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Abstract

A salient adaptive carrier recovery with a multi-
order Digital Phase-Locked Loop (DPLL) based on
Kalman filiering is presented in this paper. Using
optimal loop gain sequence, that is Kalman gain se-
quence, for various optimization criteria, the pro-
posed DPLL achieves fast phase acquisition and low
phase jitter. Especially, the loop gain sequence opti-
mized under the Least Squares (LS) criterion shows
enough phase tracking capability under severe fading
and can be used for mobile communication applica-
tions. Finally, the multi-order DPLL allows robust
stability and bandwidth control and achieves zero
phase offset.

1 INTRODUCTION

In many codeless communication applications,
Phase-Locked Loop (PLL) has been used for carrier
recovery in a receiver. Among the applications, the
digital mobile communicalion requires sophisticated
PLL design for carrier recovery because of high dy-
namic source condition and fast fading channel envi-
ronment. In general, two characteristics of the PLL
are required when no fading exists; fast phase acquisi-
tion to shorten training period in initial locking mode
and small phase jitter variance to reduce the bit error
rate in steady state. However, these characteristics
are contradictory since fast phase acquisition requires
wide loop bandwidth and small phase jitter requires
narrow loop bandwidth [1]. In Digital Phase-Locked
Loop (DPLL), it is possible to control loop gain adap-
tively. So, the above characteristics can be achieved
together by adjusting loop bandwidth (or, loop gain)
adaptively in an effort to minimize the phase jitter
variance at any given time instance. Such attempts
have been made up to the second-order DPLL [2] [4].
Under the fading environment, the DPLL is also re-
quired to track the phase/frequency fluctuation. To
achieve this, Least Squares (LS) or Recursive Least
Squares (RLS) adaptive algorithm has been adopted
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for the second-order DPLL for moderate fading con-
dition [3]. But, for more severe dynamic situation
with phase acceleration or more, higher-order DPLL
is necessary to track the dynamics.

This paper generalizes the second-order DPLL idea
up to any higher-order DPLL in order to meet the
above situation using Kalman filtering concept [5].
The approach is based on the observation that DPLL
and Kalman filter have similar structures and the
optimum loop gain sequence minimizing phase noise
variance at each time instance can be obtained by
finding Kaiman gain sequence with a properly chosen
system and observation model.

Two different criteria to get the optimal loop gain
sequences are used for different channel environments.
For stationary or slowly varing channel, MMSE (Min-
imum Mean Square Error) criterion is used and for
non-stationary or fading channel, LS (Least Squares)
criterion is used. To reduce hardware and computa-
tional requirements, its recursive version, RLS (Re-
cursive Least Squares) criterion can be used instead.

In section 2, the multi-order DPLL Kalman fil-
ter model is explained and its characteristics are de-
scribed. In section 3, optimal loop gain sequences
are derived under the MMSE and LS criteria. In
section 4, computer simulations verify that the pro-
posed DPLL shows satisfactory acquisition and track-
ing performances under fast fading channel environ-
ment. Finally, conclusions are given in section 5.

2 SEeET Upr oF KALMAN FILTER

EQUATIONS

As a typical higher-order system, the third-order
carrier generation system with phase offset 8, fre-
quency offset wg and phase acceleration offset ng is
considered at the transmitter. To apply the Kalman
filtering method to the DPLL, we need the system
model of the transmitted carrier and the observation
model at the receiver. Although we can form the sys-
tem model using the state variables as phase 8(k),
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transmitted carrier waveform
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Figure 1: Definitions of transmitted carrier states
(Constant deceleration is assumed in this figure.).
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Figure 2: System model for transmitted carrier.

frequency w(k) and phase acceleration n(k) respec-
tively at k-th sampling point, we prefer using zero-
crossing time a(k), period (k) and period increment
v(k) of k-th sinusoid as state variables since it makes
the problem simple (Figure 1). Also, we can easily
relate 6y, wg, 1Mo to zero-crossing time offset ay, pe-
riod offset Bo, period increment offset o respectively.
In this manner, the carrier recovery problem falls into
an estimation of ag, By and 4o from noisy observation
at the receiver.

By defining state vector X (k) = [a(k) B(k) v(k)]",
the state transition equation with state transition ma-
trir A can be expressed as follows. (Also, refer to
Figure 2.)

X(k) = AX(k—1)

1 1 1
0 1 1
0 0 1

The transmitter carrier generated according to the
system model suffers additive distortion due to chan-
nel noise and multiplicative distortion due to fading
effect in channel. So the zero-crossing time of re-
ceived carrier will show a considerable amount of jit-
ter. When the channel is stationary with Additive
White Gaussian Noise (AWGN) only, the estimation
of source states can be solved statistically. However,
when the channel is non-stationary with fading, we
are forced to rely on adaptive algorithm. To show
the idea of our approach which is directly related to
Kalman filtering, we assume that channel distortion

{1

where

A

(2)
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is due to only stationary AWGN first, then extend it
to non-stationary case later.

The receiver should also be the third-order system
in order to track source states from incoming carrier.
After measuring zero-crossing time «;(k) of the re-
ceived carrier, we get its period §;(k) by differencing
ai(k) and get its period increment ;(k) by again dif-
ferencing 3;(k) (Figure 3). If we define observation
vector Y (k) = [os(k) Bi(k) :(k)]", the observation
equ%t)z'on with observation matriz C can be expressed
as (3).

Y (k) =CX(k)+ V(k) 3)
where
1 0 0
c = [ 0o 1 o J (4)
0 0 1
v(k)
V() = [ u(k) = v(k - 1) J (5)
v(k) = 2v(k ~ 1)+ v(k—2)

Here, v(k) is AWGN with variance o2 and V (k) is 0b-
servation noise vector with observation noise covari-
ance matriz R = E [V(k)V(k)T], which is calculated

as (6).
1 1
az 1 2
1 3

Given the state transition equation (1) and the ob-
servation equation (3), we can estimate source states
with minimum error variance at any instance k using
the following Kalman filter recursion equations (7),

(8).

(6)

X(k) = X(klk=1)+ K(k) (Y (k)= CX(klk—1)) ()
X(k+1lk) = AX(K) (8)

where
) = [ak) 8K Aw ] ©)
X(e+1lk) = [ alk+10k) Bk + 11R) 30k + 11k) ] (10)

[ K1 Ki2 Kis }
K(k) = Kz1 Kj» Kz (11)
Ki1 K3z Kas

Here, X (k), X(k + 1]k), K(k) are filtered state vec-

tor, a priori predicted state vector and Kalman gain
matriz (or, loop gain matriz) respectively. We can
consider stability by combining (7) and (8) to get
(12) below.

X(k+1lk) = [A(I ~ K(k)C) X (k|k - 1) + AK(K)Y (k) (12)

where I means Identily matriz. 1f K(k) has only

diagonal parts, the roots of det [A (I - K(k)C)] =0
are all inside unit circle as long as 0 < Ky < 1 (7 =
1, 2, 38), which means stable system.

Therefore, we choose to use K(k) with diagonal
parts only. Figure 3 shows the proposed DPLL im-
plementation according to (7) and (8). It consists of
three first-order loops, and each loop estimates corre-
sponding source state.



Figure 3. The proposed multi-order DPLL (the third-
order case).

3 OptiMAL LooP GAIN
SEQUENCES

For stationary or slowly varying channel environ-
ment, MMSE (Minimum Mean Square Error) can be
a criterion to find optimal loop gain sequence. We
define a priori estimation error covariance matriz
PMMSE(IC + 1|k) as a cost function in MMSE cri-
terion as (13).

PMMSE( 4 1|k) = E [£(k + 1[k)E(k + 1]k)T] (13)

where £(k + 1]k) means a prior: estimation error
X(k+41) = X(k+1]k). Then, minimizing the (1,1)th
element of PMMSE(L 4 Hk), which is a prior: zero-

crossing time estimation error variance, with respect
to diagonal parts of loop gain K(k), we get the k-th

optimal loop gain in MMSE criterion KMMSE (k) a5
follows. A

KMMSE(gy = M—'L (14)
where

My = Ay, [CPMMSE (b~ 1)cT + Ukk - 1T (15)

+ CU(klk-1)T + R] ,

Lo = [A(CPMMSE(kik — 1) + U(klk = 1))] | (16)
, (1,7=1,2,3)

Introduction of U(klk ~ 1) = E [V(k)E(k]k — 1)T]
in (15), (16), is due to the fact that R(k,l) =
E [V(k)V(DT] is not always zero even for k # I. This
shows a little deviation from the standard Kalman fil-
ter equation set. If we know all the statistics of the
desired signal and observation, we can get the opti-
mal loop gain sequence by solving (14) with a given
initial condition. However, in practice, the statistics
are not known at the receiver. Therefore, the sub-
optimal loop gain sequence is used instead by setting
initial value KMMSE(1) = ]. Here, KMMSE(1) = |
means infinite loop bandwidth [2]. The optimal or
sub-optimal loop gain sequence KMMSE (k) thus guar-
antees the fastest phase acquisition in initial locking
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mode and the lowest phase jitter variance in steady
state.

We can extend the above idea to non-stationary
channel environment with the same receiver struc-
ture by choosing LS (Least Squares) criterion for the
optimal loop gain sequence. Now, the nature of prob-
lem becomes a adaptive curve ﬁttmg to observations.
Cost function in LS criterion PL¥(k + 1|k) is defined
as

k+1
PLS(k+1lk) = Z (ro-

i=k+1~L

x0) (v -x)" a7

where observation vector Y(I) corresponds to the de-
sired signal in LS algorithm which is linearly esti-
mated 1n backward manner with respect to a priori

estimation X (k + 1|k) as (18).

X(y= A* 1 X(k+1jk) , (I=k+1-L,--- k+1) (18)

Here, L means window length. In almost-stationary
case, a large number is chosen for L. On the other
hand a small number is chosen in rapid phase fluctu-
ation case. Like the MMSE case, the (1,1)th element
of PES(k 4 1]k) is minimized with respect to the di-
agonal parts of K (k) to get optimally adapted k-th
loop gain KL°(k) as shown in (19).

KYS(k)y= ML (19)
where
k41
M, = Z ATRAGH (LW L(B)T) | (20)
l=k+1-L
k+1
Lo = > AT (LemnnLm?), @
I=k4+1—L
Li(lky = Y({)—-A"*X(klk~1) (22)
Ly(k) = Y(k)— X(klk-1), (i,5 = 1,2,3) (23)
Using A'~* as (24), M and L can be evaluated easily.
1 (l— k) l—k!(lz——k-}l}
Ak =| o 1 (1= k) (24)
0 4] 1

Since LS algorithm requires lots of computation and
storage, it is difficult for a DSP hardware to do real
time processing as the window length L gets large.
To relieve it, the RLS (Recursive Least Squares) al-
gorithm may be used instead. RLS algorithm can
be obtained in the same manner as LS algorithm if
the summation operation Z, k1+1 1 is substituted

with STFF1 Ak +1-1 making recursive calculation possi-
ble. Here, X is the ezponential weighting factor which
represents memory size (0 < A < 1). In almost-
stationary case, A is chosen close to 1, whereas in
rapid phase fluctuation case, A is chosen close to 0.

The third-order algorithm derived so far can be eas-
ily extended to any higher-order case using the same
Kalman filter equation set (1), (3), (7), (8), and read-
ily calculable matrices A, C, R in (2), (4), (6).



4 SIMULATION RESULTS

As an application example, we show BPSK mo-
bile communication system which consists of BPSK
modulator, fading channel and corresponding demod-
ulator using the proposed DPLL with the RLS algo-
rithm as shown in Figure 4. Transmitter carrier may
have an arbitrary phase and frequency offset and a
phase acceleration component. To simulate mobile
communication channel, Raileigh fading channel with
maximum Doppler frequency 100 Hz and moderate
SNR are assumed. Figure 5 shows rapid tracking onto
the phase fluctuation due to fading and considerable
phase jitter reduction enough to be used for carrier
recovery. Figure 6 shows the tracking performance
comparison between the proposed third-order and the
second-order DPLL for maximun Doppler frequency
500 Hz. We can verify that the third-order DPLL
tracks the rapid phase fluctuation more closely than
the second-order DPLL does.
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Figure 4: A typical mobile communication system
and carrier recovery subsystem (BPSK case).
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Figure 5: Acquisition and tracking performances of
the proposed third-order DPLL under fading channel
environment.
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phase tracking (RLS) : upper = input, solid := 3rd order, dashed = 2nd order
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Figure 6: The tracking performance comparison be-
tween the third-order DPLL and the second-order

DPLL.

5 (CONCLUSION
A multi-order DPLL with adaptive loop gain con-
trol capability is proposed and its optimal loop gain
sequence to track rapid phase fluctuation is solved.
The DPLL can be suitably used in the carrier re-
covery subsystem for digital mobile communication
applications, especially in severe fading condition.
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