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Abstract

In this paper an application of fuzzy testing of
hypothesis to purely stochastic signal detection problem is
considered when the signal-to-noise ratio approaches zero.
We first obtain the general relationship between the test
statistic of the locally optimum fuzzy detector and that of the
locally optimum detector. Based on this result, the test statis-
tics of the locally optimum fuzzy detector for stochastic sig-
nals are obtamned. Several aspects of the locally opimum
fuzzy nonlineanty for stochastic signals are also descnibed.
Finally, performance characteristics of the locally optimum
fuzzy detector are briefly discussed.

1. Introduction

Signal detection schemes based on fuzzy set theory have
recently been investigated in the hterature [2, 4, 5). The
detection schemes seem to be practically appealing since the
noise distribution is often not known exactly. In [5] we dis-
cussed the weak known-signal detection problem with fuzzy
information based on techniques of fuzzy testing of statistical
hypothesis [e.g., 6] and found the detector structure. The
performance characteristics of the detector were also com-
pared with those of the combined system of the quantizer and
locally optimum (LO) detector (1.e., the LOQ detector). The
assumption of known signals 1n [5] is a realistic one since it
1s not difficult to find many examples which can be modeled
as the known-signal detection problem in modem communi-
cation systems.

In this paper an application of fuzzy testing of
hypothesis to detecuon of purely stochastic signals when the
signal-to-noise ratio approaches zero i1s considered as a
natural extension of our previous studies considered 1 3, 6).
It should be noted that a considerable amount of study [e.g.,
3, 7] has been devoted to detection of purely stochastic (or
random) signals in various noise circumstances. This is
because 1t 1s convenient and reasonable o assume less about
the signal than 1s required for known or parameitric assump-
tions when the representation of desired a signal structure is
difficult. For example, in acoustical applications, random
dispersion due to turbulence and inhomogeneities in propaga-
tion media and insufficient understanding of the signal gen-
erating mechanism may lead us to adopt the purely stochastic
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signal model [3].

2. Preliminaries

2.1. Observation Model

Let us consider the well-known signal-detection problem
which can be expressed by the following hypotheses:

Hy: Y, =W, (signal is absent), (1)

VEISUS
Hy: Y, =08, + W; (signal is present), (2)

for i=1,2,...,n. In (1) and (2), Y; is the observation, §; is
the stochastic signal component, and W; 15 the purely-
additive noise (PAN) component at the i -th sampling instant.
The positive real quantity 6 1s the amplitude parameter which
controls the signal strength. The stochastic signal component
§; 1s a random variable which has finite mean p; and van-
ance G7, i =1,2,...,n. The joint probability density function
(pdf) of § = (5,52 -..,85,) is denoted by fz, and the
covariance function of S; and S; 1s denoted by
E{S;—u)(S;—u;)} = Ks(i, 7). The PAN components W,,
(=1,2,..,n, are assumed to be independent and identically
distnibuted (1.1.d.) with common continuous pdf fy-, where
the pdf fw 1s assumed to be zero-mean and even. It is also
assumed that the stochastic signal components are statistically

independent of the PAN components. Based on these descrip-
tions, we can express the conditional joint pdf of ¥ =

(Y..Y, ..., Y,) assuming O as
17610 = [ fsO 1w - 05:) 45, (3)

yn i1=1
where ¥ = (O, ¥2 - - . s ¥ T =(81,52. .. ., 5,), and X" 15

a Euclidean n-dimensional space.

2.2. Assumplions
In order to handle the observation Y; as fuzzy informa-

tion, let us introduce some definitions. Let (X ",Bx,,,F ) be a

probability space where X" 1s a Euclidean n-d:mensional
space, 8,, 1s the Borel o-field, and F is a probability meas-

ure over X". A fuzzy information system T is a fuzzy partition
of the real line X by means of fuzzy events. An n tuple of
elemens m T, R = (K,K5, . .., K, ), X; € T, ¢ = 1,2,....,n, 1§
called the sample fuzzy information of size n based on which
a decision will be made. The set consisting of all possible
sample fuzzy information 1s called the fuzzy random sample



of size n and is denoted by t"). The probability distribution
of ") is given by

P®) = | W) dF ), <
xl

where the integral is the Lebesgue-Stieltjes integral, A(F) is
called the membership function of K, and it is assumed that

lEOT) - I:Ill:l.(yl')-

=1

(3)

From (4) we see that the conditional probability of K assum-
ing O can be expressed as

PRI = [ A7 | B)dy. (6)
A

More details on these descriptions can be found in [6].

It 1s also assumed in this paper that the inputs to both of
the LOQ and LOF detection processors are O; = Q(Y)),
where (0 (-) i1s the gquantizer characteristic. The LOQ detector
makes a decision based on Q;, while the LOF detector makes
8 decision regarding Q; as fuzzy information. In Figure 1(a),
a typical input-output charactenistic of the m-level quantizer
for stochastic signal detection is shown in which we assume
that the quantizer characteristic is even-symmetric. The
parameters {tb;}/%7' and {/;}/%; in Figure 1(a) are called the
breakpoints and quantization levels of the quantizer, respec-
tively.

Based on the above construction we can now consider a
specific fuzzy information. For example, a fuzzy information
T, obtained from the quantizer means that the observed value
hies approximately in {b,, b,] (see Figure 1(b)). The shape of
the membership function J\.t',(y) can arbitrarily be given pro-

vided that it satisfies the constraint of orthogonality. In this
paper, we assume that there 1s a self-noise whose variance 1s
considerably small compared to the varniance of the PAN. In
this case, we see from the discussions 1n [1] that one of the
convenient and reasonable membership functions for the
fuzzy information from the quantizer is the trapezoidal
membership function which s illustrated in Figure 1(b). The
parameter A i Figure 1(b) is called the incredibility.

3. Detector Test Statistics

Based on the fuzzy set theoretic extension of the gen-
eralized Neyman-Pearson lemma, it was shown in {6] that the
test statistic of the LOF detector can be expressed as

4'P(R8) |
Teor(R) = b = (7)
P!l 8=0)

where v is the first non-zero derivative of P(K18) at 6 = 0.
Using (6) and (7), it can be shown that the following rela-
tionship holds between the LOF detector test statistic T or (K)
and the O detector test statistic 710 (¥):

/=1

JW)Tw(Y)wa(J’f)dJ—’
x‘ﬂ'

Tior (R) = (8)

f'[P(x,- | 9=0)

i=1

In this section, we derive the LOF detector test statistic
for stochastic signals using (8).
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3.1. The Case of Non-Zero Mean Stochastic Signals
Let us first assume that at least one of y;, 1 =1,2....,n,
is not zero. Then it can be shown that the LOF detector test
statistic (8) becomes

Tror(R) = 2 W; 8Lor (), 3)

i=1
where

E(A'0))
E(A())

is an LOF nonlinearity for stochastic signals. It is interesting
to note that this nonlinearity is exactly the same as the
known signal LOF nonlineanty [5}. In (10), £ (-} denotes the
statistical expectation with respect to fg.

From {(9), we see Lhat the test statistic is in the form of
the generalized correlator detectors. We also see that in this
case the LOF detector test statistic depends only on the mean
values of the stochastic signals. This mmphes that if a sto-
chastic signal component has a non-zero mean, no other sta-
tistical characteristic of the stochastic signal components than
the mean is necessary in constructing the LOF detector, and
the test statistic is exactly the same as that for known signal
detection with |t; replaced with known signal components.

(10)

Zror(K;) =

3.2. The Case of Zero Mean Stochastic Signals
Now let us assume that y,, i =1,2,...,n, are all zero. If
we assume that the stochastic signals are cormrelated, then 1t
can also be shown that the LOF detector test statistic 1s

Tor® =Y Y. Ks (i, ) gror (%) 8Lor (K;) + 3,67 hpor(X:),
i=1

i=] j=1
ity

(11)

where

[ 200 fw 0 dy,

hior(K;) = — P 16=0) (12)

is also an LOF nonlinearity for stochastic signals. From (11)
we see that when the stochastic signal components are zero-
mean, only the second-order statistics of the stochastic signal
components are crucial in making a decision.

4. Locally Optimum Fuzzy Nonlinearity
for Stochastic Signals

One of the important factors which characterize the
detector structure is the detector nonlinearity. Hence more
details on the characteristics of the LOF nonlinearities would
be helpful and important in descnibing and analyzing LOF
detectors. In this section we will discuss several characteris-
tics of the nonlineanty ;5.

et us first consider an alternative expressions of (12).
Applying integration by parts to (12) twice, we have

E {}0)]
E{(h0))

For trapezoidal membership functions, it can be shown that
we have Property 1 for the LOF nonlineanty A o5 .

hpor(K; ) = (13)



Property- 1. If we consider the trapezoidal membership func-
tion, an altenative form of kor(t) is, for any +7;,
1 =1,2,...m=-2,

D(b;) - D(bi)

or )= G ) - G (By) (9
where
D) A futn-3) - fu(n+S) (15)
and
{A72)
G A J Fw(E)dE. (16)
nN<472)

From (14) we see that h;or depends only on the values
of the pdf at the four points b, £ (A2) and b,,;£(A/2) and of
the cdf for the two intervals of length A
[O; = (A/2), b; +(A/2)) and [b;,,—(A2), b;,1 +(A/2)] in which
the membership grade vanes. Expressions for the LOF non-
hneanty h or for 1o and £ 1, _; can also be obtained to be

D(b
hyor (To) = — ) (17)
5 G (b))
and
Db,
huor (1) = g g (18)
respectively.

We sce that when the membership function is tra-
pezoidal the expressions {13) and (14) are more convenient to
handle than (12) since we can calculate the numerator of (13)
and (14) with ease. In addition, it can be shown that Az (-)
1s a decreasing function of A, which is a natural and reason-

able observation since the detector nonlinearity can physically
be considered as a weighting function for the observation

contatning notse and a large value of A implies that the LOF
detector puts low confidence in the observed information,

Now let us consider a consequential property from {17)
and (18).

Property 2. If we assume that the continuous noise pdf fy is
even, zero-mean, and ummodal with fw(0) being the only
maximum value, then A o7 (1) < 0 and o (T,-1) > 0.

The LO nonlineanty f;5(y) = fw (v )/ fw(y) is an even
function of y when fy is even. It is noteworthy that the
same observation can be found for 4, ;.

Property 3. If A..(y) = Ax(-y) and fw(y) is even, the non-
linearity #; ., (*) 1s an even function of T;.

Properties 2 and 3 imply that the LO and LOF nonlinearities
are of similar characteristic.

5. Performance Characteristic

In this section, we examine some performance charac-
teristics of the LOF detector far stochastic signals obtained in
Section 3 and compare them with those of the LOQ detector.
Specifically, we performed three computer simulations, letting
n = 50, m = 4, and the false-alarm probability (£, ) equal to
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1072, Each simulation for obtaining the detection probabilities
(P;) of the LOQ and LOF detectors was accomplished by
10° Monte-Carlo runs to make the relative error about 0.1%.
For simplicity, we assumed that the stochastic signal com-
ponents are ti.d. with the standard normal pdf. We also
assumed that the pdf of the PAN components 1s standard nor-
mal. To generate the stochastic signal and PAN components
we used the GGNML subroutine of the IMSL.

In the first stmulation, we assumed the ideal situation;
that 1s, it 1s assumed that we have the perfect statistical infoz-
maton on the stochastic signal and PAN components and no

self-noise 15 present. For the LOF detectors, we considered
two values of A, 0.1 and 0.4. The detector thresholds and P,

were obtained through Monte-Carlo simulations. Note that
the Monte-Carlo simulation 1s one of the convenhonal and
reasonable methods, although 1t is no doubt that the method
1s based on a heunstic approach.

Figure 2 shows the plots of the detection probabilities of
the LOQ and LOF detectors as functions of the stochastic-
signal strength parameter 6. From Figure 2 we can see that
there is no difference among the performance characteristics
of the detectors. This seems to be due to the fact that the
order of the ordered fuzzy information space is preserved,
We may conclude that the 1L.OF detector can replace the LOQ
detector in the ideal situation although the LOF detector
regards the output of the quantizer as fuzzy information.

In the second smmulation, we again assumed that we
have the perfect statistical information on the stochastic sig-
nal and PAN components. We assumed, however, that the
self-noise 15 present in the second simulation. We let the
self-noise be normal with mean zero and vaniance (or power)
0.01. (Since the variance of the PAN is assumed to be 1, we
see that the power of the self-noise 1s 20dB lower than that
of the PAN). Now let us denote the LOQ detector for noise
of variance ¥ by LOQ (7). In the second simulation, we used
approximate approach to find the thresholds, since finding the
exact thresholds through the Monte-Carlo simulations 1s too
time-consuming and thus physically cumbersome to imple-
ment. To find the thresholds of the LOF detectors, we used
the approximate value,

1

threshold =Zyin ¥ P(x| 0=0) hﬁ,p(x)}z, (19)

K E X

e

where Z, 1s the 10(1-a)h percentile of the standard normal
distribution. Equation (19) can be obtained with the central
limit theorem. The detector threshold of the LOQ (1) was also
obtamned based on the asymptotic approximation. It should be
noted that some emrors can be made by this asymptotic
approximation.

In Figure 3 we show the plots of the detection probabili-
ties of the LOQ and LOF detectors as functions of 6. From
Figure 3 we first sce that the power function of the LOQ (1)
are large than that of the LOQ (1.01) for all values of 8 2 0,
since the LOQ (1) does not take the effect of the self-noise
into account. We also see that the LOF detectors have inter-
mediate performance characteristics between the LOQ (1) and
LOQ (1.01), and that as A becomes large the performance of
the LOF detector~approaches that of the LOQ(1.01). These
results are pnmanly due to the fact that we calculated the
thresholds based on the Zadeh's definition of probability (4)
and that the probability mass function (pmf) of the quantizer
output level for the LOF detector 1s more similar to the pmf
of the quantizer output level for the LOQ (1.01) than to that



for the LOQ(1).

6. Concluding Remark

In this paper we obtained the locally optimum fuzzy
detector test statistics, for stochastic signals. Several aspects
of the locally optimumn fuzzy nonlinearity for stochastic sig-
nals were discussed. We also examined the performance
charactenistics of the locally optimum fuzzy detector and
showed that the locally optimum fuzzy detector has a robust-
ness property.

The assumption of the self-noise can be considered in a
different point of view. That is, the same procedure as that in
the second computer simulation in Section 5 can be applied
to the situation when the actual noise variance is shghtly
larger than the estimated noise vanance.
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Figure 1. (a) An mnput-output charactenstic of the quantizer
for detection of stochastic signals
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Figure 1. (b) The corresponding membership functions of
fuzzy informations
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Figure 2. Detection probabilities of the 1.OQ and LOF detectors
when there is no self-noise
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Figure 3. Detection probabilities of the LOQ and LOF detectors
when~there is self-noise of variance 0.01.



