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Abstract|A simple adaptive least mean square (LMS)

type channel estimation is developed through some mod-

i�cation of FIR Wiener �ltering. A condition that guar-

antees the convergence of the algorithm and theoretical

mean square error (MSE) values are derived. Computer

simulation results demonstrate that the proposed algo-

rithm can yield smaller MSE than existing techniques,

and that its performance is close to that of optimal

Wiener �ltering.

I. Introduction

In direct sequence code division multiple access (DS-

CDMA) systems, a pilot channel is usually employed

for synchronization and channel estimation. After de-

spreading a pilot channel at a �nger of a DS-CDMA

RAKE receiver, the received signal x(k) can be ex-

pressed as

x(k) = h(k) + n(k) (1)

where h(k) is a wide-sense stationary channel parameter

and n(k) is zero-mean additive white noise. Estimating

h(k) from fx(k)g is not a trivial task, because the statis-

tics of h(k) are unknown and vary depending on the

velocity of a mobile receiver. Use of an adaptive �lter

for this estimation is also di�cult, since it is impossi-

ble to provide a training sequence consisting of channel

parameters. A popular approach to the channel estima-

tion is to use a �xed lowpass �lter (LPF) whose cuto�

frequency is set to the maximum Doppler frequency [1],

[2]. Such an LPF is simple to implement, but tends to

exhibit poor performance when its cuto� frequency dif-

fers from the actual maximum Doppler frequency. Use

of optimal �lters such as Wiener and Kalman �lters

has been proposed in [3]{[5]. These �lters require chan-

nel statistics, and thus their implementation is di�cult.

In [6], channel parameters are estimated by applying

adaptive linear prediction. The adaptive predictor can

perform better than LPFs in slow fading environments,

but its performance is degraded rather rapidly as the

channel fade rate increases.

In this paper, we develop a new adaptive �lter for

channel estimation by modifying the FIR Wiener �lter-

ing formulation. The proposed adaptation scheme re-

sembles the leaky LMS algorithm [7]. It will be shown

that the performance of the adaptive estimator is close

to that of the optimal Wiener estimator. The proposed

technique is a useful alternative to existing channel es-

timates such as an LPF and an adaptive predictor.

II. Derivation of the Proposed Channel

Estimation Algorithm

Suppose that an estimate of h(k) in (1) is given by

ĥ(k) = wHx(k) (2)

where w is an N-dimensional tap weight vector and

x(k) = [x(k); x(k�1); � � � ; x(k�N +1)]T . The optimal

tap weight wo minimizing E[jh(k)� ĥ(k)j2] satis�es the

Wiener-Hopf equation,

Rwo = pxh (3)

where R = E[x(k)xH (k)] and pxh = E[x(k)h�(k)].

When fh(k)g and fn(k)g are uncorrelated, pxh is

rewritten as



pxh = pxx � [�2; 0; � � � ; 0]T (4)

where pxx = E[x(k)x�(k)] and �2 is the variance of

n(k). Using (4) in (3), we get

(R+A)wo = pxx (5)

where A is an N�N matrix consisting of all zeros with

the exception that (1,1)th element, say �o, is nonzero.

This parameter �o is given by

�o =
�2

wo;0

(6)

where wo;0 is the �rst element of the optimal tap weight

vector wo. Throughout this paper, it is assumed that

�2 is known1. The equation (5) can be viewed as the

Wiener-Hopf equation associated with the correlation

matrix (R+A) and the correlation vector pxx. It can

be derived by minimizing E[jx(k)�wHx(k)j2+wHAw],

and the gradient of this cost is:

2f�pxx + (R+A)wg

= 2E[�x(k)x�(k) + (x(k)xH (k) +A)w]: (7)

Therefore, the steepest descent algorithm for obtaining

wo in (5) is given by

w(k + 1) = w(k)� �E[�x(k)x�(k)

+ (x(k)xH (k) +A)w]: (8)

After removing the expectation E[�] in (8), the following

least mean square (LMS) algorithm is derived:

w(k + 1) = (I� �A)w(k)

+�x(k)fx(k)�wH(k)x(k)g�: (9)

The weight w(k) in (9) approaches wo in (5) (or (3)) as

k increases. This recursion does not require any train-

ing sequence, but it needs the knowledge about �o (or

equivalently A). In the proposed algorithm, �o is also

1�2 can be easily estimated by measuring the power of the signal

which is despread with a code that is orthogonal to all codes which

are being used [8].

updated at each recursion: it is denoted by �(k) at the

k-th iteration and updated by

�(k) =
�2

w0(k)
(10)

where w0(k) is the �rst element of w(k) (compare (10)

with (6)). The proposed channel estimation algorithm

is summarized as follows:

1. Channel estimate:

ĥ(k) = wH(k)x(k) (11)

2. Estimation error:

e(k) = x(k) � ĥ(k) (12)

3. Tap-weight adaptation:

w(k + 1) = (I� �Â(k))w(k) + �x(k)e�(k) (13)

where Â(k) is an N �N matrix consisting of all zeros

with the exception that the (1,1)th element is �(k) in

(10). The proposed algorithm is referred to as the modi-

�ed leaky LMS algorithm, due to its resemblance to the

leaky LMS algorithm, and the parameter �o is called

the optimal leakage coe�cient.

III. Performance Analysis

In this section, the stability condition and the MSE

associated with the recursive algorithm in (13) are de-

rived. Then the results are con�rmed through computer

simulation.

A. Theoretical Derivation

From (10), the recursive equation in (13) is rewritten

as

w(k + 1) = w(k) + �x(k)fx(k)�wH (k)x(k)g� � �c

(14)

where c = [�2; 0; � � � ; 0]T . Subtracting the optimal tap

weight wo from both sides of (14), we get

�(k + 1) = (I� �x(k)xH (k))�(k)

+�fx(k)(x(k)�wH
o (k)x(k))

� � cg

= (I� �x(k)xH (k))�(k)

+�fx(k)(eo(k) + n(k))� � cg (15)



where �(k) = w(k)�wo and eo(k) = h(k)�wH
o (k)x(k).

Assuming that �(k) and x(k) are uncorrelated and that

E[�(k)] = 0, the correlation matrix for �(k), K(k) =

E[�(k)�H(k)], can be computed as follows.

K(k + 1) = (I� �R)K(k)(I� �R)

+�2f(Jmin + �2)R+ ccHg (16)

where Jmin = E[jeo(k)j
2], denotes the MSE of the

Wiener �lter. The estimation error can be expressed

as

e(k) = h(k)�wHx(k)

= h(k)�wH
o x(k)� �

H(k)x(k)

= eo(k)� �
H(k)x(k): (17)

Under the assumption that eo(k) and �
H(k)x(k) are

independent, the mean squared error (MSE) at iteration

k, say J(k), can be represented as

J(k) = E[je(k)j2]

= Jmin +E[�wH(k)x(k)xH (k)�w(k)]

= Jmin + tr[RK(k)] (18)

where tr[�] means a trace operation. Following the ap-

proach in [7, p.397], it can be shown that J(k) converges

to a constant if and only if

0 < � <
2

�max

(19)

where �max is the maximum eigenvalue of R. When

(19) is satis�ed, the MSE is given by

J(k) = Jmin + �
T fBk(x(0)� x(1)) + x(1)g (20)

where the various terms are de�ned as follows:

� � is an N � 1 vector whose elements are the eigen-

values of R.

� B is an N �N matrix with elements

bij =

(
(1� ��i)

2; i = j

�2�i�j ; i 6= j
.

� x(0) = diagfQH(w(0)�wo)(w(0)�wo)
HQg when

Q is the unitary matrix consisting of the eigenvectors

for R.

� x(1) = �2(I�B)�1f(Jmin+�2)�+[�4; 0; � � � ; 0]T g.

The steady-state MSE is written as

J(1) = Jmin + �
T�2(I�B)�1

�f(Jmin + �2)�+ [�4; 0; � � � ; 0]T g: (21)

B. Comparison of Experimental Results with Theory
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Fig. 1. Comparison of experimental results with theory for the

proposed method when fdT = 0:03, N = 5, and � = 0:0025.

(a) SNR= 0 dB (b) SNR= 5 dB.



To con�rm the theoretical result in (20), the modi�ed

leaky LMS algorithm was applied to channel estimation

and the empirical MSEs were obtained. The signal x(k)

in (1) was generated under the following assumptions:

h(k) is a Rayleigh fading gain with fdT = 0:03 and n(k)

is a complex additive white Gaussian noise (AWGN),

where fdT is the normalized maximum Doppler fre-

quency2. The parameters of the modi�ed leaky LMS

algorithm were as follows: the number of taps N = 5;

the initial tap weight vector w(0) = [1=N; 0; � � � ; 0]T ;

and the step-size � = 0:0025. Fig. 1 shows the learning

curves when SNR= 0 dB and SNR= 5 dB. The exper-

imental curves were obtained by averaging the squared

error over 100 independent trials. The results demon-

strate a good agreement between theory and experi-

ment.

IV. Application to Channel Estimation

The signal x(k) in (1) was generated as in Section

III.B, with the exception that various fdT values be-

tween 0 and 0:05 were considered. The parameters of

the proposed algorithm remained the same. For com-

parison, two LPFs which were designed for fdT = 0:03

and 0:05, the adaptive linear predictor, and the opti-

mal Wiener �lter were considered as well as the pro-

posed method. The parameters of these �lters were the

same as the corresponding parameters of the modi�ed

leaky LMS algorithm. The LPFs were 5-tap FIR �lters

which were designed using the Parks-McClellan algo-

rithm. The Wiener �lter was designed for each fdT , and

thus it gave a minimum bound. The empirical MSEs

of the proposed and the adaptive linear predictor were

obtained by averaging the steady state squared error

values.

Fig. 2 compares the empirical MSE values. It was

seen that the performance of the proposed algorithm

was close to that of the Wiener �lter. The proposed

2In the case of W-CDMA, fdT is 0:037 when the chip rate is

3.84 Mcps, the symbol rate is 15.0 ksps, the carrier frequency is

2.0 GHz, and the maximum mobile velocity is 300 km/h.
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Fig. 2. MSE comparison when N = 5 and � = 0:0025. (a)

SNR= 0 dB (b) SNR= 5 dB.

method always outperformed the adaptive linear pre-

dictor, and it almost always performed better than the

LPF: in Fig. 2(a), the LPF designed for fdT = 0:03 ex-

hibited slightly smaller MSEs than the proposed in the

vicinity of fdT = 0:03; but for the other fdT values,

the latter yielded smaller MSEs than the former. The

adaptive linear predictor worked better than the LPFs

for slow fading channels, but its MSE rapidly increased

as fdT increased. As expected, the LPF performed well



only in the neighborhood of the fdT value for which

it was designed. The modi�ed leaky LMS algorithm

should be a useful alternative to the LPF and adaptive

linear predictor.
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