed, the
distributed depth first traversal is performed to build the chain
starting from the sink as root node, as in Algorithm 2.

Round

Leader node election
period Fig. 3: Sample Detail Operation of Round

Fig. 4: Chain construction based on Minimum Cost Tree
a. Broadcast to build Minimum Cost Tree
b. Traverse the tree by depth first search
c. Construct the final chain from the tour

4.a 4.b 4.c

After the tour, the number of nodes in the tour is counted. The
longest edge is removed from the tour to form the optimal
chain. Sink sends a packet again along the chain to inform all
the nodes of the number of nodes, and their orders in the
chain. Each node then calculates its corresponding time slot
using this information when the order of the leader node is
known. For example, from the chain in Figure 2, timeslots are
assigned to each node as in Figure 3. The number in each slot
is id of the node that will send data within this time slot.

C. Leader node election
Periodically, the leader node election is performed to select
new leader node in order to balance energy level among
nodes. This is carried out by comparing the reserve values
among nodes along the chain. The reserve value of node i, Ri,
is calculated as the ratio between the power available (Pai) of

the node and the power needed for transmission from the
node to the BS (PTxi): Ri= Pai / PTxi. The higher the value
means the more total energy available. The direct
transmission cost from nodes to the sink is calculated in
Minimum Cost Tree construction period, when nodes receive
broadcast message from the sink.
Details of leader election are described below:

1. Each node i in a chain calculates its own reserve value
Ri=Pai/PTx i .

2. The node from the end of the chain starts sending its
reserve value towards the leader node. Each node
receives the packet, compares the current value in
packet with its own value. If the value in the packet is
higher than its own value, the node simply forwards the
packet; otherwise it will modify the packet with its own
value and forward the packet.

3. The leader node gets the packet with the highest
reserve value, informs nodes in the chain of the new
leader node.

4. The leader node election is performed again after a
number of rounds.

The number of rounds for re-electing the leader node changes
adaptively according to the current energy level of nodes. At
beginning, the energy difference between nodes is small and
nodes still have high energy. Once elected as a leader node,
the node keeps this role for number of rounds. Then it
initiates another leader node election period thus reduces the
overhead associated with leader election. When energy level
of nodes decrease, the number of rounds for re-electing new
leader node also decreases thus avoiding one node consuming
too much energy as the leader. When energy level of nodes
become low, the leader election is taking place every round.
This adaptive mechanism ensures that nodes with high energy
level and near the sink have more chances to become the
leader node. The election of a node near the sink as leader
node also reduces the total transmission cost.

D. Fault tolerance
In data gathering phase, if a node detects the next node in the
chain is dead, it will try to connect the next node in the chain
in the next time slot. For example in the Fig. 4, when the node
7 dies, the node 8 will connect with node 6 in the next time
slot thus bypasses the dead node 7. The chain is also be
updated when the new leader election is performed to bypass
the dead nodes.

Algorithm 2: Construct the Depth First Search traversal of
Minimum Cost Tree

1. Each node V:
 V.setNodeStatus(NEW)
 For each child node U of V

V.setEdgeStatus(U, NEW)
2. BS as the root sends out the token to the first child in children list
3. Event: Node U receives a token from node V
If (U.getNodeStatus()==NEW) then{

U.setNodeStatus(VISITED)
Extract the id and calculate transmission cost from the token
and put into PREVIOUS (id, estimated_ cost)

 Send the CONNECT (UID) message to the PREVIOUS node
 Add the node U’s id into token packet
 If there is child K of the node U{
 U.setEdgeStatus(K, SENT)
 Send the token packet to K
 } else{ // this is a left node
 U.setNodeStatus(DONE)

 Send the token back to parent node
}

} else if (U.getNodeStatus()==VISISTED){
 Update the estimated cost in token by adding the
transmission cost between U and V
 If (K is child of U and U.getEdgeStatus(K)==NEW){

 //if there’re unvisited child node, visit it
 U.setEdgeStatus(K, VISITED)

 Send token to K
}else{ // all the child nodes have been visited

U.setNodeStatus(DONE)
 Send the token back to parent node

}
}
If (U is BS & U.getNodeStatus()==DONE) Terminate algorithm
4. Event: Node U receives CONNECT(VID ,estimated cost) packet
from node V
 Put the VID and the cost for U, V into NEXT[VID, cost]
Send the ACK back to V.
Node V when receives the ACK from U can calculate transmission
cost and update the transmission cost between U and V

Variables
Each node V keeps the variables
NodeStatus={NEW, VISITED, DONE} (initial status is NEW)
EdgeStatus={NEW, VISITED } (initial status is NEW)
NEXT [nodeID, cost], PREVIOUS[nodeID, cost] is the variable for
keeping the next node and previous node in the tour

Fig. 5: Fault tolerance when node 7 is dead.

7

46

1

8

5

3

B S

2

4. PERFORMANCE EVALUATION

A. Radio model and simulation setting
The calculation for communication and computation energy
consumption is based on model discussed in [2] and [8]. The
transmission energy consumption for k bits over distance d is
calculated using both free space model and multipath fading
model depending on the distance d between the transmitter
and the receiver as follows:

ETx(k,d)= kEelec +k*εfriss-amp*d2 (d<dcrossover)
 = kEelec +k*εtwo-ray-amp*d4 (d>=dcrossover)

and the energy consumption for receiving k bits can be
calculated as ERx(k)=k*Eelec, where Eelec=50 nJ/bit is the
energy consumed for the radio electronics; εfriss-amp
=10pJ/bit/m2 and εtwo-ray-amp=0.0013pJ/bit/m4 are radio power
amplifier parameters; dcrossover =87.7m. For the computation
energy consumption we only consider the energy
consumption for data aggregation Efuse=5nJ/bit/signal, and
consider that other processing energy consumption is
negligible. A node receiving data packet from the previous
neighbour in chain will combine this data with it own data to
generate the aggregated data packet of the same size. The
initial energy for each node is 0.5J.
Depending on the transmission cost between two nodes, the
transmission power of the transmitter is adjusted to minimum
level that still be heard by the receiver.
The operation as mentioned above is divided into rounds. In
each round, each node sends a number of data packets. The
total volume of all data packets is 2000 bits. After a certain
number of rounds, the current leader node will initiate the
new leader election. Each node will send a control packet of
size 3 bytes to re-elect the leader node, which is considered as
overhead. At the beginning, leader election is carried out
every 20 rounds. After 60% of nodes die, leader node is re-
elected every 5 rounds, and when there are 20% of remaining
nodes, the leader node election is performed after every round.
The simulation is to further verify that the PAC has better
performance than PEGASIS and minimum total energy
(MTE) algorithm in terms of number of rounds against
percentage of death nodes. The simulation also shows that
nodes in PAC die at random position as compared to
PEGASIS and MTE where nodes far away from the sink
usually die first.
The comparison between PAC, PEGASIS and MTE is based
on different network densities, network sizes, and sink
positions.

B. Active network operation times
The first type of simulations compares the performance of the
PAC protocol versus PEGASIS and MTE protocol in term of
number of rounds versus the percentage of death nodes. The
comparison is based on the number of operation rounds when
the first node, 10%, 20%… 100% of nodes die. The higher
the number of rounds when there are few death nodes shows
the better performance of the protocol. It’s better if large
number of nodes alive and die nearly at the same time.

The simulation varies with different network sizes 50mx50m,
100mx100m with different node densities of 30, 50, 100,150,
and 200 with base node at the position (25,200) and (50,200).

As shown in Figure 6 and 7, the lifetime until the first node
die of PAC is 10-20% higher than that of MTE and about 20-
30% higher than that of PEGASIS. The number of rounds of
PAC is 15-25% higher than that of MTE and PEGASIS when
the node death percentage increases until more than 50% of
nodes die. Moreover, in PAC, just after 30% first nodes die,
almost remaining nodes die at the same time as compared to
gradual death of remaining nodes in case of PEGASIS and
MTE.
In PEGASIS and MTE, nodes take turn to become the leader.
So nodes far away from the sink consume more energy as the
leader nodes than nodes stay near the BS and easily run out of
energy earlier. For example, let’s consider the network of size
100mx100m, with the sink at (50,200) and the average
distance between nodes is 25m. The transmission cost for the
leader node far away from sink is about 10 times higher than
that of the leader node close to the sink. It can be seen easily
that the far way nodes will run out of energy first if nodes
have equal chance to become leader nodes as in PEGASIS
and MTE. In PAC, leader node election is based on current
energy level and the power consumption to transmit to BS
from each node; thus ensures more uniform energy
consumption among nodes. Nodes consume all the energy
and die almost at the same time together. Also the energy
consumption is distributed evenly thus dead nodes are
distributed randomly among the field.

Fig. 6: Comparison of network lifetime for 30 nodes
50mx50m sensor network

Fig. 7: Comparison of network lifetime for 50 nodes
100mx100m sensor network

Figure 8, 9, 10, 11 are the results of the second type of
simulations that further illustrate the above analysis by
showing the initial node distribution and node distribution of
remaining live nodes after 30% of nodes die for PAC,
PEGASIS and MTE. As can be seen from these figures, in the
case of PAC, nodes die evenly at random position versus the
case of PEGASIS and MTE, almost nodes far away form the
sink die first.

5. CONCLUSION

In this paper, we present PAC, an energy efficient chain-
based routing protocol for data gathering in sensor networks.
The PAC protocol provides the distributed algorithm to
construct the energy efficient chain based on minimum cost
tree. It also takes into account the remaining energy level and
power consumption of sensor nodes when electing the leader
node so that nodes consume energy more uniformly.
Simulation shows that PAC outperforms previous chain-based
routing protocols (PEGASIS and MTE) in term of network
lifetime. Nodes also die at random positions thus maintain the
better network coverage as compared to previous work where
nodes far away from the sink usually die first.

REFERENCES
[1] S. Lindsey, C. Raghavendra, and K. Sivalingam, Data

Gathering Algorithms in Sensor Networks Using the
Energy Metrics, IEEE Transactions on Parallel and
Distributed Systems, vol. 13, no. 9, Sep. 2002, pp.
924-935.

[2] W. Heinzelman, A. Chandrakasan, and H.
Balakrishnan, "An Application-Specific Protocol
Architecture for Wireless Microsensor
Networks'' IEEE Trans. on Wireless Communications,
Vol. 1, No. 4, Oct. 2002, pp. 660-670

[3] K. Du, J. Wu, and D. Zhou, Chain-Based Protocols
for Data Broadcasting and Gathering in Sensor
Networks, Proc. of Workshop on Parallel and
Distributed Scientic and Engineering Computing with
Applications (in conjunction with IPDPS), April 2003

[4] Fan Ye, Alvin Chen, Songwu Lu, Lixia Zhang, A
scalable Solution to Minimum Cost Forwarding in
Large Scale Sensor Networks. ICCCN 2001.

[5] Intanagonwiwat C., Govindan R. and Estrin D.,
Directed diffusion: A scalable and robust
communication paradigm for sensor networks In
Proceedings of the Sixth Annual International
Conference on Mobile Computing and Networking
(MobiCOM '00), August 2000, Boston,
Massachussetts.

[6] Matthew J. Miller and Nitin H. Vaidya, On-Demand
TDMA Scheduling for Energy Conservation in Sensor
Networks, University of Illinois at Urbana Champaign
Technical Report, June 2004.

[7] Wei Ye, John Heidemann and Deborah Estrin An
energy-efficient MAC protocol for wireless sensor
networks, IEEE Infocom 2002.

[8] T. Rappaport, Wireless Communications: Principles
& Practice. Englewood Cliffs, NJ: Prentice-Hall,
1996.

[9] Gang Zhou, Tian He, Sudha Krishnamurthy, John A.
Stankovic. Impact of Radio Asymmetry on Wireless
Sensor Networks, MobiSys'04, Boston, MA, June
2004.

Fig. 10: Node distribution of PEGASIS after 30% nodes die

Fig. 8: Initial node distribution

Fig. 11: Node distribution of MTE after 30% nodes die

Fig. 9: Node distribution of PAC after 30% nodes die

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

