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Abstract: Median filters have been known as mare effective smoothers than linear filters for some

applications. In

particular, the median filter preserves edges in signals, which removes impulsive noise. Understanding of statisti-

cal properties of median filters is therefore importan! and interesting. In this paper, we redefine the outpul stales

of recursive median filters, Using statistical threshold decomposition and the redefined states, the output cumula-

tive distribution function of recursive median filters useful for any input distribution is derived.

1. Introduction

Median filter was first introduced by Tukey {1].
One of the main characteristics of the median fiter
is that it has a low-pass characteristic yet preserves
edges. Recursive median filter [2] as the recursive
version of the median filter has some better proper-
ties. The output y(m) of a recursive median filter

of window size 2N +1 1
y(m)=med{y(m—N),....y(m —1),a(m),....alm +N)},
(1)
where {a(m)} is the discrete-time mput sequence.
Assume that the input a(m) is quantized to

one of the k values, 0,1, - - -, k—1. The thres-
holded binary signal ¢/ (m) is defined by
| { 1, if a(m) 2]
i(m) =
t/ (m) 0. if am)<j (2)

where 1<m <L, 1<j<k-1, and L is the length
of the input sequence. For the thresholded input

sequence {1/ (m)},

.xj(m)=med{xj(m —N),...,xj(m —1),!j(n1),...,rj (m +N )}

(3)

In this paper, we obtain the cumulative distnibu-
tion function of sequences filtered by recursive
median filters, where the output of a recursive
median filter is reconstructed by

k—1
y(m)=3 x'(m) (4)

j=1

2. First Order Qutput Distributions of
Recursive Médian Filters

Statistical analysis of nonrecursive median filter
is based usually on the well-known theory of order
statistics [3]. On the other hand, statistical analysis
of recursive median filters is based on the statistical
threshold decomposition |4)].

This research was partially supported by Korea Science and In-
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Property 1 [4] : If {x/ (m)} is the recursive
median filter output sequence for a thresholded
binary input sequence, then

P{xi(m)=0} =P{y(m)<j}
=Fy0“1): (5)

where Fy(-) is the cumulative distribution function
of the recursive median fiter output sequence

{y(m)}.

Using Property 1 and the states defined in [5}, a
sequence of N+1 consecutive samples, the first
order marginal probabilities of recursive median
filter output was derived [6] when the mput
sequence was independent and identically distributed
(i.i.d.) and first order Markov chains.

Recently it was found [7] that only the immedi-
ate previous output y(m—1) and future inputs are
necessary to determine the present output y(m).
That s, |

y (m)=med{y (m —1),a p..(m),8 0y (M)} (6)

where a . (m)=min{ a(m), a(m+1),..a(m+N) }
and a_. (m)=max{a(m), a(m+l),..a(m+N) 3
Therefore, the recursive median filter output x’(m)

for a thresholded input sequence {1/ (m)} 1s given by
x! (m )=med{,rj(m —l)Jfonin (m )J{nax (m)}, (7)

where‘t{;m(m )=min { ’rj (m), rj(m +1),...h,rj (m+N) }
and £/ (m)=max{t' (m), ! (m+1),...,t/ (m +N)}.

max

Since only one previous output .rj(m —1) and
future inputs are necessary to determine the present
output x?(m), it is easy to see that there may exist
some state transitions with probability 1 among
those defined in [4]. Based on this observation, we
redefined the threshold-filtered output states of
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recursive median filters.

Property 2 : The threshold-filtered output transi-

tions of a recursive median filter are specified by

the four states {x"(m) dx-’(m 1)=0},
(x) (m)=1lx/ (m—-1)=0}, {x! (m)=0x/ (m~1)=1},
and {x*’(m) 1|x? (m—1)=1}.

One of the significance of Property 2 is that the
states are now defined independent of window size.
Using these redefined states, we can simplify the
theoretical analysis of recursive median filters.

Since 'in(m)=0, max(m) =0} =
(o, (m)—O} (1 (m)=1, B (m)=1} =
{t] (m) 1}, {r{nin(m)a-ﬂ mlM(ma) 1} =
{{rm(m) =0} U {rpn(m)= 1} and
{t! . (m)=1, l,w:(m) O} = &, and
P{x’(m) dfmax(m) PJ(m-1)=0} = 1,
P{x’ (m)= o . (m)=1, x/(m-1)=0} = 0, and
P{x"(m) dr (m] =(), r}’nax(m) 1, x/(m-1)=0}
= 1, the " transition probability P {x’(m)=0)

x/ (m—1)=0} can be written as
P{x’ (m)= 0! (m —1)=0}
-P{x-‘ (m)=0 ‘{nax (m)=0, .x*'(m 1)-—0}
xP{rmx(m)——dx’(m 1)=0}
+p{xf(m) =01/ (m)=1,%' (m —1)=0}
xP{tl . (m)=1lx’ (m—~1)=0]
.+P{xf(m) Oef . (m)=04)
XP{I . (m)= OImM(m)——l|xj(m—1)=0}.
—P{rmx(m) =0l x/ (m—1)=0}
+P{t! . (m)= Otmﬂx(m)=1\xj(mf-1)=0}
=P{t{nm(m)—dx"(m 1)=0}.

(8)

(m )= 1x7/ (m—1)= O}F'{*’r (m) =0x/ (m-1)= 1}_p{,

Sung Ho Cho

the value of x/(m—2) when
t) . (n—1)=1, the events for which x/(m-1)=0
are the events except the event tf. (m-1)=1
among all possible events. Since x’ (;n 2) is don't
care, P{x'(m~1)=0} = 1 — P{1 . (m—1)=1}L
Next, since the event for which t’ (m)=0 never
occurs when H(m*l) 0 and ¢/ (m)-l the events
for which t’ . (m)=0 are the events for which

iwrespective  of

x! (m 1)=0 except the event {¢’ (m-—l) =0,
. (m)=1}. Thus we have P{t . (m)=0,

x*'(ﬁ_t—l) =0} = 1 - P{I]’nh_(m—l);“l}

P{t!(m—1)=0, ¢t/ . (m)=1} when x?(m~-2) is don’t

care. Therefore, we have

P{xi(m)-—-dx-f(m ~1)=0}=P{t)_._(m)=0lx (m—1)=0}
1-P{t) . (m 1)'—1}—P{r"(m 1)-0 4 (m)=1}

n(m=1)= 1}

"'P{I"
®)

Following similar procedures, it can be shown that

. (m )_=1\xj (m —1)=0}
(m)=1}

?

P{xj(m)=ljxj(m -1)=0}=P{t’ . J
P{t! (m—1)=0,¢. .

** min

{nm (m—1)=1}

(10)
1—-P{:

, (m)=0x7 (m—1)=1}
P{t*’(m 1)=1,4__(m)=0}

(11)

1-pP{t) . (m—-1)=0}

madx

and

Pixt(m)=1lx'(m-1)=1} =P{t] __(m)=1lx! (m-1)=1)

We next express (8) in terms of the joint pro-
babilities of thresholded input sequence {t’(m)}.
First, from all the possible events, we retain the
events {1/ (m—1),  t/(m+N)} for which
x/(m—1)=0 only. Next among Lhose events, we
find the subevents for which ) . (m)=0. Then,
P{t . (m)= =0lx’ (m —1)=0} equals the ratio of the
probabllltles of the subevents to that of the events

for which x’(m 1)=0.

Let the value of xj(m —2) be don’t care. 'Thus

J'(m ~2) has all the effects of the previous outputs
xf(m-3), x/(m—4), . and x/(1). Since the
event for which x’ (m 1)=0 can never occur

e
—

P{x!(m)=0x?(m -1)=0) P{x!(m)=00x!(m-1)=1}
P{xl(m)=lx!(m-1)=0} P{x/(m)=1lx'(m-1)=1}

l—P{r . (m—1)=0} - P{t’(m 1)= l,r (m)-—O}

1-P{ rmx (m —1}=0}
(12)

With the transition probabilities (9)-(12), we
can form the Markov transition matrnx

P{!(m-1)=007 . (m)=1}

| - e

]1- P{r‘

Pl (m—-1)=0.) . (m)=1}
/. (m ~1)=1}

(m—-1)=1) 1-P{1;,

P{:"(m =141 (m)=0}
(m—1)=0}

P{t!/(m—-1)= l,rm“ (m)=0}
1-P{¢! . (m—1)=0}

(13)

]

1-

P{max
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From (13) we obtain P{x/(m)=0} and

P{x’(m)=1}.

Property 3 : The cumulative distribution function of
recursive median filter outputs F),( -} are given by

F,(j—1)=P{x’ (m)=0}

(1—P{t) . (m ~1D)=1})-P{t! (m-1)=1,4_, (m)=0}

[(1-P{t]  (m—1)=0})-P{t/ (m -1)=047. (m)=1}

+(1=P{) (m-1)=1})P{t! (m —1)=1,t] ., (m)=0}]

(14)
Property 3 allows us to calculate the first order
output distribution of recursive median filters .when
we know the four probabilities P{t7;,(m-1)=1} ,
P{t] . (m—1)=0} , P{t/(m-1)=1, 1) o (m)=01}
and P{t/(m—1)=0, ¢! . (m)=1}.

3. Examples and Simulations

3.1.11.D. Input

Let us assume that P{t!(m)=0} = a,
P{t/(m)=1} = 1—r:wtJF = Bj and that {t"(m)-'-d}
and {¢/(m)=1} are independent. Then we have

P{thp(n=1)=1} = (8", (15)
P{thpy (m=1)=0} = (@)" ", (16)

Pt/ (m-1)=1,00  (m)=0} = ;)" ™" (17)
and

P{tf (m—1)=0,t) . (m)=1} = (xj{Bj)N 1 (18)
If we substitute (15)—(18) into (14), we obtain

A(B,[I})

A(o;,8;) +A(B; )

FyGi-1)=

where A(a,b)=a -(1—a~+1)-bN+1.

Computer simulation was done using a length
100,000 sequence with the uniform distribution
U (0,9). The result is shown in Figure 1.

3.2. First Order Markov Chains

Let the thresholded-input transition probabilitics
be P{/(m)=U/(m-1)=0} = p, and
P{i' (m)=0t/(m—-1)=1} = q;- Then we have

Pj

P{t{;m(m—l)=1} = '(1'¢Ij)N: (20)

P;*4;

q;
J '(I_Pj)N: (21)
pj.-i-qj

P{tJ  (m-1)=0} =

max

q . _
J %
(1-p,)" (22)

P{t/(m—-1)=1,¢) (m)=0} =
Pj+‘?j

and

P (m=1y=0, g (m)=1} = (1=, 23
Pj T4

Substituting (20)-(23) into (14), we obtain

’ B(Pjﬂj)'*'B(‘?ij),

where B{a ,b)=(a tb—a (l—b)N)'(l-a)N :

As in the case of the iid input, computer sinula-
tion was done using a length 100,000 sequence
which was generated by a(m) = 0.8 xa{m—-1) +
4xz(m), where z(m) =~ U(0,3). The result 1s
shown in Figure 2.

3.3. Second Order Markov Chains

Let us assume that P{t/(m)=0} = '€,
p{Y(m)=1} = {;, P{/(m)=0| ¥(m-1)=0} =
e, PiE(m)=01 Y(m-1)=1} = o, P{t/(m)=1]
Jm-1)=0) = v, P{r/(m)=1| ¥(m-1)=1} =
K, P{t)(m)=0"1 ¥/ (m~1)=0, ' (m=2)=0} = ¥,
P{ti(m)=0 | H/(m-1)=0, Y(m=-2)=1} =

p{ti(m)=1| t/(m-1)=1, +/(m—2)=0} = ;, and
P{t‘!m)=1 | t/(m-1)=1, (m-2)=1} = §&;.
Then we have

P{dl . (m-1)=1} = (€)" " ;L) (25)
P{r’;m (m—-1)=0} = (hj)N_l"qj-ej, (26)

p{ti(m-1)=1, (m)=0} = ()~ oi;0;1;(27)

and

P{I(m-1)=0,00 . (m)=1} = (&Y' v (28)
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Therefore, if we substitute (25)-(28) into (14), we
obtain
C(gj :Kj ’;J *J‘j 1|J'j !ﬁj) |

(29)

F,(i-1)=

where Cla,b,cd e z)‘)={1—.*.1N"_1-£:v -c}~dN_1*e fc .

Computer simulation was done using a length
100,000 sequence which was generated by a(m) =
02%a(m-2) + 0.1xa(m—-1) + 8.8Xz (m), where
z(m) -~ U (0,24). The result is shown in Figure 3.

From Figures 1-3, it is easy to see that the cdfs

calculated by (19), (24) and (29) are very close to
those obtained from simulation.

N=3
1 T— _—
Eq.(19
09 - q4{19)
08 -
0.7 1
0.6
5 05
o 7 I
0.4 a 'nUt
D3 -
!
0.2 | \
0.1 Simulation
] Eq.(19)
0 - T | !
0 2 4 6 8
input Leval
Figure 1. LI.D. Input
Nal
1
1
09 Simulation
Eq.(24)
0.8 ] input
07 \
06 1
5 05 -
S 0.
0.4 - -
03 - Simulation |
I
0.2 -
0.1 -
£q.(24)
0 +— T J 1 | S S B

Input Lavel
Figure 2. First Order Markov Chains

Ned

| | Simulation /
09 -
EqQ.(29)
s /

0.7
input
0.6
G 05 -
] .
04
input .
03 - /
ﬁ2 ] /
£q.(29)
0.1 - . .
/ Simulation l
0 T 1 1 I T T

0 . 4 6 8 10
input Level |

Figure 3. Second Order Markov Chains

4. Conclusion

We have redefined the output states of recur-

sive median filters. The redefined states are indepen-
dent of window size. Using statistical threshold

decomposition and the redefined states, we have
derived the cumulative distribution function of recur-
sively median filtered sequences useful for any input
distribution. The usefulness of the result was ilus-
trated through computer simulation.
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