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Abstract

This paper analyzes the impact and benefits of infrastractupport in improving the throughput scaling in
networks ofn randomly located wireless nodes. The infrastructure usds-emtenna base stations (BSs), in which
the number of BSs and the number of antennas at each BS canasaabitrary rates relative te. Two schemes
are introduced in this study: a BS-based single-hop rouyprmjocol with multiple-access uplink and broadcast
downlink and a BS-based multi-hop routing protocol. Thée, throughput scaling laws of each are analyzed here.
These schemes are compared against two conventional ssheitheut BSs: the multi-hop (MH) transmission
and hierarchical cooperation (HC) schemes. It is shown t@tBS-based routing schemes do not improve the
throughput scaling in dense networks. In contrast, the ggeg BS-based routing schemes can, under realistic
network conditions, improve the throughput scaling sigaifitly in extended networks. The gain comes from the
following advantages of these BS-based protocols. Firstermodes can transmit simultaneously in the proposed
scheme than in the the MH scheme if the number of BSs and thde&wuof antennas are large enough. Second, by
improving the long-distance signal-to-noise ratio (SNiRg received signal power may be larger than that of the
HC, allowing for a better throughput scaling under extendetivorks. Furthermore, by deriving the corresponding
information-theoretic cut-set upper bounds, it is showat,tfor all the operating regimes, the achievability result
are order-optimal.



I. INTRODUCTION

In [1], Gupta and Kumar introduced and studied the througlgmaling in a large wireless ad hoc
network. They showed that, for a network ofsource- destlnatlon (S-D) pairs randomly distributed in
a unit area, the total throughput scales@s,/n/ logn This throughput scaling is achieved using a
multi-hop (MH) communication scheme. Recent results hd@ve that an almost linear throughput in
the network, i.e.Q(n'~¢) for an arbitrarily smalk > 0, is achievable by using a hierarchical cooperation
(HC) strategy [3], [4], [5], [6]. Besides the schemes in [}, [5], [6], there has been a steady push to
improve the throughput of wireless networks up to a linealisg in a variety of network scenarios by
using novel techniques such as networks with node mobilityifterference alignment schemes [8], and
infrastructure support [9].

Although it would be good to have such a linear scaling witlyevireless connectivity, in practice there
will be a price to pay in terms of higher delay and higher cdsthmnnel estimation. For these reasons, it
would still be good to have infrastructure aiding wirelessl@s. Such hybrid networks consisting of both
wireless ad hoc nodes and infrastructure nodes, or equilease stations (BSs), have been introduced
and analyzed in [10], [11], [9], [12], [13]. BSs are assumede¢ interconnected by high capacity wired
links. It is strictly necessary for the number of BSs to exceed a threshold in order to obtain a linear
throughput scaling inn.

While it has been shown that BSs can be beneficial in wirelessarks, the impact and benefits of
infrastructure support are not yet fully understood. Trapgr features analysis of the throughput scaling
laws for a more general hybrid network where therelaaatennas at each BS, allowing the exploitation
of the spatial dimension at each ngy allowing the number of BSs and the numbérof antennas to
scale at arbitrary rates relative to the numbef wireless nodes, achievable scaling rates and informatio
theoretic upper bounds are derived as a function of thedenggqearameters. Two new routing protocols
utilizing BSs are proposed here. In the first protocol, nplatisources (nodes) transmit simultaneously to
each BS using a direct single-hop multiple-access in thiakiphd a direct single-hop broadcast from each
BS in the downlink. In the second protocol, the high-speediBi& are combined with nearest-neighbor
routing via MH among the wireless nodes. The obtained reark also compared to two conventional
schemes without using BSs: the MH protocol [1] and HC prot¢8p

The proposed schemes are evaluated in two different nesvddnse networks [1], [14], [3] of unit
area, and extended networks [15], [16], [17], [18], [3] ofturode density. In dense networks, it is shown
that the presence of the BSs does not improve the througbplihg and the HC always outperforms the
other protocols. On the contrary, in extended networkseddmg on the network configurations and the
path-loss attenuation, the proposed BS-based protoconlsmgarove the throughput scaling significantly.
Part of the improvement comes from the following two advgataover the conventional schemes: having
more antennas enables more transmit pairs that can betadtsianultaneously (compared to those of the
MH scheme), i.e., enough degree-of-freedom (DoF) gain iained, provided the numbet of BSs and
the number of antennas per BS are large enough. In addition, the BSstbeafpprove the long-distance
signal-to-noise ratio (SNR)first termed in [19], which leads to a larger received sigr@ater than that of
the HC scheme, i.e., the power gain is obtained, thus allp¥ana better throughput scaling in extended
networks.

To assess the optimality of our proposed schemes in a netmititknfrastructure, cut-set upper bounds
on the throughput scaling are derived. For pure ad hoc n&smeith no BSs, upper bounds are shown
in [15], [16], [20], [17], [21], [3], but those for BS-basecetworks are not rigorously characterized in

'We use the following notations: §j(z) = O(g(z)) means that there exist constaritsand ¢ such thatf(z) < Cg(x) for all x > c. ii)
= )-

f(@) = og(x)) means lim L= = 0.ii) f(z) = Qg()) if g(z) = O(f(x)). V) f(2) = w(g(x)) if g(x) = o(f(x)). V) f(z) = O(g(x))
if f(z) = O(g(x)) andg(z) = O(f(x)) [2].

2When the carrier frequency is very high, it is possible toldgpnany antennas at each BS since the wavelength is small.

%In [19], the long-distance SNR is defined agimes the received SNR between two farthest nodes acrodartest scale in wireless
networks. In our BS-based network, it can be interpretedhagdtal SNR transferred to any given node (or BS antenna) aeertain scale

reduced by infrastructure support.



both dense and extended networks. In dense networks, ibisrsthat the obtained upper bound is the
same as that of [3] assuming no BSs. In extended networkgrtdposed approach is based in part on the
characteristics at power-limited regimes shown in [3], whan upper bound is proportional to the total
received signal power from source nodes. It is shown undemeed networks that our upper bounds
match the achievable throughput scalings for all the opegatgimes within a factor of with arbitrarily
small exponent.

The rest of this paper is organized as follows. Sedfion licdkees the proposed network model with
infrastructure support. The two proposed BS-based prégcm@ characterized in Sectignl [ll and their
achievable throughput scalings are analyzed in SeCtibif é.corresponding information-theoretic cut-set
upper bounds are derived in Sectioh V. Finally, Secfioh \thmarizes this paper with some concluding
remarks.

Throughout this paper the superscriptienotes the conjugate transpose of a malrjxs the identity
matrix of sizen x n, []; is the (k,i)-th element of a matrix, an®@ is the field of complex numbers.
E[], tr(-), anddet(-) are the expectation, the trace, and the determinant, régggcUnless otherwise
stated, all logarithms are assumed to be to the base 2.

[I. SYSTEM AND CHANNEL MODELS

Consider a two-dimensional wireless network that consibts S-D pairs uniformly and independently
distributed on a square except for the area covered by B&sn, o nodes are physically located inside the
BSs. The network is assumed to have an area of onezandlense and extended networks, respectively.
Suppose that the whole area is divided intosquare cells, each of which is covered by one BS with
antennas at its center (see Hi@j. 1). Parameters, and/ are related according to

n=m/? :ll/“*, Q)

wheref, v € [0, 1) satisfying5 +~ < 1. The number of antennas is allowed to grow with the number of
nodes and BSs in the network. The placement of thesgennas depends on how the number of antennas
scales as follows:

1) [ antennas are regularly placed on the BS boundaty=fO(y/n/m), and

2) /n/m antennas are regularly placed on the BS boundary and thanmesiniformly placed inside

the boundary ifl = w(y/n/m) andl = O(n/m)}4

Furthermore, it is assumed that the BS-to-BS links haveiteficapacity and that these BSs are neither
sources nor destinations. It is supposed that the radiusaf BS scales as/\/m for dense networks
and aseyg\/n/m for extended networks, wherg > 0 is an arbitrarily small constant independentrof
which means it is independent of and/ as well. This radius scaling would ensure enough separation
among the antennas since the per-antenna distance scldastas the average per-node distance for any
parameters:, m, and!.

The signal model in the uplink will be described first. Liet- {1,--- ,n} denote the set of simulta-
neously transmitting wireless nodes. Then, thel received signal vectay, at BSs € {1,--- ,m} and
the! x 1 complex channel vectds?, between node € {1,--- ,n} and BSs are given by

Yo = hlzi+n, 2
el
and
. . . T
“ 6]9;’,1 ejegi,Q ejegi,l
hSi - . a/2  u af2 R a/2 ’ (3)

si,1 51,2 81,1

4Such an antenna deployment guarantees both the neareSbmeigansmission from/to each BS antenna and the enougte spaong
the antennas.



respectively, where; is the signal transmitted by theth node, andh, denotes the circularly symmetric
complex additive white Gaussian noise (AWGN) vector whdsenent has zero-mean and varianég T’
denotes the transpose of a vector, &fjd represents the random phases uniformly distributed [overr|
and independent for different s, t, and time (transmission symbol), i.e., fast fading. Not this random
phase model is based on a far-field assumption, which is ifaliet wavelength is sufficiently smalky; ,

anda > 2 denote the distance between nadend thet-th antenna of BS;, and the path-loss exponent,

respectively. Similarly, theé x [ complex channel vector in the downlink?, between BS € {1,--- ,m}
and nodei € {1,---,n}, and the complex channél,; between nodes and k (i, k € {1,--- ,n}) are
given by

i0d i0d j0d

hd _ ejlels,l 6-7025,2 o e-] is,l (4)
8 a/2 d a2 d a/2
Tis1 is,2 is,l
Tk

respectively, wheré?, , and 6,; have uniform distribution oveli0, 2x], and are independent for different

18,1
i, s, t, k, and time.r, , andr; denote the distance between thth antenna of BS and nodei, and the
distance between nodeésandk, respectively.

Suppose that each node has an average transmit power aanstrgconstant). It is assumed that the
total transmit power at each BS is constrained to scaledin&ath the number of nodes covered by one
cell. Channel state information (CSI) is assumed to be abtglat the receivers but not at the transmitters
(unless otherwise stated). It is assumed that each nodsanitsnat a ratd’, (a, 3, v) /n, whereT),(«, 3, 7)

denotes the total throughput of the network.

IIl. ROUTING PROTOCOLS

This section explains the two BS-based protocols in the otwIwo conventional schemes [1], [3]
with no infrastructure support are also described.

A. Protocols With Infrastructure Support

We generalize the conventional BS-based transmissionreehe [10], [11], [9], [12], [13]: a source
node transmits its packet to the closest BS, the BS havingdbket transmits it to the BS that is nearest
to the destination of the source via wired BS-to-BS linkg] #re destination finally receives its data from
the nearest BS. Since there exist both access (to BSs) an{frern BSs) routings, different time slots
are used, e.g., even and odd time slots, respectively. Wefsim the following lemma.

Lemma 1: Supposen = n” wheref € [0,1). Then, the number of nodes inside each cell is between
(1 = 6o)n*=P, (1 + dg)n'=P), i.e., ©(n/m), with high probability (whp) for some constaft< &, < 1
independent of..

The proof of this lemma is given by slightly modifying the agytotic analysis in [3].

1) Infrastructure-supported single-hop (ISH) protocol: In contrast with previous works, the spatial
dimensions enabled by having multiple antennas at each &8xatoited here, and thus multiple transmis-
sion pairs can be supported using a single BS. An infrastraetupported single-hop (ISH) transmission
protocol shown in Figl ]2 under dense networks is now propasefbllows:

. Divide the network into square cells of aréan having one BS at the center of each cell.

. For the access routing, all source nodes in each cell, giyen/lm nodes whp from Lemmal 1,
transmit their independent packets simultaneously viglsthop multiple-access to the BS in the
same cell. A transmit power W is used at each node for uplink transmission (how to
exploit full DoF in the uplink with this transmit power willdrigorously analyzed later).



. Each BS receives and jointly decodes packets from sourcesniodthe same cell and treats signals
received from the other cells as noise. Each BS performs amam mean-square error (MMSE)
estimation [22], [23], [24] with successive interferena@ncellation (SIC), which is one of receive
filters, in the uplink. More precisely, thiex 1 unnormalized receive filtev; has the expression [23]

-1
P u u u
V; = (Il + Z m Sk’hs/j> hsi? (6)
k>i
which means that the receiver of BSfor the i-th node cancels signals from nodées -- ,i — 1
and treats signals from nodeést 1,--- ,n/m as noise, for every, when the canceling order is

L.+ ,n/m.

« The BS that completes decoding its packets transmits thethet@S closest to the corresponding
destination by wired BS-to-BS links.

. For the exit routing, each BS transmits all received packetsn/m packets, via single-hop broadcast
to the destinations in the cell. The transmitters in the dmkrare designed by the dual system [23],
[24] of MMSE-SIC receive filters in the uplink, and thus perfoan MMSE transmit precoding
uy,-- -, u,/, With dirty paper coding [25], [26], [27] at BS:

-1
u; = (Il +Zpkhijhis> hi,, (7)

k>i

where the powep,, > 0 allocated to each node satisfig$, p, < L for k =1,--- ,n/mf Note
that a total transmit power ofL is used at each BS for downlink transmission. The CSI at the
transmitter is only required at each BS to perform a trangmdtoding in the downlink.

For the ISH protocol, more DoF gain is provided compared émdmissions via MH ifn and! are
large enough. The power gain can also be obtained compartbattof the HC scheme in certain cases.
Note that wherny > 2 the transmit powet-- mf)’ma/Q at each node tends to zeromas— oo (equivalently,

m — o0). Hence, the given protocol satisfies the average powertreamsP in the uplink. Similarly, it
is easily shown that the average power constraint at eacls B&tisfied in the downlink.

For extended networks, the above protocol can be directiijepby scaling the area by, If (n/m)(m/n)*/? =
(m/n)*/>~! tends to zero as tends to infinity, the network is power-limited. Hence, theogosed
ISH scheme is used with the full power, i.e., the transmit @®aat each node and BS afeand %,
respectively. In this case, the throughput will decreasgrayn)*/>~! compared to the dense network
case. (Note that this relies on the fact thaf(1+x) can be approximated byfor smallz > 0.) Based on
this observation, the achievable throughput can be andlyza manner similar to that for dense networks.
However, instead of original (continuous) transmissi@bursty transmission scheme [3], [19], that uses

only a fraction(m/n)*/>=! of the time for actual transmission with instantaneous pW and
(n/m)P per node and BS, respectively, is used to simply apply thiysisdor dense networks. Under the

m/n)/2-1
((axtended networks with the bursty ISH protocol, it may becbatied that the total throughput decreases
by (m/n)*/2~! compared to the dense network scenario.

2) Infrastructure-supported multi-hop (IMH) protocol: The fact that the extended network is power-
limited motivates the introduction of an infrastructurgported multi-hop (IMH) transmission protocol
in which multiple source nodes in a cell transmit their paske BS in the cell via MH, thereby having
much higher received power than that of the direct one-hapstnission in extended networks. Similarly,
each BS delivers its packets to the corresponding desiimatly IMH transmissions. The proposed IMH

transmission protocol in Figl 3 under dense networks is bhewe:

SFor the exit routing, an optimal power allocation strategynot shown in this paper since the transmission rate sciitige same as
that for the access routing by simply lettipg = - - - = p,, /., Which will be discussed in the next section.



. Divide the network into square cells of aréan each and again divide each cell into smaller square
cells of area2 logn/n each, where these smaller cells are called routing cell&cfwihclude at least
one node [1], [14]).

. For the access routingnin{l, /n/m} source nodes in each cell transmit their independent packet
using MH routing (which will be described in Sectign Il-B) the corresponding BS. Let us now
consider how to set an MH routing path from each source to treesponding BS. Draw a line
connecting a source to one of the antennas of its BS and peNt routing horizontally or vertically
by using the adjacent routing cells passing through theuimé its packet reaches the corresponding
receiver (antenna). Note that it is possible to drain{l, \/n/m} lines such that there are no
crossings in the cell (see Figl 4). A transmit pown*/? at each node is used.

« It is assumed that each antenna placed only on the BS boumneegwes its packet from one of
the nodes in the nearest outer neighbor routing cell.#f w(1/n/m), each boundary routing cell
in the BS has at least one BS antenna, and thus an arbitraepreninside the routing cell can
receive a packet. Each receiver treats signals from the oibaes as noise, and decodes its packet
independently.

« The BS-t0-BS transmissions are the same as the ISH case.

« For the exit routing, the MH routing from a BS to multiple dastions similar to the above
access routing is performed. Each antenna in the routingotethe BS boundary transmits its
packet to a destination via MH transmissions along a lineneoting the antenna of its BS to the
corresponding destination. A transmit pow@fn/? is used at each BS antenna (which satisfies the
power constraint).

« Each routing cell operates based @time division multiple access (TDMA) to avoid causing huge
interference to its neighbor cells.

For the IMH protocol, more DoF gain is possible compared ® MH scheme for largen and!. In

addition, more power gain can also be obtained comparedetti® and ISH schemes in certain cases.

Note that the node transmit power of the given protocol Batishe average power constraiftasn
goes to infinity. The per-antenna power constraint at eaclisBfiso satisfied.

In a manner similar to that of the ISH protocol, by convertihg area of a cell to square cells of area
n/m each and setting the area of a routing cel2togn and the required transmit power at each node/BS
antenna toP, it is possible to apply the IMH protocol to extended netvwgorkhen, since the proposed
IMH protocol satisfies the power constraint and thus the agktvis not power-limited, a total throughput
does not decrease compared to the dense network case, wHitle \@nalyzed in the next section.

B. Protocols Without Infrastructure Support

To improve throughput scalings of infrastructure-suppadrhetworks, the number of BSs should be
higher than a certain level. That is, pure ad hoc transmisswithout help of BSs may achieve better
throughput scaling when the number of BSs is not large enough. The MH and HC protocols which
were proposed in [1] and [3], respectively, will be brieflyroduced.

1) MH protocol: The basic procedure of the MH protocol in dense networks i®ksws:

. Divide the network into square routing cells of argkbgn /n.

. Draw a line connecting a S-D pair. A source transmits a pattkés destination using the nodes in

the adjacent cells passing through the line.

« A transmit power of P/n*/? is enough to guarantee the required throughput scaling efMHK

protocol at each transmission.

« Each routing cell operates tl#eTDMA to avoid a large interference.

For extended networks, it is possible to apply the aboveopwodtby converting the area of a cell to
2logn and the transmit power t&.



2) HC protocol: The HC consists of three phases as follows:

. Divide the network into clusters each havif@g)/) nodes wherel/ = n" for 0 < n < 1.

« During the first phase, each source distributes its datagmther nodes in the same cluster.

« During the second phase, a long-range multiple-input mplekoutput (MIMO) transmission between
two clusters having a source and its destination is perfdrroee at a time.

« During the last phase, each node quantizes the receivedvatisas and delivers the quantized data
to the rest of nodes in the same cluster. By collecting allntjmad observations, each destination
can decode its packet.

When each node transmits data within its cluster, which fopmed during the first and third phases,
it is possible to apply another smaller-scaled cooperatvithin each cluster by dividing each cluster
into smaller clusters. By recursively applying this proaey] it is possible to establish the hierarchical
strategy in the network. A transmit power 6fn is used in dense networks while the bursty HC scheme
is performed in extended networks with instantaneous pawer>~! for a fraction1/n*/2~! of the time.

IV. ACHIEVABLE THROUGHPUT SCALING

In this section, the throughput scaling for both dense ameinebed networks under our routing protocols
is analyzed. Although the HC in [3] provides a near-optinmabtighput scaling in dense networks, it may
degrade throughput scalings in extended (or power-limibetiworks. As a result, the best strategy among
the four schemes ISH, IMH, MH, and HC depends on the pathdrgenenty, and the scaling parameters
(£ and~ under extended networks. The scaling exponent for thesarders is defined by [3], [19]

e(a, B, ) = lim -8 Ln(@5:7) @)

n—oo logn

where T,,(«, 3,7) is the total throughput, which captures the dominant ternthimm exponent of the
throughput scalin.

A. Dense Networks

The achievable rate of the ISH protocol in dense networkisheilshown first. Since all the nodes’ data
passes through their respective BSs, the analysis is defatihat for many-to-one channels [28], [29] (in
the exit routing, it is converted to that for one-to-many mhals). In particular, the transmission scheme
and its achievable rate were shown in [28] for a network inaltall nodes are distributed uniformly over
the boundary of a circle with a unit radius and the BS with glgirantenna is at the center of the circle.
Let it be extended to random and general hybrid networks witBSs, each of which hasantennas,
where nodes are uniformly distributed within the unit aregghwn BSs. The amount of interference in
the ISH scheme may now be quantified.

Lemma 2. Suppose a dense network uses the ISH protocol. Then, therttadegerence power in the
uplink from nodes in other cells to each BS antenna is uppantied by (1) whp. Each node also has
©(1) interference power whp in the downlink from BSs in other ell

Proof: First consider the uplink case. There &feinterfering cells, each of which includéx(n/m)
nodes whp, in thé-th layerl;, of the network as illustrated in Figl 5. Lét denote the Euclidean distance
between a given BS antenna and any nodg,iwhich is a random variable. Sindg scales a®(k/\/m),
there exists:» > ¢; > 0 with constants:;; andc, independent of:, such thatd, = cyk/+/m, where allc,
lies in the interval[c;, co]. Hence, the total interference power at each BS antenna siomaltaneously
transmitting nodes is upper-bounded by

= P (8) n me/? 8P 1
P (n/m)me/? m(cik)®  of = ket
S C1, (9)

®To simplify notations, Ty («, 5, ) will be written as7,, if dropping «, 3, and~ does not cause any confusion.



wherec; > 0 is a constant independent of In a similar manner to the uplink case, an upper bound of
the total interference power at each node in the downlinkotsioed as the following:

. P me/?
8k <e 10
kz:;ma/g( )(Clk’)a =~ C1, ( )
wheregc; is a positive constant independentraf [ |

Using Lemmad R, the following two results, that respectivaipw the transmission rates for the access
and exit routings, are obtained.

Lemma 3: Suppose a dense network uses the ISH protocol. Then, theofdt¥/) at each BS is
achievable for access routing.

Proof: The signal model from nodes in each cell to the BS with mudtiphtennas corresponds to
the single-input multiple-output (SIMO) multiple-accedsannel (MAC). Since the maximum Euclidean
distance among links of the above SIMO MAC scales24$//m), it is upper-bounded by a% //m,
whered; > 0 is a certain constant. Le¥; denote the sum of total interference power received from the
other cells and noise varianég,. Then, the worst case noise of this channel has an uncade@aussian
distribution with zero-mean and varian@€é [30], [31], which lower-bounds the transmission rate. By
assuming full CSI at the receiver (BS, the mutual information of the SIMO MAC is given by [23],
[24]

P
I(xs:ys, Hy) > E |logdet (I, + —————H_,H!
it > £ ot (Bt et
P

> F |logdet (I, + ——————GG 11

> 5 g (14 6| -
wherex, denotes the- x 1 transmit signal vector, whose elements are nodes in thecoedired by BS
s, ¥s Is thel x 1 received signal vector at B§ andH, = [h{; hy, --- hy, I (hyfori=1,--- n/m

is given in [3)).G is the normalized matrix, whose elemeptis given bye’%i: and represents the phase
between nodé and thet-th antenna of BS. Then, the above mutual information is rewritten as

P
I(xg; H,) >IF|] 1
(Xs7 Ys, S) sl |: 0og ( + 5(11N[ A1>:|

P _ _
> [log (1 + A) Pr (A > A), (12)

0Ny

where )\, is one chosen uniformly among theigenvalues O%GGT and ) is any nonnegative constant.
By the Paley-Zygmund inequality [32], it is possible to loviund the mutual information in the left-hand
side (LHS) of [12) by following the same line as that in [3]ushyielding

«_(E[N =)
> - - 7
Pr (A > ) > B0 (13)
for 0 < A < E[\]. Both E[\;] and E[\?] are computed to lower-bound{12). We get the following:

EN] = %E t (%GGTH

I n/m

= %% > Elgul’]
t=1 =1

—1 (14)
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and

ED] = }E { ((%)QGGTGGT)}

1 /a2 I n/m . i}
= E) E E E[Qtigpigpqgtq}
t,p=114,q=1
1 n/m LY

(
% <%>2 Z Z E |gtz |9tq| } Z ZE Ugtim B [|9pi|2]
(

t=114,q=1 t,p=1 i=1
_ ! T)2<l<ﬁ>2+lzﬁ)
I \'n m m
2

wherex denotes the complex conjugate. Singe has a constant scaling from Lemia 2, then
I(Xs; Ys, Hs) Z 62l7 (16)

wherec, > 0 is some constant independentsaf This means that the rate of the access routing at each
BS scales at least ds This completes the proof. [ |
Note that!/ corresponds to the DoF at each cell provided by the uplinkSéf protocol.
Lemma 4: Suppose a dense network uses the ISH protocol. Then, the rexisng has the same
transmission rate as the access routing, $¢1).

Proof: For the exit routing, the signal model from the BS with mu&i@ntennas in one cell to
nodes in the cell corresponds to the multiple-input sirglgut (MISO) broadcast channel (BC). From
Lemmal2, it is seen that the total interference power redéinam the other BSs is bounded. Hence, it is
possible to derive the transmission rate for the exit rgubg exploiting an uplink-downlink duality [23],
[24], [33], [34]. The rate of the MISO BC is then equal to thétlee dual SIMO MAC with a sum power
constraint. More precisely, with full CSI at the transmit(BS) and the total transmit powe;gf% in the
downlink, the mutual information of the MISO BC is lower-buled by [23]

P
T T
ana%E [log det <Il + Y —H, Q:BH’)] > F {log det (Il + () ma N H, H;)] , a7

el

IA

(15)

where H, = [h{,” hi" ... h{7} T is the transpose of a vectol; denotes the sum of total
mterference power from BSs |n ti1e other cells and noiseanag N,, and Qx is the = x L positive
semi-definite input covariance matrix which is diagonal aatisfiestr(Q,) < Q/Q Here, the inequality
holds since the rate is reduced by simply applying the sareeage power of each user. Due to the fact
that (17) is equivalent to the right-hand side (RHS)[of (Mi}lf a change of variables)(!) is achievable
in the downlink of each cell by following the same approacttes for the access routing. [ |
The achievable rate of IMH protocol in dense networks willvnioe analyzed. The number of source
nodes that can be active simultaneously is examined undéMH protocol, while maintaining a constant
throughputO(1) per S-D pair.
Lemma 5: When a dense network uses the IMH protocol,

T, =9 (m min {l, (%)1/2_6}> (18)

is achievable for alln = n? satisfying3 € [0, 1), wheree > 0 is an arbitrarily small constant.

Proof: This result is obtained by modifying the analysis in [1], [[1{B5] on scaling laws under
our BS-based network. We mainly focus on the aspects thalifieeent from the conventional schemes.
From the 9-TDMA operation, the signal-to-interferencetamise ratio (SINR) seen by any receiver is
given by Q(1) with a transmit power?/n/2. It can be interpreted that when the worst case noise [30],
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[31] is assumed as in the ISH protocol, the achievable thipugper S-D pair is lower-bounded by

log(1+ SINR), thus providing a constant scaling. First consider the ¢ase(/n/m) where the number

[ of antennas scales slower than the number. of nodes in a cell. Then, it is possible to activate up to

[ source nodes at each cell because there éxaites for the last hop to each BS antenna in the uplink.

On the other hand, wheh= Q(y/n/m), the maximum number of simultaneously transmitting saairce

per BS is equal to the number of routing cells on the BS bouynderich scales with(n/m)'/2=< for an

arbitrarily smalle > 0. Therefore, the total throughput is finally given thyl(18)cgrthere aren cells in

the network. [ |
Throughput scalings of two conventional protocols that doutilize the BSs are now considered. The

throughputs of the MH communication [1] and the HC schemeafg] given by

T, = Q (n'2) (19)

and
T, =Q(n'™), (20)

for an arbitrarily smalk > 0, respectively. Based on the four achievability resultss possible to obtain
a lower bound on the capacity scaling in dense networks, ang the following theorem presents the
achievable rate under our BS-based routing protocols.
Theorem 1: In a dense network,
T, = Q(n'™°) (21)

is achievable for an arbitrarily smadl> 0.
Proof: From Lemmas3 and 4, the achievable rate of the ISH protoagiven by

T, = Q(mi) (22)

for all m = n” satisfying € [0,1). Since [2D) scales faster than(18),1(19), dnd (22), the h@ya
outperforms the other protocols in dense networks. Thezef@1) is achievable under our BS-based
protocols. [ |

Based on the above result, we may conclude that infrasteidimes not improve the throughput scaling
in dense networks.

B. Extended Networks

In the ISH protocol, the number of simultaneously transedittources in each cell is/m, while only
min{/, \/n/m} sources can transmit simultaneously at each cell in the INitopol. The latter, however,
has an advantage over the former in terms of better longwatist SNR or higher received signal power,
i.e., more power gain, in extended (or power-limited) ne&so It is demonstrated that the throughput
scaling can be improved under some conditions by applying B8-based transmissions in extended
networks.

As stated in Sectiopn lll, for the ISH and HC protocols, butsiynsmission schemes are used in extended
networks to apply the analysis for dense networks. Usingatiedysis similar to those used for dense
networks, an achievable throughput under extended nesaisrgiven as follows.

Theorem 2: In an extended network,

T, =9 (max {ml <%>a/2_1 , M min {l, <%)1/2_6} nt/?e, n2_0‘/2_5}) (23)

is achievable for alin = n” satisfying € [0, 1), wheree > 0 is an arbitrarily small constant.
Proof: Under the ISH protocol, the throughput scaling decreasegbyn)*/2~! compared to that
for dense networks, and is thus given by

T, =0 (ml <%>a/2_1> . (24)
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Under the IMH protocol, the same achievable throughput asiththe dense networks can be obtained,
thus yielding
1/2—¢
T, = Q (m min {z, <ﬁ> }) . (25)
m

T, = Q(n/?7¢) (26)

From the results of [1], [3],

and
T, = Q(n?/27¢) (27)

is yielded for the MH and HC protocols, respectively. Hertbe, throughput scaling in extended networks
is simply lower-bounded by the maximum &f {24)4(27). [ |

From the achievable rates of each scheme, the interessung keelow is obtained under each network
condition.

Remark 1: The best achievable one among the four schemes and itsgeaiionent(«, 3,v) in (8)
are shown in TABLHE]I according to the two-dimensional op@gregimes on the achievable throughput
scaling with respect t@ and~y (see FigLB). This result is analyzed in Appendix A. Operatiegimes
A-D on the throughput scaling are shown in Hig. 6. It is impottto verify the best protocol in different
regimes. In Regime A, wherey and !/ are small, the infrastructure is not helpful. In other reganwe
observe BS-based protocols are dominant in some casesdilegpemm the path-loss exponent For
example, Regime D has the following characteristics: theg@ocol has the highest throughput when
the path-loss attenuation is small, but as the path-lossrei« increases, the best scheme becomes
the ISH protocol. This is because the penalty for long-raligelO transmissions of the HC increases.
Finally, the IMH protocol becomes dominant whens large since the ISH protocol has a power limitation
at the high path-loss attenuation regime.

V. CUT-SET UPPERBOUND

To see how closely the proposed schemes approach the funtidimits in a network with infrastruc-
ture, new BS-based cut-set outer bounds on the throughplingare analyzed based on the information-
theoretic approach [36]. Let, and D, denote the sets of sources and destinations, respectively,
given cutL in the random network. Consider the cltdividing the network area into two halves (see
Fig.[d). More precisely, undef, (wireless) source nodes, are on the left half of the network, while all
nodes on the right half and all BS antennas are destinafiyi$ In this case, we get an x (n + ml)
MIMO channel between the two sets of nodes and BSs separgtételut.

A. Dense Networks

The upper bound [3] for pure ad hoc networks of unit area igrektd to our network model. Start
from the following lemma.

Lemma 6: In our two-dimensional dense network wherenodes are uniformly distributed and there
arem BSs with! regularly spaced antennas, the minimum distance betweetwannodes or between a
node and an antenna on the BS boundary is larger thiah™ whp for an arbitrarily smalk; > 0.

Proof: This result can be obtained by slightly modifying the asyotiptanalysis in [3], [14]. The
minimum node-to-node distance is easily derived by follaythe same approach as that in [3] and is
proved to scale at least dgn'** with probability 1 — ©(1/n?**). We now focus on how the distance
between a node and an antenna on the BS boundary scalesd&oastircle of radiug /n!™< around
one specific antenna on the BS boundary. Note that there aptheo antennas inside the circle since the

"The other cutZ can also be considered in the network. In this case, soufgeepresent antennas at each BS as well as ad hoc nodes
on the left half. The (wireless) destination nodeg are on the right half. Since the ciit provides a tight upper bound compared to the
achievable rate, the analysis for the duis not shown in this paper.
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per-antenna distance is greater tHan!'*<. Let £; denote the event that nodes are located outside the
circle given by the antenna. Then, we have

Pes<1-(1-8-)" (28)

n2+261

where( < ¢3 < 1 is a constant independent of Hence, by the union bound, the probability that the
event&, is satisfied for all the BS antennas is lower-bounded by

1—mﬁﬁﬁ}21—nﬂo—<l—iylyv

n2+251
C3Tr n
>1-n(1-(1-55-)"), (29)
where the second inequality holds sineé = O(n), which tends to one as goes to infinity. This
completes the proof. [ |

Now we are ready to present the cut-set upper bound of thethwtaughputT;,.
Theorem 3: The total throughput’, is upper-bounded by logn whp in dense networks with infras-
tructure.

Proof: The proof essentially follows the steps similar to those33f|[ [3]. Consider an S-D pair for
the case where the network is divided by the éutThe throughput per S-D pair is upper-bounded by
the capacity of the SIMO channel between a source node anash®f the network including multiple
BS antennas. Hence, the total throughput/idB-D pairs is bounded by

T, <Y o | 1+ | 0 Ml D P
=1 k=1 s=1

s

P
< nlog <1 4+ —ntea(y 1 4 ml))
No

= ¢3nlogn, (30)
where || - | denotes 2-norm of the vector amg > 0 is some constant independent af The second
inequality holds due to Lemnid 6. n

Note that the same upper bound as that of [3] assuming no BBans. This upper bound means that
n S-D pairs can be active with a genie-aided interference vairzetween simultaneously transmitting
nodes, while providing power gaiog n. In addition, it is examined how the upper bound is close o th
achievable throughput scaling.

Remark 2: In dense networks, it is easy to see that the achievable nat¢h& upper bound are of the
same order up to a factdaogn. Since the achievable rate of HC scheme asymptoticallyosmbes the
upper bound withim¢, the HC is therefore order-optimal in dense networks with hielp of BSs.

B. Extended Networks

In extended networks, it is necessary to narrow down thes @d&$-D pairs according to their Euclidean
distance to obtain a tight upper bound. In this subsectioa,upper bound based on the power transfer
arguments shown in [3] is shown, where an upper bound is ptiopal to the total received signal power
from source nodes. The present problem is not equivalertidaconventional extended setup under our
network model (with infrastructure support). A new uppeubd based on hybrid approaches that consider
either the sum of the capacities of the multiple-input saglitput (MISO) channel between transmitters
and each receiver or the amount of power transferred adnessetwork according to operating regimes,
is thus derived. We start from the following lemma.

Lemma 7: Assume a two-dimensional extended network whemeodes are uniformly distributed and
m BSs with[ antennas each are regularly spaced. When the network atiedheiexclusion of BS area
is divided inton squares of unit area, there are less tham nodes in each square whp.
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This result can be obtained by applying our BS-based netwoik slightly modifying the analysis
in [18]. For the cutLZ, the total throughpuf;, for sources on the left half is bounded by the capacity of
the MIMO channel betwees;, and D, and thus

T, < glaxE [log det (In+ml + HLQLHTLH

= max® [1og det (1@(n +H,Q.H| )] (31)
where the equality holds sinee= Q(ml)ﬁ H, consists oh in () fori € Sy, s € B, andhy; in (§) for
1€ Sr, k € D,. Here,B and D, represent the set of BSs in the network and (wireless) nodelseoright
half, respectivelyQ;, is the positive semi-definite input covariance matrix whés diagonal element
satisfieg Q] < P for k € S;. The setD;, of destinations is partitioned into three groups accordong
their location, as shown in Figl 8. By generalized Hadansaimgquality [38] as in [16], [3],

T, < maxF [log det (I\f + H(1 QLH(1 )]

Qr>0

) <2>T)]
+maxF 1og det (T + HP Q HY

+ma>>6E [log det (I@(n) + H(L?))QLH(L?’)TH , (32)
Lf
whereH!" is the matrix with entriesH" | forie S;, k€ D\, andt =1,--- 3. Here,D\" and D\”

denote the set of destinations located on the rectangwaharvath width 1 |mmed|ately to the right of the
centerline (cu? and on the ring with width 1 immediatelyidegseach BS boundary (cut) on the left half,
respectivelyD'” is given by D, \ (D" U D). Note that the sets/{\" and D{”) of destinations located
very close to the cut are considered separately since ofeeriveir contribution to the total received
power will be excessive, resulting in a loose bound.

Each term in[(3R2) will be analyzed in the theorem below. Befthrat, to get the total power transfer
of the setD(L3), the same technique as that in [3] is used, which is the retaxaf the individual power
constraints to a total weighted power constraint, wherewbight assigned to each source corresponds
to the total received power on the other side of the cut. Sipally, each column of the matrixH(L?’) is
normalized by the square root of the total received poweiherother side of the cut from source S;.
The total weighted powePL( by sourcei is then given by

P = pa?), (33)
where )
d(L,)i: Z T Z T (34)
keD,\D{" seBy te[l,l]

Here, D, is the set of destination nodes including BS antennas onigh¢ malf andB; represents the set
of BSs on the left half. Then, the third term In_{32) is reveittas

max B log det (L, + Ff”QLFf”ﬂ , (35)

whereF'” is the matrix with entries{Ff’)]k‘ = [H(g’ } , Which are obtained fron_(84), fare S,

\/dT”’
ke D(L3). Then,Q;, is the matrix satisfying

[QL] LV i 1Qul, (36)

8Here and in the sequel, the noise variaiégis assumed to be 1 to simplify the notation.
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which meanst(Q;) < Y., P1”) (equal to the sum of the total received power from each spurce

We next examine the behavior of the largest singular valugHe normalized channel mater’).
From the fact thaiF(?’ is well-conditioned whp, this shows how much it essentiaffects an upper
bound of [35), Whlch will be analyzed in Lemrha 9.

Lemma 8: Let F(?’ denote the normalized channel matrix whose element is glu;er[F ] =

(3)
\/dTS) [HL LZ Then,

@[] < - 3
E HFL H < ¢4(logn)”, (37)
2

where|| - ||, denotes the largest singular value of the matrix and 0 is some constant independent of
n.

The proof of this lemma is presented in Appendix B. Using Lexfinyields the following result.
Lemma 9: The term shown in[(35) is upper-bounded by

ny P (38)
€St
whp wheree > 0 is an arbitrarily small constant anlaL(?’Z is given by [(38).
Proof: The proof of this lemma essentially follows that of [3]. Etjoa (38) is bounded by

max F {log det (In + F(Lg)QLFg’) ) e (3)]
QL>0 L

+max F {log det <In + F(L?’) QLF(L?))T> lge } , (39)
QL>0 i
where the eveanE» is given by

2
xp = {72 >} (40)
for an arbitrarily small constant> 0. Then, by applying the proof technique similar to that in, [Bis

possible to prove that the first term [n {39) decays polyndiynta zero asn tends to infinity, and for the
second term in[(39), it follows that
) (3)}
L

QuF
< st [P0 er (@) 1, |
')

< ¢4 log nmax tr <

max L [log det< + F(3
Qr=0

Q>0
<n > PP (41)
1€ST,
where the second inequality holds lhy|(37). [ |

Note that [(3B) represents the power transfer from theSgebof sources to the sdD(L?’) of the corre-
sponding destinations for a given clt For notational convenience, Iéf)i and d(L5)Z denote the first and

second terms in_(34), respectively. Thd?k;l(; and Pal(5 correspond to the total received power from

sourcei to the destination setB, \ D ) and Dy, \( 2uD ), respectively. The computation of the total
received power of the sdt)f’) will now be computed as follows:

S =>"rdl+ Y Pdp), (42)

1€ST, 1€ST, 1€ST,
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which is eventually used to compufe [38).

First, to get an upper bound fdr, o Pd(ﬁ)i in (42), the network area is divided into squares of
unit area. By Lemmal7, since there are less tham nodes inside each square whp, the power transfer
under the random network can be upper-bounded by that undegudar network with at mostogn
nodes at each square (see [3] for the detailed descrip&ach a modification yields the following upper

bound [3] for Y, s, Pd\):
esn?%(logn)? if 2 <a <3
S Pdy) < { Eyn(logn)?®  if a=3 (43)
i€Sy, csy/n(logn)? if >3

whp for a constant; > 0 independent of.. Next, the second terry’ Pdf)i in (42) can be derived
as in the following lemma.

Lemma 10: The term}_, o Pdf)i is given by

0 if { =o0(y/n/m)
5 ) O(n(2)10gn) if 1=0(y/n]m) and2 < a <3
Z P = @ (ml\/?(logn)Q) if | =Q(y/n/m)anda =3

€S,
@) <% (%l)a/2 logn) if I =Q(y/n/m)anda > 3.

The proof of this lemma is presented in Appendix C. It is novggible to show the proposed cut-set
upper bound in extended networks.

Theorem 4: Suppose an extended network with multi-antenna BSs. Thentatal throughput;, is

upper-bounded by
/2
T, < Egn‘ max {nl (T> ,mmin{l,«/ﬁ},\/ﬁ, n2_°‘/2} (45)
n m

whp for all m = n? satisfying3 € [0, 1), wherecs is some constant independent:ofande > 0 is an
arbitrarily small constant.

Proof: For notational convenience, I&” denote the-th term in the RHS of[{32) fot € {1,2,3}.
By generalized Hadamard'’s inequality [38] as in [16], [Bie ffirst term7" in (32) can be easily bounded

by

1€ST,

(44)

P
TV < Z log <1+F2|hm‘|2>
0

€Sy,

< &v/n(logn)?, (46)

wherec¢; > 0 is a constant independent af Note that this upper bound does not dependsoand ~.
The second inequality holds since the minimum distance é@twany source and destination is larger
than 1/n'/2+¢* whp for an arbitrarily smalk, > 0, which is obtained by the derivation similar to that
of Lemmal6, and there exist no more thafulogn nodes inD(Ll) whp by Lemmé.]7. The upper bound
for 7.*) is now derived. Since some nodesmf) are located very close to the cut and the information

transfer toD(Lz) is limited in DoF, the second terri\® of (32) is upper-bounded by the sum of the
capacities of the MISO channels. More precisely, by germ@lHadamard’s inequality,

7@ < csmllogn if | =o0(y/n/m)
"7 | éyv/nmlogn if 1 =Q(y/n/m),

< cgm min {l, ﬁ} logn 47)
V' m
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wheree, > 0 is some constant independentrofNext, the third tern® of (32) will be shown by using
(39), (43) and LemmA_10. f= o(4/n/m), which corresponds to operating regimes A and B shown in
Fig.[8, thenT,¥ is given by

2—a/24€ i
T(g)_{O(n ) if2<a<3 (48)

O(n'/?*<)  if a > 3.
Hence, under this network condition,
T, < ¢gn® max {ml, Vv, n2_°‘/2} , (49)

which is upper-bounded by the RHS 6f {45). Now we focus on teedor! = Q(1/n/m) (regimes C
and D in Fig[®). In this casel® is upper-bounded by

Con’ (nz_o‘/z(logn)Q +nl (%)a/2 log n) if 2<a<3
T << egns (vn(logn)® + miy /2 (logn)?) if a=3
con© <\/ﬁ(log n)? + 7 (%1)06/2 log n) if >3
con max {n2 /2, nl ()"} if 2 <a <3
n (ml)e/2 i (50)
Vi, (=)

if >3
for some constant, > 0 and an arbitrarily small constant > ¢ > 0. From [46), [(4¥), and_(50), we thus
get the following result:

<
Con®? max

Cen® max n2-o/2 n (%)a/2 f2<a<3
T, <
Cen® max ” } if >3
a/2
< cgn max{\/nm,n2_°‘/2 nl( ) }, (51)
n
where the first and second inequalities hold sigéen = Q(y/n) and /nm = Q ( (zt )a/ ) respec-
tively, which results in[(45). This completes the proof oisttheorem. u

Following the approach similar to AppendiX A, it is easilyosin that the scaling exponeniéx, 3, )
of our upper bound coincide with those shown in TABLE | acdogdto the two-dimensional operating
regimes in Fig[ 6. Remark that the upper bound is the same easesult in [3], assuming no BSs,
under Regime A, while it is quite different from that of [3] der other regimes. The difference comes
from the fact that the information transfer by the BS antesnoa the left half, i.e., the destination set
D(Ll) U(Dp\ (Df) U D,)), becomes dominant for large andi. More specifically, compared to the pure
network case with no BSs, as and! increases, enough DoF gain is obtained by exploiting meltip
antennas at each BS, while the power gain is provided sihtieeaBSs are connected by the wired BS-to-
BS links. Now, the relationship between achievable thraugtand the cut-set upper bound is examined
as follows.

Remark 3: In extended networks, it is shown that choosing the best efftlur schemes ISH, IMH,
MH and HC is order-optimal for all the operating regimes shawFig.[6 (see TABLE]I). To be specific,
the scaling exponer(«, 3, ) for the upper bound shown in Theoréin 4 is summarized as fellow

1— 11 1
e(a,ﬁ,v):max 1+7_mvmln ﬁ+ ﬂ_'_ 7_72_g : (52)
2 2 2 2
The first—fourth terms in[(52) represent the amount of infation transferred to the destination sets
D\ (DY uD,), D, DIV, andD, \ D", and can be achieved by the ISH, IMH, MH, HC schemes,

respectively. Therefore, the upper bound matches the\adtiethroughput scaling within® in extended
networks with infrastructure.
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VI. CONCLUSION

The paper has analyzed the benefits of infrastructure stfgrageneralized hybrid networks. Provided
the numberm of BSs and the number of antennas at each BS scale at arbitrary rates relativeeto th
numbern of wireless nodes, the achievable throughput scaling afatnration-theoretic upper bounds
were derived as a function of these scaling parameters.ifigdg, two routing protocols using BSs were
proposed, and their achievable scaling rates were deriveéd@ampared with that of the two conventional
schemes MH and HC in both dense and extended networks. Fudhe to assess the optimality of
the achievability results, new BS-based cut-set upper t®uvere derived. In both dense and extended
networks, it was shown that our achievable schemes are-opdienal for all the operating regimes.

APPENDIX
A. Achievable Throughput in Extended Networks

Let eish, emmn, mH, @nd eyc denote the scaling exponents for the achievable througbptite ISH,
IMH, MH, and HC protocols, respectively. The scaling expaiseamong the above schemes are compared
according to operating regimes A-D shown in Fig eﬁs( omitted for notational convenience). Note that
eisH, emn, andepc are given byl ++— 1222 1 and2 — 2 respectively, regardless of operating regimes.

1) Regime A0 < fB+v < 2). emH = B+ is obtained. Sinceyy > ewmn > eisn, pure ad hoc
transmissions with no BSs outperform the ISH and IMH prolechence, the results in Regime A
of TABLE [lare obtained.

2) Regime B [+~ > % andg+2y < 1): emn is the same as that under Regime A. Siagg > eisH
andewy > ewn, the IMH always outperforms the ISH and the MH. Hence, it isnfd that the HC
scheme has the largest scaling exponent ugdera < 4 — 23 — 2+, but if « > 4 — 23 — 2~ the
IMH protocol becomes the best.

3) Regime C f+ 2y > 1 and~ < %(62 — 30 + 2)): Remark thateyyy = # and e > ewH.
Then, the foIIowing inequalities with respect to the paikhd exponentr are found:e;sy > ey for

2<a< 1+ ande|SH <emy fora>1+ -2 5; enc > emn for2 < a <3 — G andeqc < en

fora>3— B and enc > ey for 2 < a < 2(15 andeyc < esy for a > 2(15 . The best scheme

thus depends on the comparison amang 2, 3 — 3, and 2(167 Note that3 — 3 < 2(167 and
3—0>1+ 276 always hold under Regime C. Finally, the best achievablersels with respect to
« are obtained and are shown in Hig. 9(a).

4) Regime D f+~v < 1andy > (62 3/ +2)): The same scaling exponents for our four protocols
are the same as those under Regime C. The result is obtalnednh}yarlngl + 1 ﬁ, — (3, and
209 ynder Regime D. The following two inequaliti@s— 5 > 2(16 and3 — 3 <1+ -2 are

satisfied, and the best achievable schemes with respectate obtained and shown in F[cﬁj(b)

This coincides with the result shown in TABLE 1.

B. Proof of Lemma[8

The size of matrifo’) is ©(n) x ©(n) sinceml = O(n). Thus, the analysis essentially follows the
argument in [3] with a slight modification (see Appendix hi [i3] for more precise description). Consider
the network transformation resulting in a regular networthvat mostlog n nodes at each square vertex
except for the area covered by BSs. Then, the same node absptat as shown in [3] is performed,
which will decrease the Euclidean distance between sourdedastination nodes. For convenience, the
source node positions are indexed in the resulting reguwawark. It is thus assumed that the source
nodes under the cut are located at positigns, + 1,i,) wherei,, i, = 1,---y/n. In the following,
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2
are derived:

ZkeD(LS)

and an upper bound for [Ff’)}

1€ST

3
7.

ki
2
2

> ¥,

)

keD( keD(
2
(3)
ZkeD(LS) [HL ki
- U —«o
> Th D Tsit
keDr\Dg) seBy,te[1,l]
=1, (53)

where D, is the set of nodes including BS antennas on the right halftaedecond equality comes from

34), and

SEe]S =3 ],

i€SL ieSL d(Lg’)Z
( Thi i > (1)
iEZSL d%)i if ke D, \D,
Sl if ke {t:te[1,]] for s € By}
\ 1€SL dLﬂi
( T’i-a i _ (1)
Y. ———= if ke D\ Dy
€S, _ (1) ki
< kEDT-LDEa
Tl Y —=t  ifke{t:te[llforse B}
€Sy 72 (1)7"ki
L kEDr-\DL
( ciologn >> 207%r*  if ke D, \ D(Ll)
< €Sy, )
=) cologn Y ad 2l if ke {t:te(l,l] fors € B}
L €S, ’
((clogn S rp2  if ke D,\ DY
< i€SL
= Gwologn Y ri? if ke {t:tel,l] forse B}
L 1€ST '
VA
- 2
S clo(logn) Z 72 T 72
iziy=1 % Y
< e11(logn)?, (54)
where B; is the set of BSs in the left half network;, > 0 and¢;; > 0 are some constants, and
denotes the:-coordinate of node € S;, for our random networka(; = 1,-- - ,y/n). Here, the second and
fifth inequalities hold since ,
otz (55)
W Cipo lOgn
keD\Dyp
and
A
> = Ollogn), (56)
izyiy=1 % Y
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respectively (see [3] for the detailed derivation). Thedhnequality comes from the result of Lemina 7.
Hence, it is proved that both scaling results are the sambkeasahdom network case shown in [3]. Now
it is possible to prove the inequality ih (37). Following teeme line as that in [3], we thus have

E [tr ((F(LZ)’)TFS’))[I)] < Cyn (&5 logn)™, (57)

whereC, = e +)1) is the Catalan number for anyand ¢, > 0 is a constant independent of Then,

from the propertyHF(L3 13 = lim, oo tr((F(L?’) F(L3 )7)1/e (see [39]), the expectation of the tentFL |13 is

upper-bounded by
) <)

< lim (Cyn (é12logn)™) Ve

q—00

= 4(¢12log ”)37 (58)

where the equality holds sinckm, .. qu/q = 4. Here, the first inequality comes from dominated
convergence theorem and Jensen’s inequality. This coagptae proof.

C. Proof of Lemma[I0

When! = o(y/n/m), there is no destination i®", and thusy",; Pd{’, becomes zero. Hence, the
case forl = Q(y/n/m) is the focus from now on. By the same argument as shown in theatien
of > ics, Pd(ﬁ)i, the network area is divided inte squares of unit area. Then, by Lemfda 7, the power
transfer under our random network can be upper-boundeddiyutider a regular network with at most
logn nodes at each square except for the area covered by BSs.u8satkd in Fig[ 10, the nodes in
each square are moved together onto one vertex of the conméisiy square. The node displacement is
performed in a sense of decreasing the Euclidean distanteeede node € S;, and the antennas of the
corresponding BS, thereby providing an upper bounck@r. Layers of each cell are then introduced, as
shown in Fig[ID, where there exidtey+/n/m + k) vertices, each of which includésg n nodes, in the
k-th layer(; of each cell. The regular network described above can alswalpsformed into the other,
which contains antennas regularly placed at spaedrqg% outside the shaded square for arbitrarily small
€0 > 0. Note that the shaded square of skZex 2k is drawn based on a source nodeljirat its center

(see Fig[L1ID). The modification yields an increase of the t@f?nby sourcei. Whendg)i(k) is defined as
by node: that lies inl, the following upper bound fod'” . is obtained:

<y : ¥
th= ((coy/Dka)? + (0 /Thy) ) /

B El a/2 oo 04
= " e ]{52 + k2)oe/2

_ El a/2 oo akl
\n k<

Lyi(k)

mi\ % 1
e
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€0

where¢ = 1+ |key|, ¢y = L, /?—75, andc;; is some constant independentaf Here, || denotes the

greatest integer less than or equabtd—lence,d(i)i(k) is given by

o (=) if k=0 (J/=
A = <(2713 m> _— ( ’Zl) (60)
O (5) i k=2(/7)
finally yielding
\/n/m -
Z Pd(;)i 1ogn Z 8 ( —+ k) d(L‘E”)Z.(k)
1€ST =1 m
n/mi—1 i a/2 n/m i
< ¢4 Pv/nmlogn <7> + Z 2o (?)
k=1 k=+/n/ml

1 (172 I 1\ /21 [rjm 1
< ¢4 Pv/nmlogn (ﬁ) + (ﬁ) (ﬂ) +/
n 1/n/ml

%nl (%)a/zlogn if2<a<3

< ¢ Bl /Mlogn)? if a=3 (61)
3;145\’} (ml)a/2 logn if a> 3,

wherecy, is some constant independentofHere, the first inequality holds since there esigl)/n/m+
k) vertices inlj, and at mostogn nodes at each vertex. Equatidn](61) yields the resultih. (44)
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Fig. 1. The wireless ad hoc network with infrastructure sarpp

Access routing

Fig. 2. The infrastructure-supported single-hop (ISH)tpcol.
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Exit routing

TABLE |
ACHIEVABLE RATES FOR AN EXTENDED NETWORK WITH INFRASTRUCTUE.
Regime | Condition | Scheme]  e(a,,7)
A 2<a<3 HC —Z
>3 MH 1
B 2<a<4-20—-2y HC 2-3%
a>4—208—2y IMH ﬂ+2’
c 2<a<3-p HC -z
a>3-p IMH e
2 <a< D HC 2-¢
2(1—~) 2 (1-8)
a>1+ 75 IMH =8
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Access routing

Fig. 3. The infrastructure-supported multi-hop (IMH) prool.
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Fig. 4. The access routing in the IMH protocol.
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Fig. 5. Grouping of interfering cells. The first layér of the network represents the outer 8 shaded cells.
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Fig. 6. Operating regimes on the achievable throughpuirgcalith respect tg3 and~.
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Fig. 7. The cut-sef. in the two-dimensional random network.
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Fig. 8. The partition of destinations in the two-dimensiorendom network. To simplify the figure, one BS is shown in ta#& half
network.
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Fig. 9. The best achievable schemes with respeet. t@) The Regime C. (b) The Regime D.
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Fig. 10. The displacement of the nodes to square vertices.ahtennas are regularly placed at spac\iyf% outside the shaded square.
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