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ABSTRACT 
In this paper, we observe that the design of optimal weighted order statistic(W0S) filters under the 

mean absolute error criterion can be thought of as a two-class linear classification problem. Based on this 
observation, the perceptron algorithm is applied to design WOS filters. It is shown, through experiments, 
that the perceptron algorithm can find optimal or near optimal WOS filters in practical situations. 

1. INTRODUCTION 
The weighted order s ta t rs t ic (W0S)  filter is a 

nonlinear digital filter[l]. It has a window mov- 
ing over an input sequence, and its output i's cal- 
culated by duplicating each input sample Xi,l 5 
i 5 b, within a window to the number of the 
corresponding weight W;; sorting the resulting ar- 
ray of c:=, W; points and then choosing the T- 
th  largest value from the sorted data, where T is 
a threshold value. If Eh, Wi is odd and T = 
(E;"=, W; + 1)/2, then the WOS filter becomes a 
weighted median(WM) filter[ 11-13]. While the class 
of WOS filters encompasses WM, median and rank 
order filters[4], it is a subclass of stack filters[5]. 

In [6] and [7], it is shown that an optimal 
stack filter can be designed under the mean abso- 
lute error(MAE) criterion by using linear program- 
ming(LP). Although the WOS filter is a special case 
of stack filters, it cannot be optimized through LP. 
In [8], WOS filters are designed by using the method 
of steepest descent after approximating the MAE 
criterion. The design method is simple to  imple- 
ment, but cannot produce an optimal W O S  filter 
minimizing the MAE. 

In this paper, we observe that the problem of 
designing optimal WOS filters under the MAE cri- 
terion can be thought of as a two-class linear clas- 
sification problem[9]. Based on this observation, 

the perceptron algorithm is applied to design WOS 
filters. The proposed method can find optimal or 
nearly optimal W O S  filters in practical situations, 
and it is simple to implement. 

The organization of this paper is as follows. In 
Section 2, we shall briefly review the definitions 
and properties of stack and WOS filters and intr* 
duce our notation. The proposed design method 
for WOS filters is described in Section 3. Finally, 
in Section 4 W O S  filters are designed using the 
proposed method and applied to enhance noisy im- 
ages. 

2. REVIEW ON STACK AND W O S  FILTERS 
Let X(n)  be an input signal, Y ( n )  be an out- 

put signal and X(n) be a vector consisting of b 
samples which lie within the window at time in- 
dex n: X(n) = [X(n  - b1),...,X(n),...,X(n + 
bz)lt = [Xl(n),  ..., Xj(n),  ..., X,,(n)lt where b = b l +  
bz+l ,Xj (n)  = X(n-b l - l+ j )  andthesuperscript 
t denotes transposition. From now on, the time in- 
dex n will be dropped from X(n), Xj(n)  and Y(n) 
to simplify notation. 

A 

A. Stack Filters 

The class of stack filters encompasses all filters 
that can be expressed as a composition of local 
M I N I M A X  operations. For example, the filter 
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represented 
by Y = MAX{MIN(X1,X2),MIN(X2,X3)) is a 
stack filter. Let X ; ,  1 5 i 5 b,  take an integer value 
from {0,1, ..., M - 1) and F ( X )  denote the output 
of a stack filter. Then 

M - 1  M - 1  

Y = Tm[F(X)] = F[Trn(X1), ..., Tm(Xb)] 
W b = l  r n = l  

(1) 
where Trn(X;) is a function which takes the value 1 
if Xi 2 m and 0, othewise. The second equality in 
(1) comes from the fact that a composite function of 
MINIMAX operations commute with nondecreas- 
ing functions[lO]. When the output of a filter for a 
multilevel input can be decomposed into a sum of 
binary filter outputs as in (l), such a filter is said to  
possess the threshold decomposition property. Since 
Trn(Xi) is binary, F[Trn(Xl)i T~,b(x2)l . . . I  Trr‘(x~))] 
is also binary and this function is a Boolean func- 
tion. Moreover, this Boolean function is a positive 
Boolean function (PBF) , because the MINIMAX 
operations for binary signals are equivalent to log- 
ical AND/OR operations. Therefore, stack filters 
are expressed as PBF’s in the binary domain. For 
example, the stack filter in the example presented 
at the beginning of this section is represented by 
y = z 1 2 2  + 2 2 2 3  where z 1 ,  . . . , 2 3  are binary-valued 
inputs, and multiplications(additions) denote logi- 
cal A N D ( 0 R )  operations. The class of stack filters 
encompasses all filters expressed as PBF’s on the 
binary domain. 

. 

B. WOS Filters 

The output Y of a WOS filter is written as 

Y = T- th 1 ar ges  t { X1 , . . . , XI ,  X2 , . . . , X2 , (2) 

W1 t i m e s  Wa t i m e s  -- 
Wt, t i rnea  - 

’ ‘ . , Xb, . . ., XI,} 

where W;,l 5 i 5 b, is a positive integer. Let 
X( i )  be the i-th largest{Xl, X 2 , .  . . , Xr,} and W(;) 
be the corresponding weight. Then a necessary and 
sufficient condition for X ( , ) ,  1 5 k 5 b, being the 
output of a WOS filter is 

(3) 
i=l 

WOS filters can be defined by using (3): in such a 

definition W 1 ,  W 2 , .  . . , Wb and T are not necessarily 

limited to positive integers but can take arbitrary 
nonnegative real numbers. A WOS filter defined by 
(3) can always be converted into the expression in 
(2). Using (3),  the output f ( x )  of a WOS filter for 
binary inputs x; is written as 

A = U(atz) 

where 
a = [WI,W2,. . . , Wb,TIt,z = [ 2 1 , z p , . .  . , z b ,  -1It 
and U ( . )  is the unit step function. The function 
f(x) in (4) is a special case of Boolean functions, 
and is called the threshold function[ll]. A threshold 
function becomes a PBF if Wi 2 0 and T 2 0. Since 
WOS filters have nonnegative Wi’s and T ,  they are 
stack filters. 

3 .  DESIGN OF W o S  FILTERS 

The optimization of WOS fiters under the MAE 
criterion is a slight modification of the optimhation 
of stack filters. In this section, the design of WOS 
filters will be considered after briefly reviewing the 
procedure for designing optimal stack filters. 

Suppose that a stack filter F ( X )  is used to es- 
timate a desired signal SI where the time index n 

of the desired signal is dropped. In (61 and [7] it is 
shown that the MAE between S and F ( X )  is given 

by MAE fi E{IS - F(X)I }  = E{JTm(S)  - 
F[Tn,(Xl)iTrn(X2),...iTrn(Xb)I} and that this 
equation becomes MAE = $ i 1 c j f ( x j )  + C 
where f(xj) is a filter output for the j-th binary 
input vector x i ,  and cj’s and C are constants de- 
termined by 

c j  = 

M - 1  

{Prob[s, = O , X , ~  = x J  at level  m] 
rib = 1 

- Prob[sm = l,xm = xi at level m ] } ,  (5) 
2‘-1 M - 1  

C = P r o b { s ,  = l,xm = xi at level  m } .  
j = O  rn=l 

Here srn = 1 if S 2 m and 0, otherwise, x, is the 
binary input vector at  level m and ( ~ ~ 1 0  5 j 5 
2” - 1) is the set of all possible binary vectors of 
dimension b .  We denote x i  = [zj(l),...,d’(bl + 
I), . . . , zj(6)lt. Now, the optimal stack filter can be 
obtained through the following optimization: 

Find out f (.) minimizing 

3.1-1.2 
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j=O 
subject to the constraints 

f(xj) 2 f(xi) i f  xi 2 xi. (7) 

In this problem, the inequlity in (7) is the stacking 
constraints which restricts f(.) to be a PBF. This 
optimization problem can be solved by LP, but the 
complexity of LP increases exponentially as 6 in- 
creases. 

Fkom (4) and (6) the optimization of WOS fil- 
ters is described as follows: 

Find out a vector a minimizing 
2 b - 1  

J(a) = C cju(atzj )  (8) 
j=O 

subject to the constraints 

W; 2 0 f o r  all i, 15 i 5 b (9) 

T 2 0. 

Due to the nonlinear function U ( . ) ,  the optimiza- 
tion in (8) and (9) cannot be solved through LP. 
Next we shall see that the problem in (8) can be 
thought of as a two-class linear classification prob- 
lem. The objective function J(a) in (8) is mini- 
mized if U(.) takes the value l(0) whenever c j  is 
negative(p0sitive). That is, J(a) is minimized if 

Therefore, if a vector a satisfying (10) exists, the 
optimization in (8) and (9) is equivalent t o  the fol- 
lowing: 

Find out a vector a such that 
if c j  < o { a t z j  < 0, if c j  > o (11) 

a t z j  2 0, 

under the constraints in (9). 

The problem in (11) is a two-class linear clas- 
sification problem. To be more precise, define 
Z+ fi {zjlcj < 0) and Z- = {zJIcj > 0). Here, the 
vectors with c j  = 0 are neglected. Finding out a 
vector a satisfying (10) is equivalent to obtaining a 
linear discriminant function classifying Z+ and Z- . 
If Z+ and Z- are linearly separable, then a solu- 
tion vector of (11) exist and can be obtained by the 
perceptron algorithm[9]. In this case, the designed 
WOS filter is equivalent to the optimal stack filter. 

A .  

On the other hand, when Z+ and Z- are not s e p  
arable, the solution to (11) does not exist and the 
optimization in (8) cannot be solved through (11). 
Use of the perceptron algorithm for the nonsepa- 
rable case will result in a suboptimal solution to 

When an input signal X is equal t o  the desired 
signal S ,  the optimal filter is naturally the identity 
filter, which is a WOS filter. If this happens Z+ 
and Z- are linearly separable, as shown below. 

Observation 1 : If X = SI a vector a separat- 
ing Z+ and Z- is always exist. 

Proof: If X(n) = S(n),  for any binary vector 
xrr,(n) = [zrn(n- b i ) , . . . , z , ( n ) , . . . , z , ( n  + b)It 
for 0 5 j 5 2" - 1, z,,,(n) = sm(n).  There- 
fore if zJ(b1  + 1) = 1, Prob{s ,  = lrxm = 
xi at level m} = Prob{x,,, = xJ' at level m) 2 
0 and Prob{s, = O,xrn = xi at level m} = 
0. Hence we have c j  = -E::,' Prob{x,(n) = 
xi at level m} 5 0 for all j for which zj(b1 + 1) = 1. 
Similarly we can show that c j  2 0 for all j for 
which zj(bl + 1) = 0. Therefore, Z+ = { d l c j  < 
0) c {zjlzJ(bl + 1) = 1) and Z- = {zjlcj > 0) c 
{zJlzj(bl + 1) = 0).  And a vector separating these 
two sets always exists. For instance Z+ and Z- are 
linearly separated by the identity filter for which 
a = [ O , .  . . , 0 , 1 , 0 , ~  .. ,O, 11'. 
&om this obervation, it is deduced that Z+ and 
Z- tends to become linearly separable as the ob- 
servation X closes with the desired signal S. This 
deduction is verified through computer simulation 
in Section 4. 

Now we describe the proposed algorithm for de- 
signing WOS filters. The algorithm is the same as 
the standard perceptron algorithm except for the 
constraints in (9). As mentioned before, this algo- 
rithm finds out an optimal WOS filter when Z+ and 
Z- are linearly separable, and a suboptimal WOS 
filter, otherwise. The perceptron criterion function 
that will be used is 

(8). 

I 

Jl,(a) = C cjatzt (12) 
sjez,,, 

where Z,,, = {zj(cjatzi  > 0) is the set of misclassi- 
fied vectors. It is obvious that the criterion function 
Jl,(a) always has a nonnegative value. 

Prooos ed A100 sit hm 

3.1-1.3 
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Let a(k) be the weight vector at  k-th iteration. 
Set a(1) to an arbitrary nonnegative 
(b + 1) x 1 vector and k = 1. 

Step 1: 

Step 2: Replace a ( k )  with 

a (k  + 1) = a(k)  - pk 1 c j z j  

s ’€Zm(a(k))  

where Z, , , (a(k) )  = ( z i l c j a t ( k ) d  > 0 )  
and P k  is a sequence satisfying the limit 
conditions in [9, p.1461. Then replace 
all negative elements of a ( k  + 1) with 
zero(0). 

Step 3: Stop if la;(k + 1) - a;(k)l < E. 

Otherwise, go to Step 2 after increas- 
ing k by 1. Here E is a positive number 
which is sufficiently small, and a;(k) is 
the i-th element of a(k).  

4 .  EXPERIMENTAL RESULTS 
Now we present a design example illustrating 

the performance of the proposed algorithm. This 
example concerns designing of a 2-dimensional 3 x 3 
WOS filter for enhancing a noisy image corrupted 
by impulses. The original image shown in Fig. 1 
is the 256 x 256 boat image with 8-bits of reso- 
lution. The image is corrupted by positive and 
negative impulses with values 200 and 50, respec- 
tively. Following the approach in (121 and [13] we 
assume that a portion of the original image and 
noisy image are given; the cj’s in (5) are estimated 
from the given data. Suppose that Nib,o(N:, , l )  is 
the number of occurrences that binary vector xi 
is observed in the noisy image and at  the same 
time, s = O(1)  in the original image on level m. 
Then, i3, = (Nib ,o  - N i b , l ) / ( I  x J) where 
I x J is the size of a left quarter of image(that 
is, I x J = 128 x 128 in this experiment) and 
M = 256. Using the perceptron algorithm with 
E = and Pk = 1/(1+ O.lk), we obtained the 
vectors a and the number of binary vectors which 
cannot be separated linearly by the obtained vec- 
tor a while changing the probability of occurence of 
impulses, P,. These results are summarized in Ta- 
ble I. When P, = 0 the resulting WOS filter is the 
identity filter, and the WOS filters approch the me- 
dian filter as P, increases. It is interesting to note 
that the number of vectors which are not linearly 

M-1 

separable increases as P, increases. In this exper- 
iment, for P, 5 0.025 the designed WOS filter is 
the optimal one minimizing the MAE, and thus it 
is equal to the optimal stack filter. 

In order to examine the noise suppression char- 
acteristics of the designed WOS filters, they are ap- 
plied to the noisy images and MAE’S between the 
original and recoverd images are evaluated. The re- 
sults are summarized in Table 11. For comparison, 
the MAE’S obtained for 3 x 3 median and optimal 
stack filters are also shown in Table 11. It is noted 
that the designed WOS filters outperform the me- 
dian filter and that their performances are close to 
those of the optimal stack filters. The images for 
P, = 0.05 are shown in Fig 2. Visually, the results 
for the WOS and the optimal stack filters look sim- 
ilar. The median filter suppressed impulses some- 
what better than the others but caused severe blur- 
ring. 

5.  CONCLUSIONS 
The perceptron algorithm has been applied to 

design WOS filters based on the observation that 
the optimization of WOS filters under the MAE cri- 
terion can be thought of as a two-class linear classi- 
fication problem. Through computer experiments, 
it has been shown that the percetron algorithm can 
find optimal or near optimal WOS filters in practi- 
cal situations. 

REFERENCES 
0. YltHarja, J. Astola, and Y.Neuvo, Anal- 
ysis of the properties of median and weighted 
median filters using threshold logic and stack 
filter representation,” IEEE Trans. Signal Pro- 
cessing, vol. SP-39, pp395-410, Feb. 1991. 
D. R. K. Brownrigg, “The weighted median fil- 
ter,” Comm. ACM,  vol. 27, no. 8, pp. 807-818, 
Aug. 1984. 
M. K. Prasad and Y. H. Lee, ‘Analysis of 
weighted median filters based on inequalities 
relating the weights,” Circuits Systems Signal 
Process, vol. 11, no. 1, pp. 115-136, Jan. 1992. 
T. K. Nodes and N. C. Gallagher Jr., “Median 
filters: Some modifications and their proper- 
ties,” IEEE Itans.  Acoust., Speech, Signal Pro- 

3.1-1.4 

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 30, 2009 at 09:19 from IEEE Xplore.  Restrictions apply. 



cessing, vol. ASSP-29, pp. 739-746, Oct. 1982. (91 R. 0. buda  and P. E. Hart, Pattern Classifica- 
[5] P. D. Wendt, E. J. Coyle, and N. C. Gal- tion and Scene Analysis, John Wiley and Sons, 

lagher Jr., "Stack filters," IEEE Trans. Acoust., New York, 1973. 
Speech, Signal Processing, vol. ASSP-34, pp. [IO] A. T. Fam and Y. H. Lee, "Selection filters and 
898-911, Aug. 1986. commutativity with memoryless nonlinearities," 

[6] E. J. Coyle and J: H. Lin, "Stack filters and Proc. of IEEE ISCAS, pp. 1743-1746, New Or- 
the mean absolute error criterion," IEEE Rans. leans, Louisiana, May 1990. 
Acoust., Speech, Signal Processing, vol. ASSP- (111 S. Mujroga, Threshold Logic and Its Applica- 
36, pp. 1244-1254, Aug. 1988, tions, John Wiley and Sons, New York, 1971. 

[7] E. J. Coyle, J. H. Lin, and M. Gabbouj, "Op [12] B. Zeng, M. Gabbouj, and Y. Neuvo, "A unified 
timal stack filtering and structural approches design methods for rank order, stack and gener- 
to image processing," IEEE Trans, Acoust., alized stack filters based on classical Bayes deci- 
Speech, Signal Processing, vsl, A$9P-37, pp. sion," IEEE f ians.  Circuits Syst., vol. CAS-38, 
2037-2066, Dec. 1989. pp. 1003-1020, Sep, 1991. 

[8] L. Yin, J. Astola, and ?I, Neuvo, "Opti- [13] B. Zeng, H. Zhou, and Y. Neuvo, "Synthesis of 
mal weighted order statistic filters under the optimal detail-restoring stack filters for image 
mean absolute error criterion," Proc. of IEEE processing," Proc. of IEEE ICASSP, pp. 2533- 
ICASSP, pp. 25242532, Toronto, Canada, May 2536, Toronto, Canada, May 1991. 
1991. 

llie nurnlwr of 

linear separability 
vectors violating 

TABLE I 
The weight vectors of WOS filters and the number of vectors which cannot 

be separated linearly by the vector a (for all a, T is set at  1) 

I 

0 0 0 5 

~ ~ __ 
Pe 0.0 0.0125 0.025 0.05 

II I I I 

Pe 

0.0 
0.0125 
0.025 
0.05 
0.1 
0.2 

24 I 38 

TABLE I1 
MAE'S between the original and filtered images 

--- . 7 - 
MAE 

WOS filters designed Optinrill stack I hy proposed algoritlim I filters 

3.1962 
3.2549 
3.3314 
3.4742 
3.7833 
4.5890 

O.oo00 
0.4090 
0.6458 
1.0443 
l.QI20 
3.3674 

O.oo00 
0.4090 
0.6458 
1.0435 

3.3613 
1.~878 
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Fig. 1. Original image: Boat. 

Fig 2 Tni>t;es for L”, - 0.0:. (A) Ncibj h l ~ ~ g ~ .  (L) & d i ~ i i  filtered image. 
(c) Designed WOS filtered image. (d) Optimal stack filtered image. 
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