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Abstract

In this paper it is shown - without reference to
threshold decomposition or stacking property - that
a WM filter of size N, with discrete-time continuous-
valued inputs, can be specified by 2V-! mutually con-
sistent linear inequalities relating the weights. Its re-
lation to binary threshold functions is indicated. For
WM filters with symmetric weights, it is shown that
the specification is the same as for ternary threshold
functions. Based on the inequalities specifying a WM
filter. some deterministic properties are derived and
the generation of WM filter is discussed.

1. Introduction

A natural extension of the median filter is the weighted me-
dian(WM) filter. The output Y (k) of the WM filter of span-N

associated with the integer weights w = (w),ws,--+,wy)7 is.
given by
wy times
Yik) = median{X(k -~ Vp),--- . X(k = M), X (k- N, +1),-
w3 times wy times

X (k= Ny + 1), X (k= Na)yeoo, X(k ~ N2)} (1)

where, k is the time index, { X\ } is the continuous-valued input
sequence, S::x w; =2M +1, My +N;+1= N and M, Ny, N,
and each w; are non-negative integers. Obviously the median
filter is a special case of WM filters with w; =

wy = 1.

Wy = -0 =

The WM filter was suggested by Justusson [1] as an extension
of the median filter. Brownrigg (2]{3] enumerated distinct 2D
WM filters with weights which are symmetric along the two
diagonal axes. Recently Wendt et al i4] showed that the WM
filter is uniquely represented by threshold functions [5] and is
a special case of the stack filter. Based on this result, some
properties of WM filters have been analyzed by Yli-Harja et al
161,

In this paper we present some deterministic properties of the
WM filter and discuss its generation. An attempt is made
to further clarify the relationship between WM filtering and
threshold functions. The basic result of Wendt et al [4] is red-
erived and extended without reference to the stacking property

or threshold decomposition. Some observations which explicitly
show the equivalence among WM filters are made. In addition,
enumeration of WM filters is discussed.
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2. Specification of a WM filter

In this section, it will be shown that the WM filter of span
N can be specified by exactly 2¥~! mutually consistent linear
inequalities. The relationship between these inequalities and
threshold functions will be pointed out.

The discrete-time continuous-valued data X = (X1, X,
-+, X~) within the window of a WM filter can be ordered
in N! different ways. Let =, k = 1,2,.--,N!, denote each
such ordering. For example, when N = 2, “X; < X,” may
be denoted by :; and “X; < X;” by z,. For an order-
ing zi, consider X(;y = X, for some i, j, 1 < 4,j < N,
where X(;) is the it* smallest data in X. We decompose
the weights into three disjoint sets, {w;}, Qs ;) and Qi sy
where Qu; ;) = {w, | w, are the weights associated with
X“),X(g),'“,X(,_l)}, and Q’k(:’,j) = {w,. | w, are the weights
associated with X{;11), X(i+2),*+, X(n)}. With these notations
we can describe the following resuit.

Lemma 1: Let the order of the input X to the WM filter

with weight w be specified by z;. Then the output ¥ = Xy =
X; iff

o

fkT(ij)W>0 (2a)

Eripw >0 (28)
simultaneously. ~Where, &5 = (ffa"'vf?—nL{;&,n'”v
BT, Gan = (=gl gk —E8)T,

£k = 1if w, € Qu; j);—1 otherwise, for all r # j,1 < r = 1,2,
~e-, N,

Proof: If Y = X(;) = X then the following inequalities hold
simultaneously:

Z we +w; > M+ 1 (3a)
we €Qu(i,y)
3 wc<M (3b)
we€EQs(i )

It is obvious that if (3) holds for some i, j then Y = X;) = X
for a given :zi. (For a given z; there is only one such i, J
satisfying (3), since the output of a WM filter is unique.) It is
sufficient to prove that (3a) and (3b) are identical to (2a) and
(2b) respectively.

From (3a) we have 23 )
o Ehwy+- -+ €5 wiy FwiHEE 4o HER > 0,01 65 5w > 0.
Similarly, we can show the equivalence between (2b) and (3b){

w..+wj—2£v=1 w,>21>0,
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This Lemma indicates that the output of a WM filter can
be obtained without the knowledge of the actual value of the
weights, if the vectors £;j and Ek(ij) satisfying (2), are
known for each . For example, if we know that (1,1,-1)T
and (1,-1,1)T are the vectors satisfying (2), for a z; rep-
resenting the ordering “X, < X; < X;”, then the output
is X;. This is because when the output is X;, the j* ele-
ment in both & ;) and fk(;J) satisfying (2) is 1. Let s =
{€xii5)» Exqiy) satisfying (2)}, R = {se | k = 1,2,...,N!} and
S = U,:’__'1 sk. Clearly, given an ordering z; and R, the output
can be easily computed by picking sk, which gives Ex(igj) and
.fk(;_i, satisfying (2). The set S is the collection of all distinct
vectors in R. It should be noted that the number of distinct
vectors in S is at most 27!, because there are only 2V dif-
ferent binary valued vectors, and all the inequalities associated
with the vectors in R (see (2)) should be consistent. Let us
assume that the number of distinct vectors in S is ¢ < 2V~1
and rewrite it as,

N!

S=Us={tln=12"9

k=1

{4)

S is associated with a WM filter, and includes all vectors £,
for which £Tw > 0

It is a significant fact that, even though the inequalities in
S are not arranged in pairs as in R, it is still possible to ob-
tain the inequalities E:Zi.i)w > 0 and Qii\i)w > 0 satisfying
(2) - and thus the output - for any ordering z;. For exam-
ple, consider Fig. 1 which illustrates the procedure for obtain-
ing the output for some z;. In Fig. la, we show the set S
for the WM filter with weights (2,1,1,1)7. Suppose that the
weights are unknown, but § is known. Then, we can gener-
ate the set of 2V ! inequalities {({Tw > 0 | £&u € S}, where
w = (wy, ws, w3, wy)T. Such inequalities are listed in Fig 1b.
For the input X; < X3 < X4 <€ X,, the output, Y, of the WM
fiter is X(2)y = X3, because only that pair of inequalities which
is a necessary and sufficient condition for Y = X2y = X3 is
found in the set of inequalities defined by § while the others
are not (Fig. 1c). Since the output of a WM filter can be
found from S for any z, we can say that a WM filter can be
completely specified by .

(1,1,1,1) (1,1, 1.=1) (1, 1,-1,1) (1,=1,1, 1)
(—lilil!l) (1717_]”""1) (L'L‘lvl) (19_171)"1)
a. Vectorsin S

wy + Wy + w3+ wg > 0wy + wy + wy — wg > 05

wy +wr — w3 +wg > 0w —wy +wy +wy >0;

—wp + wr+ws +wy > 0w +wr — wz—wy >0;

w —wy — w3+ wy > 0wy —wp +wy —wy > 0.
b. Inequalities from §

, _ wy ~wy —wz —we >0
Y =X(,)_X1:{wl+w2+w3+w4>0
W -wr+wy—we>0

= 4 = 4 =

Y Y(z) Xs {—w1 +w;+wa+w430
_ _ Wy - Wy + W3 + Wy >

Y_X(”_X‘:?{—w1+w2—w3+w4>0
. _ wy + w2 +ws+w >0

Y_X“)—ij{—w1+w;—w3—-W4>0

c. Inequalities for different outputs

Figure 1
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In the above discussion we showed that S has at most 2V-!
vectors. In other words, at most 2¥-! consistent inequalities
have to be specified to define a WM filter. In what follows,
we show that the number of vectors, ¢, in § should be equal

to 2¥-1. This is shown in Lemma 3 using the result stated in
Lemma 2.

Lemma 2: If Efﬂw,(‘-) - Z;\;LH wry > 0, 1< r(d) <
Nyi=1,2,---,N,r(p) # r(q)if p # ¢,7(1) are the indices of
the elements in w; is one of the inequalities which is satisfied by
the weights w of a WM filter, then for an input X, with either
X1y € Xp2) S+ < Xy or Xet) 2 X0y 2 -0+ 2 Xy,
the output, Y, is one of the samples Xo(1)s Xo(2)s s Xz

Proof: Let Ef;l Wei) = u and ZiIiL-H W) = v, then u +
v=2M+1landu-v >0 Then 2u > 2M + 1 or u >
M + 1. But the output is that sample for which the sum of
the weights is M + 1. Thus the output is one of the samples
X,.(l),X,.(;),u-,X,(L) because the sum of their corresponding
weights, u > M + 1.]]

Example: Consider the WM filter with w = (1,2,3,2,1). The

‘inequality w; + w3 + wq — wa — wg > 0 is satisfied by the

weights. For the input X = (-2.1,3,-6,0,8.2) where X3 <
X1 < X4 < X3 < X5 it is easily verified that the output is one
of Xy, X3 or Xj.

We can now show that the number of elements in S is 2V-1,

Lemma 3: If § = {£, | n = 1.2,--+,¢} represents a WM
filter with weights w, then ¢ = 2¥-1,

Proof: Assume that ¢ = 2V~! —1. Then 3 a vector,say £ ¢ S
implies that the sign of €Tw, which is either positive or nega-
tive, need not be specified in defining WM filters. Assume that
the inequality €Tw < 0 is inconsistent with the inequalities,
{€Tw > 0| &, € S}. This indicates that the sign of ¢¥w, which
is positive, is specified by the WM filter. This is a contradiction.
Thus, £ € S. Now, assume that both £Tw > 0 and —£Tw > 0
are consistent with the inequalities in {{Tw > 0 | &, € S}
Consider two WM filters with different weights w! and w2,
which satisfy éTw? > 0 and —~£Tw? > 0 but have the same
S (Since both €Tw?! > 0 and —£Tw? > 0 and are assumed to
be consistent with the inequalities {{Tw > 0 | &, € S}, there
must exist such weights w! and w?). By hypothesis, the filters
have identical S, therefore they must be identical. However, by
using Lemma 2, we can easily show that their outputs are not
identical for a certain input ordering. This implies that £Tw?
and £Tw? must have the same sign, i.e. £ € S. This proof can
be extended easily for ¢ < 2¥-1 - 1]

Two WM filters whose weights are different can be compared
by comparing their respective sets S. If two filters are the same
then their sets S are identical. Conversely if their sets S are
identical then the corresponding filters are identical.

From the discussion above it is clear that a WM filter may
be specified by the inequalities associated with the vectors in
S, even if the actual weights are unknown. In practise, the
filter may be of little use if the weights are not given. Thus,
it may be required to compute the weights of a WM filter,
given the set S. The weights can be obtained by solving a
linear/integer programming problem with some objective func-
tion(7] and constraints specified by £Xw > 0 for all €n €S,
where w = (wy, wy,--+,wn)7 are the unknown weights.

For convenience, the results above are summarized in part
(A) and (B) of the following theorem, both of which indicate
that S in (4) completely specifies a WM filter.



Theorem 1: (A) Suppose that the weight vector, denoted
by w, of WM filter with span N is unknown, but it is known
that the relationships among weights are represented by 2V-!
consistent inequalities £Tw > 0,n = 1,2,-+-,2V "1 where {£, |
n =1.2,-.-.2¥-1} are distinct binary vectors consisting of ~1
and —1. Then the output of the WM filter can be obtained for
any input, and the weights of a WM filter, which is equal to the
given filter, can be generated by solving the 2¥~! inequalities
simultaneously.

(B) Two WM filters, of span N having different weights, w?!
and w?, are equal iff they have the same binary vector set S =
{€a I n =1,2,---,2Y71} for which {Tw? > 0 and ¢Tw? > 0
for every n. Here £, is a N x 1 vector consisting +1 and ~1
(see (2)).

In [6] it was shown, by using the result in [4], that a WM
filter can be specified by a self-dual threshold function when the
input sequence consists of quantized values. Here a threshold
function is, f(ug), is defined as

1, ifulw >t
Ugn) = ¥ n =5 5
f(ua) {0, otherwise. (5)
where, un,n = 1,2,---,2" are N x 1 binary vectors consisting

of 1 and 0’s, w = (wy,ws, -, wyn)T is the weight vector asso-
ciated with the threshold function, and ¢t is a threshold value.
When the function is self-dual, f(u,) = f(W;) , where (_) is
the boolean inversion, and t = (E‘,v:l wy + 1)/2. The threshold
function is uniquely specified if the output for each birary in-
put vector up.n = 1,2,.--,2¥=1 is known, or equivalently the
inequalities associated with each vector u,, u:w >or<tis
known. Thus 2 consistent linear inequalities completely spec-
ify a threshold function. For a self-dual threshold function, the
number of inequalities required to specify it is reduced to 2V~1,
because f(un) = f(Un) . By choosing only those vectors u, for
which f(u,) = 1 it can be easily verfied that the inequalities
in (6) above reduce to the same form as those associated with
the vectors in S. Therefore the result in 6], saying that a WM
filter can be specified by a self-dual threshold function, is equiv-
alent to our result summarized in Theorem 1. The difference is
merely in the way these inequalities are interpreted. For binary
inputs, each inequality corresponds to the binary output for the
associated binary input vector. In the analysis presented here,
every ordering of the inputs is associated with two inequalities
which give the actual output. An advantage of the approach
presented in this paper is the fact that we have not limited
ourselves to quantized inputs. Binary input is merely a special
case in the analysis presented in this paper.

A somewhat more interesting relation comes into play for
WM filters which have symmetric weights. The inequalities
relating the weights can be obtained in the same manner as
before. For N = 2L + 1, the form of the inequalities is

L

Nk owitwp 2100 < -1 (6a)
i=1
For N = 2L, the form of the inequality is
L
ZE:‘ 2w; > lor € -1 (68)

i=1

where, £¥ = £1, or 0; k£ = 1,2,...,3% and L is a posi-
tive integer. By comparision, a function f(z1,22,---,z1)is a
ternary threshold function(8] of the variables z;(= 1,0, -1),i =
1.2,---, L, if there exists a set of weights w = (w;,ws, - -+, wn),
and thresholds {T,,T_,}, such that
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- L
1, if 2;‘:1 w5
L
-1, if Ej=!$jw:'
0, otherwise.

fleryz2yeyzL) =

NIV
|
-

Notice that if the output is restricted to be binary values -
i.e. take values =1 only - then the inequalities which describe
the ternary threshold function have the same form as those
describing the symmetric WM filter. In fact, the inequalities
describing the WM filter of span NV with symmetric weights
can be interpreted as a ternary threshold function with weights
2wy, 2ws, - -, 2wy, and thresholds {1, -1} for ¥ = 2L and {1 -
wr+1,—1 — wp41} for N = 2L + 1 respectively. It is expected
that a study of ternary threshold functions will give us a better
insight into the properties of the symmetrically weighted WM
filter.

In the following section, some properties of WM filters and
its generation is discussed.

3. Properties and Generation

Based on the inequalities corresponding to the vector set S
some properties have been derived. These provide simple cri-
teria for examining the equivalence between WM filters, and
are useful in generating WM filters equivalent to a given WM
filter. In stating the properties it is assumed that the WM filter
with weights w! = (w),ws,---,wy)T is associated with the set
S={tn|n=1,2,--,2%1}

Property 1: The WM filters with weights w? = (wy, ws, - - -,
wy)T, w? = (mw;,mw,, ---, mwy)T and w? = (w/q,w2/q,
-+, wn/q)T, are equivalent if m is a integer and ¢ is the greatest

common divisor of wy,ws, -+, wN-
Proof: Follows easily from the inequalities associated with S§

Property 2: Two equivalent WM filters with weights w?!
and w2, respectively, are equivalent to another with weights
wl + w2,

Proof: We have £Xw! > 0 and £Xw? > 0, for all £, € S.
Thus X (w? + w?) > 0forall §, € S. |

Property 3: Consider a WM filter with weights w! =
(wl,wz,---,wN)T and vector set S. Suppose that the value
of dmin = min, {xw? is available. Then the WM filter with
positive weights w2 = (mw, + q,mw; + ¢z, -, mwy + qv)7
are equivalent if |gmaz| < Mdmin/N, where m > 0, gmoz =
max{q1,¢2,"** N}

Proof: The two WM filters are equivalent iff
min, (Tw? > 0 for all £, € S; ie. min {m&Tw + (Tq} >0,
where, q = (¢1,92,---,¢n)T. For this inequality to be true it
is sufficient that mdy,, > max,(-£(Xq). This bound can be
replaced by a more conservative one, viz. mdpyin > max,|£Xq|.
But max,|¢Tq| < max, Eidf?qilf Nlgmaz|, where €7 is the
ith element of &,. Thus, if |gmaz| < Mdmin/N then the WM
filters with weights w! and w? are equivalent.]

Property 3 is closely related to the input tolerance of thresh-
old gates as discussed by Muroga [pp 46-53, 5|.

Property 4: Consider a WM filter with weights w! =
(wy,ws,---,wn)T and vector set S. Let a second WM fil-
ter have the positive weights w? = (—mw; + g,—mw, +
g,+++,—mwy + ¢)¥. Then, (i) for N even, the filters with
weights w! and w? are different for all ¢ > 0; (ii) for N odd,
the two filters are different for all ¢ > 0, unless w? is a median
filter; where m > 0.



Proof: The two WM filters are the same iff £Tw3? > 0, for
all n = 1,2,.-+,2¥-1 ¢ ¢ §. 1t is sufficient to show that
3 &, 1 <n< 2" -1 for which £Tw3? < 0. We have ETw? =
-m \_‘1 LEPw; 4 g Z, 1 &7 The first term of this expression is
always negative. It is required to show that there always exists
some €a, 1 < m < 2¥1 for which YV, 7 < 0. (i) For N=2L;
_”__1 E, >0foralln =1,2,---,2Y~' implies that the number
of s in each £, is greater than or equal to L+ 1. From Lemma
2, we conclude that the output of the WM filter is Xy i =
L+1,L+2,---,N, (ie. the (L+ 1) smallest or a larger
sample). From Lemma 2, it would also imply that the ontput
is always X(;),i = 1,2,---,L - 1 (i.e. the (L + 1)"‘ largest or
a smaller sample). None of the ranked samples satisfies both
these requirements simultaneously. Thus Ef\_’__l £ > 0 for all
n=1,2---,2Y" cannot be true. (ii) For N = 2L + 1; we
follow the same reasoning as above. Z'_l > 0foralln=
1,2,---,281 will only be true if the output is always one of
X(,),z_.L+l N, and one of X(;),i = 1,---,L +1. Thisis
only true when the output is always X(L+1) Le. the filter with
weights w' is a median filter. |

In the foregoing discussion it was shown that a WM filter
of size N can be completely specified by a set of 2V~! consis-
tent linear inequalities, and that this specification is identical
to that of a self-dual threshold function of N variables. For a
given set of inequalities, we can generate a set of positive in-
tegers weights, w = (w;,ws, -, wy) satisfying these inequal-
ities. This can be done either by simultaneous solution of the
inequalities or by using Integer Programming (IP). IP is a more
effective technique and has been used successfully in optimisa-
tion. Here the sum of the weights, 3 .., w;, can be minimised
to obtain a representative set of weights.

We may also be interested in enumerating all deterministi-
cally distinct WM filters of a given size N. It is obvious that
this is the same as enumerating all self-dual threshold functions
of N variables. This has been discussed in detail in literature
[9][10{11]. All self-dual threshold functions of upto eight vari-
ables have been obtained{12]. In 2-D applications the minimum
window size is 9, and it may appear that the results obtained
in {12] may not be useful. However, in all practical applica-
tions, the weights are distributed symmetrically. This reduces
the number of inequalities required to define a WM filter. Since
the computations required to find all the distinct classes of WM
filters of a given size N roughly varies in an exponential manner
with the number of inequalities, a reduction in the number of
inequalities permits the computation of symmetric WM filters
of span 9 or greater.

This problem of enumeration was first discussed by Brown-
rigg [2]{3]. It is worth pointing out that the method presented
in 2} and (3] is a bit cumbersome and rather restrictive. It is
suggested that the IP approach be used whenever possible.

4. Conclusions

In this paper we have shown that regardless of the input -
continuous or discrete valued — to a WM filter of span N, it can
be specified by a set of 2V ~! mutually consistent linear inequal-
ities involving its weights. This specification is the same as that
for binary threshold functions. It has been observed that WM
filters with symmetric weights can be interpreted as ternary
threshold functions, a relation which needs to be examined in
greater detail. A number of properties, which show equivalence
between two WM filters, have been derived. Finally, genera-
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tion and enumeration of WM filters has been discussed. It was
pointed out that for N < 8, the available tables of self-dual
threshold functions can be used to find all WM filters of span
N.
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