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Abstract— Sound synthesis employed in many multimedia 

systems is a useful method to generate sounds of musical 

instruments. In this paper, we propose a new VLSI architecture 

suitable for a scalable sound synthesizer based on a 

programmable data-flow. The sound quality and the level of 

polyphony can be enhanced only by increasing operating speed 

and enlarging memory. A fully integrated sound synthesis 

system is implemented as a prototype to verify the proposed 

architecture. The prototype chip fabricated in a 0.18-µm CMOS 

process occupies 1.5 x 1.5 mm2, and can synthesize up to 64-

polyphonic sound. The power consumption ranges from 2.05 

mW to 13.8 mW depending on the quality of the synthesized 

sound. 

I. INTRODUCTION 

Sound synthesis is to generate a natural sound electrically 
by appropriately modeling physical characteristics of musical 
instruments. It is one of the most important technologies 
commonly required in multimedia systems. Compared to the 
classical method that plays back recorded sounds, sound 
synthesis requires much less memory, which makes it feasible 
to support various sounds even in mobile devices such as 
cellular phones or portable multimedia players. 

Due to the advances of circuit and process technologies, 
hardware architectures for sound synthesis have evolved by 
integrating more processing elements to produce high quality, 
polyphonic sounds [1]-[6]. Recently, a few commercial 
products were developed focusing on low-power consumption 
[6], as the mobile multimedia system becomes an attractive 
application area. 

This paper proposes a new programmable hardware 
architecture that has a configurable data-flow optimized for 
sound synthesis. In the proposed architecture, both FM 
synthesis and additive synthesis are supported in a hybrid 
manner. In addition, without any major revision of the 
proposed architecture, the sound quality and the level of 
polyphony can be enhanced simply by increasing operating 
speed and enlarging the size of memory. A fully integrated 
sound synthesis system is designed to demonstrate the 
efficiency of the proposed architecture. 

The rest of the paper is organized as follows. Fundamental 
theories on FM synthesis and additive synthesis are introduced 
in Section II. Section III proposes a scalable architecture for 
sound synthesis, and Section IV describes the design of a 

sound synthesis system based on the proposed architecture. 
The implementation results and performances of the proposed 
system are discussed in Section V. Finally, concluding 
remarks are made in Section VI. 

II. SOUND SYNTHESIS METHODS 

FM synthesis can make harmonic components of various 
timbres in a nonlinear manner by modulating the carrier signal 
[7]. In the time domain, the FM signal, FM(t) can be 
expressed as follows: 

 FM(t)=A(t)·sin(fct+B(t)·sin(fmt)),  (1) 

where fc is the carrier frequency, fm is the modulating 
frequency, and A(t) and B(t) are functions of the envelopes of 
the carrier and modulating signals, respectively. The envelope, 
A(t), is employed to model the physical mechanics of an 
instrument, which is conventionally modeled as attack, decay, 
sustain, and release (ADSR) curves [8]. The inner modulating 
signal B(t)·sin(fmt) deviates the carrier frequency, resulting in a 
large number of harmonics whose frequency components exist 
in the sidebands of the carrier frequency. The main frequency 
component determines a pitch, and the side band components 
determine a timbre. 

Fig. 1 shows the basic FM synthesis algorithm expressed 
in (1), which requires two signal generators. Each signal 
generator called an operator consists of an envelope generator 
and a modulator. The output of the operator denoted by OP0 is 
fed into OP1 to modulate the carrier frequency. 

The additive synthesis is an intuitive method to produce an 
arbitrary sound composed of many sinusoidal tones, and it is 
based on Fourier theory that any signal can be decomposed 
into a number of tones. The additive synthesis can be applied 
to more general applications such as voice synthesis, whereas 
the FM synthesis is appropriate for harmonic sound. 
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Figure 1.  Two-operator algorithm for FM synthesis. 
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III. PROPOSED SCALABLE ARCHITECTURE 

A. Overall Architecture of the Proposed System 

Fig. 2 shows the conceptual view of the proposed system 
in which two processors are integrated. One of them is the 
host processor which interprets musical instrument digital 
interface (MIDI) data [9], and the other is the sound 
synthesizer which is responsible for synthesizing a sound 
according to the interpreted MIDI data. In the proposed 
system, a channel is logically defined as a physical output of 
the synthesizer such as an electrical speaker as shown in the 
figure, and a track as the sound of a musical instrument. A 
number of operators can be involved to synthesize a track. In 
the figure, two operators are involved in each of the two tracks 
to synthesize sounds. As the audio sampling rate in the system 
is much lower than the target operating frequency of the sound 
synthesizer and the host processor, a first-in first-out (FIFO) 
memory is employed. The output of the FIFO is serially 
delivered to the audio CODEC through the interface unit to 
produce sounds synchronized with the sampling rate. 

In conventional sound synthesis architectures [1]-[4], a 
number of processing elements are physically integrated and 
their connections are hard-wired, resulting in a limited number 
of supported algorithms [1]-[6]. When more processing 
elements are required to achieve higher quality or polyphonic 
sound, architecture revision is indispensable in conventional 
architectures. Additionally, some of the processing elements 
are idle in synthesizing low-quality or monophonic sound. As 
such an idle processing element exists physically, it consumes 
power even if it does not participate in sound synthesis. 

In the proposed synthesizer, however, there are only a few 
processing elements physically, and these are programmed to 
serve the roles of the logical entities in a synthesis algorithm. 
Regarding to operators, an operator logically required in a 
synthesis algorithm is named as a logical operator, while the 
processing element responsible for the logical operator is 
named as a physical operator. In the proposed synthesizer, 
there is only one physical operator, and the physical operator 
can be programmed to work as the four logical operators 

shown in Fig. 2 in a time-multiplexed manner. Instructions 
needed to control the physical operator are sequentially loaded 
from the data-flow description memory (IDM), which stores 
how the physical operator is controlled. Parameters and states 
required for logical operators are provided from memories 
(Track parameter memory (TPM), operator parameter memory 
(OPM), operator state memory (OSM)) as shown in Fig. 2. By 
repeating the processing for a number of logical operators 
involved in sound synthesis, any synthesis algorithms can be 
supported without performing hardware revision. Additionally, 
the quality of sound can be enhanced easily with higher 
operating speed and larger memories. 

B. Programmable Architecture Based on Data-Flow 

Analyses for Sound Synthesis 

The data-flow of sound synthesis can be modeled with a 
few kinds of processing elements including the operator. The 
most important processing element is the operator whose 
functionality is formulated as follows. 

………O � Operator(State, Parameters, I, m){ 

…………O � State.E ∙sin(State.P + I∙m) 

…………Calculate ∆E with Parameters and State.E 

…………Determine ∆P with Parameters 

…………State.E�State.E + ∆E, State.P�State.P + ∆P 

………},                 (2) 

where I and O stand for the input and the output of the 
operator, respectively. The envelope and the phase for the 
operator are denoted as State.E and State.P, respectively. They 
are incrementally updated by ∆E and ∆P. The envelope 
increment ∆E is calculated with the parameters representing 
the slope of each region in ADSR curve and the current 
envelope value. The phase increment ∆P is determined by 
considering the sampling rate and using the parameters related 
to octaves and notes. 

From the viewpoint of operator connections, the logical 
operators can be classified into two types. One has an input 
connected to the output of another logical operator, and the 
other has an input which is fed back. In Fig. 2, OP2 
corresponds to the latter, and OP1 to the former. As sound 
synthesis algorithms are programmed to execute logical 
operators sequentially, the result of a logical operator is stored 
into a special register or forwarded by using a bypassing 
network, if it is to be processed in another logical operator. To 
support the feedback input, the proposed architecture supports 
memory operations to store the result of such a logical 
operator into a memory, and to retrieve it into a register for the 
processing of the next sample. The operator located first in a 
track, such as OP0 in Fig. 2, may have no feedback input. In 
this case, the physical operator is processed with the zero 
multiplying factor (m=0). Based on this feature, the input and 
the output of the physical operator are constrained to the 
register, and the feedback connection is programmed with 
memory operations. 

A parallel interconnection between two operators is 
modeled with addition. This case arises when two sound 
tracks are played into one channel. To combine the sounds 
synthesized from multiple tracks, an addition operation is 
supported in the architecture. 

 

Figure 2.   Conceptual view of the sound synthesis system. 
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Based on the analyses of data-flows, we defined a set of 
instructions optimized for sound synthesis. Some of them are 
listed in Table I. Every instruction is 8 bits long. The 
instructions have operands from registers or memories. For 
example, the OP instruction reads the states and parameters 
for a logical operator from memories addressed by A1, and 
reads I defined in (2) from the register, OPO, and writes O in 
(2) to the same register. The multiplying factor is specified in 
the instruction itself as an immediate operand. Instructions 
including LOP, LAOP, and SOP are defined to store and 
retrieve the result of a logical operator with the temporary 
output memory (TOM). Some instructions implicitly use one 
of the address registers, A0~A3, and can increment or 
decrement the corresponding address register automatically. 
As the parameters and the states are usually accessed in a 
sequential order, the feature of auto-increment or auto-
decrement helps reduce the overall program size. 

The architecture works according to the configured data-
flow program with states and parameters for logical operators. 
To synthesize a higher quality sound by adopting a more 
complex algorithm in which more operators are involved, 
what we have to do is to reprogram the data-flow with 
enlarging memories. Although the sound synthesizer needs to 
operate in a higher frequency for this case, the modern CMOS 
technology usually affords such frequency. 

In the proposed architecture, various synthesis algorithms 
can be supported in a hybrid manner. As the operator 
processing defined in (2) can be applied to additive synthesis 
as well as FM synthesis, a hybrid synthesis is possible in the 
proposed architecture. For example, we can generate some 
instrumental sounds by FM synthesis and vocal sounds by 
additive synthesis, simultaneously. 

IV. DESIGN OF A PROPOSED SYSTEM 

We design a sound synthesis system based on the proposed 
architecture with fundamental components fully integrated. 
Fig. 3 shows the overall architecture of the proposed synthesis 
system. Two processors are integrated in the proposed system. 
The first processor called Core-A is a 32-bit general-purpose 
processor developed for embedded applications. This is 
working as the host processor that interprets MIDI data and 
controls the synthesizer. The second processor is a sound 
synthesizer. The data-flow description of the synthesizer and 
parameters needed for logical operators and tracks are all 
mapped into some memory segments in the system, and they 
can be accessed by the host processor through the on-chip bus. 
The host processor configures the data-flow of a specific 
synthesis algorithm according to interpreted MIDI data, and 
dynamically updates the track parameters and operator 
parameters. 

The synthesized sound samples are first stored into the 
FIFO and fetched into the digital audio CODEC interface unit. 
Reading the FIFO is synchronized with the audio sampling 
rate, while writing is done in pace with the system clock 
frequency. As the audio sampling rate is much lower than the 
target operating frequency of the system, the FIFO has to be 
controlled carefully. Therefore, it is desired to safely stop the 
synthesizer as soon as the FIFO is full. For this, the clock of 
the synthesizer is gated with the state of the FIFO, as shown in 
Fig. 3 where a conventional latch-based circuit is employed to 
achieve glitch-less clock gating. When stopped, the 
synthesizer does not consume dynamic power due to the gated 
clock. The simpler synthesis algorithm leads to the longer 
inactive time. Exploiting this feature and the programmable 
data-flow, we can adaptively change the synthesis algorithm 
considering the system power budget. 

The sound synthesizer is a reduced instruction set 
computer (RISC) specially designed to support the 
instructions defined for sound synthesis. The core has six 
pipeline stages: instruction fetch (IF), instruction decoding 
(DEC), memory access (MEM), two stages of operator 
processing (OP1st and OP2nd), and write back (WB). An 
instruction indexed by PC is fetched from IDM in the first 
stage. The fetched instruction is decoded and some registers 
are read in the second stage. In the third stage, memory 
operands are loaded and a synthesized sample is stored into 
the channel buffer. The fourth and the fifth stage are for 
operator processing or accumulation. In the last stage, the 
result is written back into a register. Fig. 4 shows the pipeline 
architecture of the synthesizer core, including bypassing 
networks to avoid data hazards between instructions. 

V. IMPLEMENTATION RESULTS 

Table II summarizes the characteristics of the prototype 
chip designed as a soft IP, and the layout of the prototype chip 
is shown in Fig. 5. As the size of states needed for a logical 
operator is 32 bits, the maximum number of logical operators 
that can be supported in the prototype chip is 128, considering 
the sizes of integrated memories. This means about 64-
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Figure 3.   Overall architecture of the proposed synthesis system. 

TABLE I. SOME INSTRUCTIONS IN THE PROPOSED SYNTHESIZER 

Instruction Function 

OP m, (A1++) Operator processing with the multiplication factor m, the states OSM[A1], and the parameters OPM[A1]. Selectively increases A1. 

LT (A0++) Load a track parameter from TPM[A0]. Selectively increases A0. 

WOB (A2++) Write OPO to the A2-th channel buffer. Selectively increases A2. 

LOP (A3++) Load data from TOM[A3] into OPO. Selectively increases A3. 

LAOP (A3++) Load data from TOM[A3], and accumulate it to OPO. Selectively increase A3. 

SOP (A3--) Store OPO to TOM[A3]. Selectively decrease A3. 

COM Commit the data in channel buffers into FIFO, and reset PC and all address registers to repeat processing from the start of a program. 
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polyphonic FM sounds are synthesizable, if a track is 
synthesized with the two-operator algorithm. As the limitation 
of the number of logical operators comes from the memory 
size and clock frequency, higher-quality sound can be 
synthesized by simply increasing memory size or clock 
frequency without performing any architecture revision. 

To investigate the power efficiency of the proposed 
architecture, power simulation is carried out for the post-
layout design annotated with switching activities. In Table II, 
we can see that the power consumed for the low-quality sound 
is much lower than that for the high-quality sound. In 
synthesizing the low-quality sound, the synthesizer core is 
stopped most of the time by the gated clock explained in 
Section IV, as the data-flow is relatively simple. 

In Table III, the prototype system is compared with 
previous works. The prototype system can support both FM 
synthesis and additive synthesis in a hybrid manner and any 
algorithms by programming the data-flow description, while 
the previous ones can support only one or a limited set of 
algorithms. In the prototype system, the number of logical 
operators is up to 128, which is much larger than those of the 
previous works, and is easily scalable by increasing memory 
size and clock frequency. In the proposed system, there is only 
one physical operator that is repeatedly controlled to have the 
same functionality as a specific data-flow composed of 
multiple logical operators. As the operator is the most critical 
component in hardware complexity, the proposed system is 
efficient in terms of area. Table III shows that the gate count 
and chip area resulting from the proposed system are much 
smaller than those of previous works, even taking into account 
the technology differences. 

VI. CONCLUSION 

In this paper, we have presented a programmable VLSI 
architecture developed for sound synthesis. Analyzing data-
flows of sound synthesis algorithms, we proposed a new 
architecture in which the data-flow of sound synthesis is 
programmable with a small set of instructions. The proposed 
architecture can support higher quality or polyphonic sound by 
increasing the sizes of parameter and state memories and the 
clock frequency. We implemented a complete sound synthesis 
system to validate the proposed architecture. The prototype 
chip designed in a 0.18-µm CMOS process occupies about 
2.25 mm

2
, and its power consumption ranges from 2.05 mW 

to 13.8 mW depending on the quality of sound. 
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Figure 4.   Pipeline architecture for the proposed synthesizer. 

 

Figure 5.   Prototype chip. 

TABLE II. CHARACTERISTICS OF THE PROTOTYPE SYSTEM 

Sound sampling rate 44.1 KHz 

Sound dynamic range 120.4 dB (20 bit) 

Technology 0.18-µm CMOS, 1-poly 6-metal, 1.8V 

Chip size 1.5 x 1.5 mm2 

Operating frequency 50 MHz (Max. 123 MHz) 

Equivalent gate counts 13.5 K (Synthesizer), 40.2 K (Total) 

Power consumption 2.05mW (1-track ) , 13.8mW (64-track) 

 

TABLE III. PERFORMANCE OF THE PROPOSED SYSTEM COMPARED WITH PREVIOUS WORKS 

Architecture Proposeda [1]b [4]c [2] [5] [6] 

Supported 

synthesis 
Additive + FM FM FM Additive FM+Wavetable 

Supported 
algorithms 

Anything 
programmable 

2-operator 
algorithms 

N.A. Additive 
2- or 4-operator 

algorithms 

# of operatorsd 128 36 N.A.e N.A. 36 32 

Technology 
0.18-µm  

CMOS 

0.6-µm 

CMOS 

0.8-µm 

CMOS 

0.5-µm 

CMOS 
N.A. 

Equivalent gate 
counts 

40.2K 816K 50K N.A. N.A. 

Chip size 2.25 mm2 56 mm2 259 mm2 19 mm2 N.A. 
a.  MIDI controller + sound synthesizer, and all the components described in Fig. 3. 

b. Sound synthesizer + sample rate converter. 

c.  MIDI controller + sound synthesizer. 
d. The maximum number of operators logically used in synthesis algorithms. 

e. 32 poly-phonic sound can be synthesized. 

1858




