
A Scalable and Programmable Sound Synthesizer

Tae-Hwan Kim, Young-Joo Lee and In-Cheol Park

Department of Electrical Engineering

Korea Advanced Institute of Science and Technology (KAIST)

373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea

Abstract— Sound synthesis employed in many multimedia

systems is a useful method to generate sounds of musical

instruments. In this paper, we propose a new VLSI architecture

suitable for a scalable sound synthesizer based on a

programmable data-flow. The sound quality and the level of

polyphony can be enhanced only by increasing operating speed

and enlarging memory. A fully integrated sound synthesis

system is implemented as a prototype to verify the proposed

architecture. The prototype chip fabricated in a 0.18-µm CMOS

process occupies 1.5 x 1.5 mm2, and can synthesize up to 64-

polyphonic sound. The power consumption ranges from 2.05

mW to 13.8 mW depending on the quality of the synthesized

sound.

I. INTRODUCTION

Sound synthesis is to generate a natural sound electrically
by appropriately modeling physical characteristics of musical
instruments. It is one of the most important technologies
commonly required in multimedia systems. Compared to the
classical method that plays back recorded sounds, sound
synthesis requires much less memory, which makes it feasible
to support various sounds even in mobile devices such as
cellular phones or portable multimedia players.

Due to the advances of circuit and process technologies,
hardware architectures for sound synthesis have evolved by
integrating more processing elements to produce high quality,
polyphonic sounds [1]-[6]. Recently, a few commercial
products were developed focusing on low-power consumption
[6], as the mobile multimedia system becomes an attractive
application area.

This paper proposes a new programmable hardware
architecture that has a configurable data-flow optimized for
sound synthesis. In the proposed architecture, both FM
synthesis and additive synthesis are supported in a hybrid
manner. In addition, without any major revision of the
proposed architecture, the sound quality and the level of
polyphony can be enhanced simply by increasing operating
speed and enlarging the size of memory. A fully integrated
sound synthesis system is designed to demonstrate the
efficiency of the proposed architecture.

The rest of the paper is organized as follows. Fundamental
theories on FM synthesis and additive synthesis are introduced
in Section II. Section III proposes a scalable architecture for
sound synthesis, and Section IV describes the design of a

sound synthesis system based on the proposed architecture.
The implementation results and performances of the proposed
system are discussed in Section V. Finally, concluding
remarks are made in Section VI.

II. SOUND SYNTHESIS METHODS

FM synthesis can make harmonic components of various
timbres in a nonlinear manner by modulating the carrier signal
[7]. In the time domain, the FM signal, FM(t) can be
expressed as follows:

 FM(t)=A(t)·sin(fct+B(t)·sin(fmt)), (1)

where fc is the carrier frequency, fm is the modulating
frequency, and A(t) and B(t) are functions of the envelopes of
the carrier and modulating signals, respectively. The envelope,
A(t), is employed to model the physical mechanics of an
instrument, which is conventionally modeled as attack, decay,
sustain, and release (ADSR) curves [8]. The inner modulating
signal B(t)·sin(fmt) deviates the carrier frequency, resulting in a
large number of harmonics whose frequency components exist
in the sidebands of the carrier frequency. The main frequency
component determines a pitch, and the side band components
determine a timbre.

Fig. 1 shows the basic FM synthesis algorithm expressed
in (1), which requires two signal generators. Each signal
generator called an operator consists of an envelope generator
and a modulator. The output of the operator denoted by OP0 is
fed into OP1 to modulate the carrier frequency.

The additive synthesis is an intuitive method to produce an
arbitrary sound composed of many sinusoidal tones, and it is
based on Fourier theory that any signal can be decomposed
into a number of tones. The additive synthesis can be applied
to more general applications such as voice synthesis, whereas
the FM synthesis is appropriate for harmonic sound.

This work was supported by Korean Intellectual Property Office (KIPO)
and IC Design Education Center (IDEC).

Figure 1. Two-operator algorithm for FM synthesis.

978-1-4244-3828-0/09/$25.00 ©2009 IEEE 1855

III. PROPOSED SCALABLE ARCHITECTURE

A. Overall Architecture of the Proposed System

Fig. 2 shows the conceptual view of the proposed system
in which two processors are integrated. One of them is the
host processor which interprets musical instrument digital
interface (MIDI) data [9], and the other is the sound
synthesizer which is responsible for synthesizing a sound
according to the interpreted MIDI data. In the proposed
system, a channel is logically defined as a physical output of
the synthesizer such as an electrical speaker as shown in the
figure, and a track as the sound of a musical instrument. A
number of operators can be involved to synthesize a track. In
the figure, two operators are involved in each of the two tracks
to synthesize sounds. As the audio sampling rate in the system
is much lower than the target operating frequency of the sound
synthesizer and the host processor, a first-in first-out (FIFO)
memory is employed. The output of the FIFO is serially
delivered to the audio CODEC through the interface unit to
produce sounds synchronized with the sampling rate.

In conventional sound synthesis architectures [1]-[4], a
number of processing elements are physically integrated and
their connections are hard-wired, resulting in a limited number
of supported algorithms [1]-[6]. When more processing
elements are required to achieve higher quality or polyphonic
sound, architecture revision is indispensable in conventional
architectures. Additionally, some of the processing elements
are idle in synthesizing low-quality or monophonic sound. As
such an idle processing element exists physically, it consumes
power even if it does not participate in sound synthesis.

In the proposed synthesizer, however, there are only a few
processing elements physically, and these are programmed to
serve the roles of the logical entities in a synthesis algorithm.
Regarding to operators, an operator logically required in a
synthesis algorithm is named as a logical operator, while the
processing element responsible for the logical operator is
named as a physical operator. In the proposed synthesizer,
there is only one physical operator, and the physical operator
can be programmed to work as the four logical operators

shown in Fig. 2 in a time-multiplexed manner. Instructions
needed to control the physical operator are sequentially loaded
from the data-flow description memory (IDM), which stores
how the physical operator is controlled. Parameters and states
required for logical operators are provided from memories
(Track parameter memory (TPM), operator parameter memory
(OPM), operator state memory (OSM)) as shown in Fig. 2. By
repeating the processing for a number of logical operators
involved in sound synthesis, any synthesis algorithms can be
supported without performing hardware revision. Additionally,
the quality of sound can be enhanced easily with higher
operating speed and larger memories.

B. Programmable Architecture Based on Data-Flow

Analyses for Sound Synthesis

The data-flow of sound synthesis can be modeled with a
few kinds of processing elements including the operator. The
most important processing element is the operator whose
functionality is formulated as follows.

………O � Operator(State, Parameters, I, m){

…………O � State.E ∙sin(State.P + I∙m)

…………Calculate ∆E with Parameters and State.E

…………Determine ∆P with Parameters

…………State.E�State.E + ∆E, State.P�State.P + ∆P

………}, (2)

where I and O stand for the input and the output of the
operator, respectively. The envelope and the phase for the
operator are denoted as State.E and State.P, respectively. They
are incrementally updated by ∆E and ∆P. The envelope
increment ∆E is calculated with the parameters representing
the slope of each region in ADSR curve and the current
envelope value. The phase increment ∆P is determined by
considering the sampling rate and using the parameters related
to octaves and notes.

From the viewpoint of operator connections, the logical
operators can be classified into two types. One has an input
connected to the output of another logical operator, and the
other has an input which is fed back. In Fig. 2, OP2
corresponds to the latter, and OP1 to the former. As sound
synthesis algorithms are programmed to execute logical
operators sequentially, the result of a logical operator is stored
into a special register or forwarded by using a bypassing
network, if it is to be processed in another logical operator. To
support the feedback input, the proposed architecture supports
memory operations to store the result of such a logical
operator into a memory, and to retrieve it into a register for the
processing of the next sample. The operator located first in a
track, such as OP0 in Fig. 2, may have no feedback input. In
this case, the physical operator is processed with the zero
multiplying factor (m=0). Based on this feature, the input and
the output of the physical operator are constrained to the
register, and the feedback connection is programmed with
memory operations.

A parallel interconnection between two operators is
modeled with addition. This case arises when two sound
tracks are played into one channel. To combine the sounds
synthesized from multiple tracks, an addition operation is
supported in the architecture.

Figure 2. Conceptual view of the sound synthesis system.

1856

Based on the analyses of data-flows, we defined a set of
instructions optimized for sound synthesis. Some of them are
listed in Table I. Every instruction is 8 bits long. The
instructions have operands from registers or memories. For
example, the OP instruction reads the states and parameters
for a logical operator from memories addressed by A1, and
reads I defined in (2) from the register, OPO, and writes O in
(2) to the same register. The multiplying factor is specified in
the instruction itself as an immediate operand. Instructions
including LOP, LAOP, and SOP are defined to store and
retrieve the result of a logical operator with the temporary
output memory (TOM). Some instructions implicitly use one
of the address registers, A0~A3, and can increment or
decrement the corresponding address register automatically.
As the parameters and the states are usually accessed in a
sequential order, the feature of auto-increment or auto-
decrement helps reduce the overall program size.

The architecture works according to the configured data-
flow program with states and parameters for logical operators.
To synthesize a higher quality sound by adopting a more
complex algorithm in which more operators are involved,
what we have to do is to reprogram the data-flow with
enlarging memories. Although the sound synthesizer needs to
operate in a higher frequency for this case, the modern CMOS
technology usually affords such frequency.

In the proposed architecture, various synthesis algorithms
can be supported in a hybrid manner. As the operator
processing defined in (2) can be applied to additive synthesis
as well as FM synthesis, a hybrid synthesis is possible in the
proposed architecture. For example, we can generate some
instrumental sounds by FM synthesis and vocal sounds by
additive synthesis, simultaneously.

IV. DESIGN OF A PROPOSED SYSTEM

We design a sound synthesis system based on the proposed
architecture with fundamental components fully integrated.
Fig. 3 shows the overall architecture of the proposed synthesis
system. Two processors are integrated in the proposed system.
The first processor called Core-A is a 32-bit general-purpose
processor developed for embedded applications. This is
working as the host processor that interprets MIDI data and
controls the synthesizer. The second processor is a sound
synthesizer. The data-flow description of the synthesizer and
parameters needed for logical operators and tracks are all
mapped into some memory segments in the system, and they
can be accessed by the host processor through the on-chip bus.
The host processor configures the data-flow of a specific
synthesis algorithm according to interpreted MIDI data, and
dynamically updates the track parameters and operator
parameters.

The synthesized sound samples are first stored into the
FIFO and fetched into the digital audio CODEC interface unit.
Reading the FIFO is synchronized with the audio sampling
rate, while writing is done in pace with the system clock
frequency. As the audio sampling rate is much lower than the
target operating frequency of the system, the FIFO has to be
controlled carefully. Therefore, it is desired to safely stop the
synthesizer as soon as the FIFO is full. For this, the clock of
the synthesizer is gated with the state of the FIFO, as shown in
Fig. 3 where a conventional latch-based circuit is employed to
achieve glitch-less clock gating. When stopped, the
synthesizer does not consume dynamic power due to the gated
clock. The simpler synthesis algorithm leads to the longer
inactive time. Exploiting this feature and the programmable
data-flow, we can adaptively change the synthesis algorithm
considering the system power budget.

The sound synthesizer is a reduced instruction set
computer (RISC) specially designed to support the
instructions defined for sound synthesis. The core has six
pipeline stages: instruction fetch (IF), instruction decoding
(DEC), memory access (MEM), two stages of operator
processing (OP1st and OP2nd), and write back (WB). An
instruction indexed by PC is fetched from IDM in the first
stage. The fetched instruction is decoded and some registers
are read in the second stage. In the third stage, memory
operands are loaded and a synthesized sample is stored into
the channel buffer. The fourth and the fifth stage are for
operator processing or accumulation. In the last stage, the
result is written back into a register. Fig. 4 shows the pipeline
architecture of the synthesizer core, including bypassing
networks to avoid data hazards between instructions.

V. IMPLEMENTATION RESULTS

Table II summarizes the characteristics of the prototype
chip designed as a soft IP, and the layout of the prototype chip
is shown in Fig. 5. As the size of states needed for a logical
operator is 32 bits, the maximum number of logical operators
that can be supported in the prototype chip is 128, considering
the sizes of integrated memories. This means about 64-

O
n
-c

h
ip

 b
u

s

Figure 3. Overall architecture of the proposed synthesis system.

TABLE I. SOME INSTRUCTIONS IN THE PROPOSED SYNTHESIZER

Instruction Function

OP m, (A1++) Operator processing with the multiplication factor m, the states OSM[A1], and the parameters OPM[A1]. Selectively increases A1.

LT (A0++) Load a track parameter from TPM[A0]. Selectively increases A0.

WOB (A2++) Write OPO to the A2-th channel buffer. Selectively increases A2.

LOP (A3++) Load data from TOM[A3] into OPO. Selectively increases A3.

LAOP (A3++) Load data from TOM[A3], and accumulate it to OPO. Selectively increase A3.

SOP (A3--) Store OPO to TOM[A3]. Selectively decrease A3.

COM Commit the data in channel buffers into FIFO, and reset PC and all address registers to repeat processing from the start of a program.

1857

polyphonic FM sounds are synthesizable, if a track is
synthesized with the two-operator algorithm. As the limitation
of the number of logical operators comes from the memory
size and clock frequency, higher-quality sound can be
synthesized by simply increasing memory size or clock
frequency without performing any architecture revision.

To investigate the power efficiency of the proposed
architecture, power simulation is carried out for the post-
layout design annotated with switching activities. In Table II,
we can see that the power consumed for the low-quality sound
is much lower than that for the high-quality sound. In
synthesizing the low-quality sound, the synthesizer core is
stopped most of the time by the gated clock explained in
Section IV, as the data-flow is relatively simple.

In Table III, the prototype system is compared with
previous works. The prototype system can support both FM
synthesis and additive synthesis in a hybrid manner and any
algorithms by programming the data-flow description, while
the previous ones can support only one or a limited set of
algorithms. In the prototype system, the number of logical
operators is up to 128, which is much larger than those of the
previous works, and is easily scalable by increasing memory
size and clock frequency. In the proposed system, there is only
one physical operator that is repeatedly controlled to have the
same functionality as a specific data-flow composed of
multiple logical operators. As the operator is the most critical
component in hardware complexity, the proposed system is
efficient in terms of area. Table III shows that the gate count
and chip area resulting from the proposed system are much
smaller than those of previous works, even taking into account
the technology differences.

VI. CONCLUSION

In this paper, we have presented a programmable VLSI
architecture developed for sound synthesis. Analyzing data-
flows of sound synthesis algorithms, we proposed a new
architecture in which the data-flow of sound synthesis is
programmable with a small set of instructions. The proposed
architecture can support higher quality or polyphonic sound by
increasing the sizes of parameter and state memories and the
clock frequency. We implemented a complete sound synthesis
system to validate the proposed architecture. The prototype
chip designed in a 0.18-µm CMOS process occupies about
2.25 mm

2
, and its power consumption ranges from 2.05 mW

to 13.8 mW depending on the quality of sound.

REFERENCES

[1] S. Bernadas, M. Alexander, J. Bian, G. Chowdhury, Q. Dong, M.
Gentry, and et al., "A single-chip multimedia audio system with digital
sample rate conversion and FM sound synthesis," in Proc. of ISSCC, pp.
252-253, 455, Feb. 1996.

[2] F. De Bernardinis, R. Roncella, R. Saletti, P. Terreni, and G. Bertini,
"An efficient VLSI architecture for real-time additive synthesis of
musical signals," IEEE Trans. on VLSI Systems, vol. 7, no. 1, pp. 105-
110, Mar. 1999.

[3] T. Hodes, J. Hauser, J. Wawrzynek, A. Freed, and D. Wessel, "A fixed-
point recursive digital oscillator for additive synthesis of audio," in
Proc. of ICASSP, vol. 2, pp. 993-996, Mar. 1999.

[4] Ho Keun Jang, "A design of sound synthesis IC," in Proc. of ASP-DAC,
pp. 327-328, Feb. 1998.

[5] YAMAHA Coporation, "YMF-262 - FM operator type 3 (OPL-3),".

[6] YAMAHA Coporation, "YMU-786 - mobile audio 5 (MA-5),".

[7] J. Chowning, "The synthesis of complex audio spectra by means of
frequency modulation," Journal of the Audio Engineering Society, vol.
21, issue. 7, pp. 526-534, Sep. 1973.

[8] F.R. Moore, "Elements of computer music," 1990, Prentice-Hall,
Englewood Cliffs, NJ.

[9] MIDI Manufacturers Association, "Complete MIDI 1.0 detailed
specification," Nov. 2001, http://www.midi.org/techspecs/midispec.php

In
itialize

Figure 4. Pipeline architecture for the proposed synthesizer.

Figure 5. Prototype chip.

TABLE II. CHARACTERISTICS OF THE PROTOTYPE SYSTEM

Sound sampling rate 44.1 KHz

Sound dynamic range 120.4 dB (20 bit)

Technology 0.18-µm CMOS, 1-poly 6-metal, 1.8V

Chip size 1.5 x 1.5 mm2

Operating frequency 50 MHz (Max. 123 MHz)

Equivalent gate counts 13.5 K (Synthesizer), 40.2 K (Total)

Power consumption 2.05mW (1-track) , 13.8mW (64-track)

TABLE III. PERFORMANCE OF THE PROPOSED SYSTEM COMPARED WITH PREVIOUS WORKS

Architecture Proposeda [1]b [4]c [2] [5] [6]

Supported

synthesis
Additive + FM FM FM Additive FM+Wavetable

Supported
algorithms

Anything
programmable

2-operator
algorithms

N.A. Additive
2- or 4-operator

algorithms

of operatorsd 128 36 N.A.e N.A. 36 32

Technology
0.18-µm

CMOS

0.6-µm

CMOS

0.8-µm

CMOS

0.5-µm

CMOS
N.A.

Equivalent gate
counts

40.2K 816K 50K N.A. N.A.

Chip size 2.25 mm2 56 mm2 259 mm2 19 mm2 N.A.
a. MIDI controller + sound synthesizer, and all the components described in Fig. 3.

b. Sound synthesizer + sample rate converter.

c. MIDI controller + sound synthesizer.
d. The maximum number of operators logically used in synthesis algorithms.

e. 32 poly-phonic sound can be synthesized.

1858

