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Abstract - A data-aided (DA) timing recovery method for
general continuous phase modulation (CPM) signaling is
introduced. This method requires only symbol rate
sampling and is independent of the carrier phase offset,
owing to the use a differential operator. By examining the
phase of the data after the differential operation, we
derive an expression of the phase error caused by the
timing offset and obtain an efficient timing error function.
Then a feedback timing recovery algorithm is developed
by exploiting this timing error function. The
characteristics of the algorithm are examined through
_computer simulation,

1. Introduction

It has been recognized that the timing recovery of CPM
signals with partial response formats and multilevel
alphabets is a difficult task [1]. The non-data-aided (NDA)
timing recovery methods in [2]-[5] perform well for
minimum shift keying (MSK) and Gaussian-MSK (GMSK)
signaling, which have full-response type format, but tend to
exhibit poor performance with partial response formats,
especially with long frequency pulses. The DA method in [6]
has excellent tracking performance but its acquisition is
prone to spurious locks which occur, in particular, with
multilevel partial response formats. Our objective in this
paper is to develop a new timing algorithm that works well
for general CPM signaling.

The proposed method starts with symbol rate sampling of
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the received signal. To remove the effect of the carrier phase
offset, the sampled data is passed through a differential
operator. Then the phase of the resulting signal is
decomposed into two terms: a reference phase, which is the
phase of the transmitted signal and a phase error caused by
the timing offset. We derive an efficient timing error function
from the phase error term, and develop a feedback timing
recovery algorithm by exploiting the timing error function.
This algorithm is simple to implement. It is shown through
computer simulation that the algorithm performs well for
general CPM signals encompassing both full and partial

response formats.

I1. The Proposed Timing Recovery Scheme

The baseband equivalent form of a received CPM signal

passed through a distortionless channel may be expressed as
st.@,) =exp(jot.a,) + jd,) 0

where nT < t < (N+1D)T; T is the symbol period; e,=[c4, o,
.v » O} is an M-ary information sequence; ¢, is the carrier

phase offset;
o(t.@,) =2mhy oq(t —iT) 2)
i=0
and ¢(f) is a continuous, non-decreasing function of ¢
satisfying
0, t<0
"(’)‘{1/2, ¢>LT. &



The constant 4 in (2) and L in (3) are the modulation index
and the correlative length, respectively. Suppose that s(z,a;,)
is sampled at nT-7 where 7, T /2<7<T /2, denotes ‘the
symbol timing offset. The phase of the sampled signal is
given by

ST —7,0,) + @, = Znhgaiq(nT ~T—-T)+9,. @

As a first step for deriving a proper timing error detector, we

decompose (4) as follows :

o(nT —t,@,)+ ¢, =2mhy, a,q(nT —iT)
i=0

n &)
+ 270y 0, {q(nT —iT ~ )= q(nT ~iT)} + ¢,
i=0
= o(nT.@,) +21h 3.0q, () +, ©)
i=n—-L
where
q,(0)=q(jT -7v)—q(jT), j=0,1,....L, (D

and (6) follows from the fact that g(nT-iT-7) = g(nT-iT) = 1/2
for i<n-L-1. The function g(7) in (7) is non-increasing,
as shown in Fig.1, because g(¢) in (3) is non-decreasing. In
(6), the first term is independent of timing offset 7 and can
be obtained once @, is given. The timing error information is
contained only in the second term, which is a weighted sum
of ¢{7) functions. Since g(7) is non-increasing, it would be
possible to estimate 7 from this term. Use of (6) for timing
recovery, however, is not practical because of the unknown
phase offset ¢,. To remove the effect of ¢, we multiply s(nT-
T,0,) with s'(nT-T-7,a,). The phase of the resulting signal
may be expressed as

¢(nT -7,@,)— 0T -T -7,0,)
3
= ¢rej' (”van,ul) +9, (n’T’an,LH)

where

¢y (.0, ,) = 9T @)~ 9(nT ~T.@,)

L ©)
=2mhYy o, . ,q,;(T),
=0

L
o.(n7.@,,,)=2mhY (01, =0, )q,(T), (10)
j=0

and an.L+l = [am an-lv

¢.(n,7,@,,,,;) contains the timing information and can be

, ¢,.;). In (8), the phase error
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obtained by subtracting ¢,(n.@,,,,), called the reference
phase, from the phase of s(nT-t@,)s*(nT-T-t,e, ;). To
extract the timing information from ¢,(n,7.¢t,,,;), we now

examine the relation between ¢,(n, 7., ;) and T.
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Fig. 1. The function g;(7) when the frequency pulse dq(1)/dt
is a rectangular pulse of length 3 (3REC, L=3).

Observation 1: When 7= 0, ¢,(n,7,a,,.;) = O regardless
ofthedata &, ; . ;.

This observation is true because ¢,(n,7.¢,;,;) is a
weighted sum of g(7) and ¢{0) = 0. Fig.2 illustrates
¢fn, 70, ,,) for some @, ., when frequency pulse dg(s)/dt is
a rectangular pulse of length 3 (3REC, L=3) and Me {2,4}.
The phase error ¢(n,7.a,,,,) for a given @,,,, is not
necessarily a monotonic function of 7, but there always exist
monotonic {@,(n,7,0,,,,)}. Through exhaustive search of
M"? elements of the set {¢,(n,7.a,,,,) for all @,,,}, we
counted the number of monotonic ¢,(n,7.@,,,,) functions.
The results are shown in Table 1. It is seen that more than
50% of the ¢(n,7,@,,.,) functions are monotonic.

Next we derive a timing error function by using

o(n,7,a,,. ). Consider

fae,, )= Cy @,,.) 0.(n7.@,,.,,) a7

where
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Fig. 2. Some representative shapes of ¢,(n,7,@,,,,) for 3REC

(L=3, rectangular pulse).

Phase M=2 M=4
respons L=1|{L=2|L=3|L=1{L=2|L=3

6 14 22 36 228 | 724
®) (16) | (32) | (64) | (256) | (1024)

RC

6 14 28 36 184 | 736
®) (16) | (32) | (64) | (256) }(1024)

REC

Table 1. The number of monotonic ¢,(n,7,@,,.;) functions
where the numbers in the parentheses are the total number
M and RC stands for the raised cosine frequency pulse

of duration L.
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1 lf ¢e (n'r’an:u-l ) .
> givena, , is non - decreasing
c (a ) = 0 lf ¢e (n’T’an:L-Pl) .
9L 7 givena, ,, is not monotonic
-1 lf ¢e (n’r7an:L+l ) . .
> given@, ., 1s non - increasing

(18)

Owing to Observation 1 and its definition in (17) and (18),
the function A7te@,,,,) has the following desirable

characteristics:

fee@,,)20, ifr>0
f(T’an,L-H) = Oa ift=0 (19)
fee,.,)<0, ifr<0

(19) is satisfied irrespective of the data ¢,,,, and thus this
function can serve as a timing error function. Using (17), we
propose a recursive formula for estimating the timing error 7.
The proposed formula is written as

T =T, — 1 (.0, 1)

(20)

=f,-u- Co @, 1) 0. (n’fn’an,L-H)
where 7,is the n-th estimate of 7 and u is a constant. It is
expected that 7, converges to 7 if u is properly chosen. In
practical situations, the symbol vector @, ., is unknown and
should be detected. When the maximum likelihood sequence
estimation (MLSE) receiver is employed for CPM
demodulation, decisions are made with some delay D. In a
such case, (20) is rewritten as

T =8, U @, pn) 0. (n=DF, @, p,,) (21)

where @, p;,, is the detected symbol vector. This timing
offset estimator is illustrated in Fig. 3. Here it is assumed
that the set of constants {c40,p;.)} are pre-stored. This
timing recovery scheme is simple to implement, yet
performs reasonably well for general CPM signals, as
demonstrated in the next section through computer

simulation.

HI. Simulation Results

To examine the behavior of the proposed schemes,

timing error variances were estimated empirically for binary
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Fig. 3. The block diagram of the proposed timing recovery

scheme where z' represents the delay by I symbol periods

CPM signals
transmitted over an AWGN channel. In our simulation, each

(M=2) with various phase responses
error variance estimate was calculated through ensemble
averaging preformed over 100 independent trials. (At each
trial, .we generated a sequence of length 500.) Fig. 4
illustrates the transient behavior of the proposed algorithm.
From this figure, we observe the following:
® As u is reduced, the rate of convergence of the
algorithm is correspondingly decreased.
® A reduction of py also has the effect of reducing the
steady state variance.
®  As L isincreased, the rate of convergence is decreased.
® An increase in L also has the effect of increasing the
steady state variance.
Fig. 5 compares the steady state behavior of the algorithm
for various CPM formats. Each steady state error variance in
Fig. 5 was estimated by averaging the last 200 values of the
corresponding variance estimate sequence of length 500 (Fig.
4 shows such sequences). It is seen that the rectangular
pulses cause larger error variances than the raised cosine
pulses. As observed above the error variance increase as L is
increased.
It is expected that the proposed timing recovery scheme
performs well for multilevel CPM signals. Simulation with

multilevel signaling remains as a future work.
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Fig. 4. Timing error variance estimates when E,/N, = 20dB.
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Fig. 5. Steady state error variance for various CPM formats when u = 0.2.
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