B4ERMREBR L TR Y HYY A
The l4th Symposium on Information Theory
and Its Applications (SITA '91})
Ibusuki, Japan, December 11-14, 1991

A Signal Detector for Weak Composite Signals
in Additive and Signal-Dependent Noise

Sangyoub Kim, Jinho Choi, Hyung Myung Kim,
Sun Yong Kim, Seong Il Park, and lickho Song

Department of Electrical Engineering
Korea Advanced Institute of Science and Technology (KAIST)
373-1 Gusung Dong, Yusung Gu, Daejeon 305-701, Korea

Abstract

When the noise has both additive and signal-dependent components, locally
optimum detector test statistics are obtained for detection of weak composite signals
using the generalized Neyman-Pearson lemma. in order to consider the non-additive
noise as well as purely-additive noise, a generalized observation model is used in
this paper. The locally optimum detector test statistics are derived far several
different cases according to the relative strengths of the known signal component, the
random signal component, and the signal-dependent noise component. Schematic
diagrams of the locally optimum detector structures are also included.

1. Introduction

In various areas of signal processing research including
study of signal detection problems, the purely-additive noise
(PAN) model has been most widely used because thc PAN
model is relatively easy to handle mathematically and to obtain
explicit structures for detection processors in a variety of applica-
tions [1,2]. Moreover, the PAN model produces quite acceptable
results in many cases, where the level of the contribution of
higher order statistics or of nonlinearity is not very significant.

There are some other cases, however, in which we arc
forced to use a non-additive noise model to produce more realis-
tic and reasonable approximations {3,4]. For example, the effects
of delayed signals from multipath or reverberation phenomena
and the actions of automatic gain control circuits or of nonlineari-
ties acting on additive signal and noise components may all be
modeled using non-additive (e.g., signal-dependent) as well as
purely-additive noise components.

Locally optimum (LO) detectors, which are known to be
optimum when the signal strength approaches zero, have bases in
the generalized Neyman-Pearson lemma of statistical hypothesis
testing [5,6]. Instead of maximizing the detection probability, the
LO detectors maximize the slope of the power function for a
given false-alarm probability. The LO detector structure is in
addition easier to implement than that of other detectors including
uniformly most powerful (UMP) and optimum detectors.

In this paper, we employ a generalized observation model in
which the effects of both signal-dependent and purely-additive
noise components may simultaneously be reflected. In addition,
the signal is assumed to be composite signals which have both
known (deterministic) and random (stochastic) signal com-
ponents. The purpose of this paper is thus to obtain the test
statistics of the LO detector for detection of composite signals in
the signal-dependent noise model.

2. An Observation Model

2.1. The model

The widely-used observation model including only PAN
may be described by

X, =00, +W,, i=12---.n. (2.1)

where 0 is a signal strength parameter, Q; is either a known sig-
nal component or a random signal component, and W; is the
PAN. Although the PAN model has been widely used, there are
some cases where the PAN model is not an appropriate approxi-
mation to the mechanism producing noisy observations as dis-
cussed in Introduction.

Let us now introduce a more general and realistic observa-
tion model which may be used in a broader range of situations.
Let us consider the model describing the observations X; for

f=1,2,-++,n, by
X = ote; + B()S; + ON; + W;. (2.2)

In (2.2), ¢; is the known signal component and §; is the ran-
dom signal component with known probability density function
(pdf) at the i-th sampling instant. The random signal component
S, is a zero mean random variable which has variance G,-z and
pdf f5, i=1,2,---,n. The functions aft) and B(t) are the sig-
nal strength functions of thc known signal components and the
random signal components, respectively. The additional term
KT N; is a signal-dependent noise term with amplitude WT),
where the parameter t© also controls the signal strengths through
a(t) and B(1r). We will assume that o(t), 3(1), and Y(t) arc non-
decreasing functions of 1>0 and that o(0)=(0)=v0)=0. The
signal-dependent noise sequence (N, };.; and the additive noise
sequence {W; ]}, are both assumed to be independent and identi-
cally distributed (i.i.d.) random variables with pdfs fy and fy.
respectively. It is also assumed that {N;},7; and {S;}/.; are
independent. Finally we will denotc by faw the common joint
pdf of the (N;,W;), which are i.i.d. bivariate random variables for
i=1,2,---,n,

2.2. Hypotheses and definitions
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With the observation model (2.2), it is now possible to
express our problem of composite signal detection by a statistical
hypothesis testing problem of choosing between a null hypothesis
H, and an alternative hypothesis H . More specifically, under Hy

we have ©t=0 or

HOZX5=W,', £=1,2,--',n. | (23)

and under H we have t>0 or

H; : X; = o(t)e; +B(T)S; +(ON; +W,, i=1,2,«,n (24

Before we proceed further with these hypothesis, let us
introduce some definitions for notational convenignce. Let us

define LO nonlinearities as

fw(x)
— , (2.5)
ey
o) (2.6)
82(x) fwx)
fw(x)
hi(x) = . 2.7
0= o @7
and
By = LX) 2.8
3(x) For0) (2.8)
where
u(x) = [n fw(n,w) dn (2.9)
= fw(x)E{N|W=x}
and

v(x) = [n®fyw(n.w)dn 2.10)

= fw()E{N* | W=x}

are weighted conditional mecan function and weighted conditional
variance function.

2.3. Reparametrization of the model

In deriving the LO delector test statistics, it is convenient {0
reparametrize the observation model (2.2). Because of the
assumptions on o(t), P(t), and Y1) that they are nondecreasing
functions of 1> 0 with values 0 at 1=0, we have

lim 22 1. 2.11)

0" P

lim f;(?"f) =1, (2.12)
and

lim X2 -, (2.13)

30" NT

where p,q,r,0,&, and N are all positive numbers. With the six
numbers defined by (2.11)-(2.13) let us define two parameters A,
ang A, as follows:
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A= £ (2.14)
and
A, = £ (2.15)
g

The values of A; and A, indicate the strength of the known signal
component with respect to that of the signal-dependent noise
component and the strength of the known signal component with
respect to that of the random signal component, respectively. It is
thus easy to see that the parameters A; and A, would play an
important role in determining if the signal-dependent noisc com-
ponent is dominant over the two signal components.

The reparametrization of the observation model (2.2) is
accomplished by applying one of the following three rules:

A) a(0)=9, b(8)=PB(1), ¢(8)=y(1) with 0=0(1),

B) b(8)=6, c(0)=11), a(8)=0(T) with 8=0(1),
or

C) c(0)=0, a(0)=0(1). b(0)=pP(1) with B=y(1).

Application of a specific reparametrization rule among the above
three rules is determined according to the values of Ay and A, as
follows:

Case 1 : Ap<2

i) When A, <1, we apply reparametrization rule A).

ii) When A,22, we apply reparametrization rule C).

iii) When 1<A; <2, we apply reparametrization rule A)
if E {N1W }=0 and reparametrization rule C)
if E {NIW }+0.

Case 2 : 5222

i) When A, 22A,, we apply reparametrization rule B).

ii) When A, S A, we apply reparametrization rule C).

iii) When A, <A, <2A,, we apply reparametrization rule B)
if £ {N|W }=0 and reparameterization rule C)
if E [N | W }=0.

~ Above reparametrization of the observation model (2.2) does
not change the structure of the LO detector for composite signal
detection; rather it relieves us from unneccssarily excessive
mathematical operations when we derive the test statistics of the
LO detectors as explained in [7,8,9].
In the observation model after the reparametrization, the
observation X; is represented by

X;=a(0)e; + b(9)S; + c(ON; + W,, (2.16)

where at least one of the three amplitude functions a (0), &(0),
and ¢(8) is 6.

3. Detector Test Statistics and Structures

3.1. Test staristics

Since we can find the detailed discussions on the general
theory of LO detection in many other studies, we will proceed
here direcily to the derivation of the LO detector test statistics.
Because the noise and random signal components are assumed o
be independent, the joint pdfs of the observation set are

folx) =T [ frw 01 3,) dn 3.1)

under Hﬂ and



F1x) = [£56) TL [ fa (s, 5= @@ (3.2

+b(9)$,' +C(9)HE)) dﬂi ds

under H,, where f¢ is the joint pdf of §4,5,5,:--,S,. Applying
the gencralized Neyman-Pearson lemma, we get the test statistic
of the LO detector,

Tpo(x) = PO (3.3)

where v is the first non-zero derivative of f (x) at 8=0.

Using (3.3) the test statistics of the LO detectors for the
observation model (2.16) are obtained to be as follows.

1) When Ay <2 or when A, 22 and A;> A, the test statistic
IS

n

Tro(X) = Y, {e;A(X;) + Ap(X;)). (3.4)

2) When ;22 and A <A, the test statistic is

Y, Ks(i.j)g 18 1(X;) (3.5)
=1

J=
* J

TioX)=73%
i=1
i

+ 3020 (X0 + M) + MK,

(=1

where

20 <

-a—gl(x), when A, <2 and A=A,

€
A(x) = 0, when A,>2 or when A;>A, (3.6)
and

2—2‘-32(1), when E{NIW}#0 and A, 21,

£

2

M) = | Lhyx), when E(NIW)=0and A;22,  (3.7)

3

L 0, when A, <A,

with

1, when E{NIW}=0,

A = 2, when E{N|IW}=0. (3.8)

-

The results 1) and 2) are tabulated in Table 1, where we
showed the test statistics in terms of the functions g4, &y, A}, and

A,
From 1) to 2), we can make the following observations:

(a) When A, <2 and A; <A,, we observe that the LO test statistic
is exactly the same as the known signal LO detector test statistic
[1]. When A;>2 and A; <A, on the other hand, the LO detector
test statistic is exactly the same as that for the random signal LO
detector test statistic [2]. It is also observed that when A=A, or
when A;=2 and A, <A, the test statistic is a combined form of

these three test statistics. For example, when E {N |1 W }20, A =1,
and A,=2 (e.g., (p.q,r) = (2,1,2) ) or when E{N|W}=0,
Ay=1, and A,=2 (e.g., (p.q,r) = (2,1,1) ), the known signal
components, the random signal components, and the signal-
dependent noise components have effects on the test statistics.

(b) The critical value of A,, from which we can say whether the
known signal components are dominant or the random signal
components are dominant, is 2. In other words, when A;<2 the
known signal components are relatively strong, and when A;>2
the random signal componcnts are dominant. When A,=2 both
the known signal components and the random signal components
have effecis on the LO detector test statistic.

(c) The critical value of A, from which we can say whether the

signal components are dominant or the signal-dependent noise
components are dominant, is A.. In other words, when A, <A,

the signal components are relatively strong, and when A;> A, the
signal-dependent noise components are dominant. When A, =4,

both the signal components and the signal-dependent noise com-
ponents have effects on the LO detector test statistic.

3.2. Structures of the locally optimum detectors

Let us now show the schematic diagrams of the structures ot
the LO detectors obtained in Section 3.1.

3.2.1. Case 1 : When A, <2 or when A, 22 and Ap> A,

A block diagram of the structure of the LO detector in this
case is shown in Figure 1. The structure of the LO detector in
this case is almost the same as that of the LO detector for known
signals in the PAN model.

3.2.2. Case 2 : When A,22 and A=A,

Let us first assume that the random signal component is a
white random process; that is, Kg(i,j)=0 for i#j. Then the LO
detector test statistic of Equation (3.5) can be simplified as

TLO (X) = i {Uizh I(Xi) + eill(xi) + M(Xl)}‘l (3-9)

i=1

for which a block diagram of the corresponding locally optimum
detector is shown in Figure 2, where A,(x) and Ay(x) are defined
in Equation (3.6) and Equation (3.7), respectively.

- To find a structure of the LO detector for the correlated sig-
nal case, let us assume that the random signal components are
wide-sense stationary, and

for li—jl €m,
for li—jl >m,

K(ti—j!),

K_g(f,j) — 0‘ (310)

where m is some finite integer and m <« n.
Let a discrete-time filter with impuls¢ rcsponse

{c;, i=0,£1,12, - - - } have a frequency response H (w) satisty-
ing | H(w)| 2=0g(w) where ®s(w) is the signal power spectral
density, then we have

oo 2
(Ds(W):l Z C;é'_ijl . (3.'1)
| ==a0

Under these assumptions it can be shown that

o n pi
TioX)= % | ¥ g1(Xi)ci| 3.12)

jm—oo =l

+ 3 10,2k (X)) — g 2D} + &My (X) + A(X)

i=]
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A structure of the corresponding LO detector can be obtained as
in Figure 3.

4. Conclusion

In this paper, we have derived the locally optimum detector
test statistics for composite signals in a generalized noisy signal
model. Under the observation model we investigated the effect of
the signal-dependent noise as well as that of the additive noise on
the test statistics.

It was shown that the ratio of the decay parameter of the
signal-dependent noise strength to that of the known signal
strength together with the ratio of the decay parameter of the ran-
dom signal strength to that of the known signal strength were
important factors (o obtain the locally optimum detector test
statistics. Structures of the locally optimum detectors were
obtained.

As a future investigation, it would be natural to examine the
 performance characteristics of the locally optimum detectors for
composite signals in the signal-dependent noise model. The
asymptotic performance and the finitc sample-size performance of
the locally optimum detectors are under investigation.
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Table 1. The Locally Optimum Detector Test Statisitics

Figure 1. A Block Diagram of the Locally Optimum Detector
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Figure 2. A Block Diagram of the Locally Optimum Detector
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Figure 3. A block Diagram of the Locally Optimum Detector

When A;2 2and A, g A, for Correlated Random Signal Components



