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Abstract— This paper discusses the reason why QEA works
and verifies how QEA works. The theoretical analysis of the
simplified model of the segment process of QEA shows that
QEA with a single individual for ONEMAX problem guarantees
the global solution in terms of expected running number
of generations. The analysis for exploration shows clearly
that QEA starts with a global search scheme and changes
automatically into a local search scheme as generation advances
because of its inherent probabilistic mechanism, which leads
to a good balance between exploration and exploitation. For
comparison purpose, simulated annealing is considered with
three test functions. The results support the conclusions derived
from the theoretical analysis of QEA with a single individual.

I. INTRODUCTION

Evolutionary algorithms (EAs) are characterized by the
representation of the individual, the evaluation function
representing the fitness level of the individuals, and the
population dynamics such as population size, variation opera-
tors, parent selection, reproduction and inheritance, survival
competition method, etc. To have a good balance between
exploration and exploitation, these components should be
designed properly.

Quantum-inspired evolutionary algorithm (QEA) recently
proposed in [1] can treat the balance between exploration
and exploitation more easily compared to conventional GAs
(CGAs). Also, QEA can explore the search space with
a smaller number of individuals and exploit the search
space for a global solution within a short span of time.
QEA is based on the concept and principles of quantum
computing, such as the quantum bit and the superposition
of states. However, QEA is not a quantum algorithm, but a
novel evolutionary algorithm [2]. Like any other evolutionary
algorithms, QEA is also characterized by the representation
of the individual, the evaluation function, and the population
dynamics [3].

In [4], a probabilistic representation and a novel popu-
lation dynamics inspired by quantum computing were first
proposed. In [1], the basic structure of QEA and its character-
istics were formulated and analyzed, respectively. According
to [1], the results (tested on the knapsack problem) of
QEA were proved to be better than those of CGA. In [5],
some guidelines for setting the parameters of QEA were
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presented. In [6], QEA was extended to numerical optimiza-
tion problems, and several research issues on QEA, such
as a termination criterion, a variation operator, and a two-
phase scheme, were discussed to improve its performance. In
[7], QEA was applied to a decision boundary optimization
for face verification. Compared to the conventional PCA
(principal components analysis) method, improved results
were achieved both in terms of the face verification rate and
false alarm rate.

With no connection to quantum computing, a number of
evolutionary algorithms that guide the exploration of the
search space by building probabilistic models of promising
solutions found have been introduced since the late 1990s [8].
These algorithms have shown to perform well on a variety
of problems. In the population-based incremental learning
(PBIL) which is a method of combining the mechanisms
of a generational genetic algorithm with simple competitive
learning [9], the solutions are represented by binary strings
and the population of solutions is replaced with a probability
vector. The compact genetic algorithm (cGA) [10] replaces
the population with a single probability vector as in PBIL,
however its modification method of the probability vector
is different from PBIL. The univariate marginal distribution
algorithm (UMDA) [11] also assumes that the probabilities
of bits are independent of each other. It should be worth-
while to compare QEA with these estimation of distribution
algorithms (EDASs), though it is beyond the scope of this
paper.

This paper discusses the reason why QEA works and
verifies how QEA works. The QEA algorithm with a single
individual is considered with a simple test function, ONE-
Max problem. A simplified model of the segment process of
QEA is defined to analyze its convergence for exploitation,
and Shannon entropy is introduced to investigate the strategy
of exploration for QEA. From the analysis of the simplified
model of the segment process of QEA, QEA with a single
individual for the ONEMAX problem guarantees the global
solution in terms of expected running number of generations.
The analysis for exploration shows clearly that QEA starts
with a global search scheme and changes automatically into
a local search scheme as generation advances because of its
inherent probabilistic mechanism, which leads to a good bal-
ance between exploration and exploitation. For comparison
purpose, simulated annealing which seems to be similar to
QEA with a single individual at a glance (but, QEA is quite
different from simulated annealing) is considered with three
test functions. The results support the conclusions derived
from the theoretical analysis of QEA with a single individual.
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This paper is organized as follows. Section Il describes
the QEA algorithm. Section 11l describes the verification of
the QEA algorithm with a single individual from the two
viewpoints of exploration and exploitation. The experimental
results on three test functions were also summarized for the
purpose of comparison between QEA with a single individual
and simulated annealing. Finally, concluding remarks follow
in Section IV.

Il. PRELIMINARIES
A. Representation

QEA uses a Q-bit! representation which is a kind of
probabilistic representation. A Q-bit is defined as the smallest
unit of information in QEA, which is defined as a pair of
numbers?, (a, 3), where |a|? + [8]> = 1. |a|? gives the
probability that the Q-bit will be found in the ‘0’ state and
B|? gives the probability that the Q-bit will be found in the
‘1’ state. A Q-bit may be in the ‘1’ state, in the ‘0’ state, or
in a linear superposition of the two states.

A Q-bit individual as a string of m Q-bits is defined as

71 2 e Qo
1
[ b1 B2 ‘ Bm ]’ @)
where ;> + 3> =1,i=1,2,--- ,m.

Q-bit representation has the advantage that it is able to
represent a linear superposition of states probabilistically.

B. QEA

QEA is a probabilistic algorithm similar to other evolu-
tionary algorithms. QEA, however, maintains a population of
Q-bit individuals, Q(¢) = {q},db, - ,d’,} at generation ¢,
where n is the size of population, and q§- is a Q-bit individual
defined as
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where m is the number of Q-bits, i.e., the string length of
the Q-bit individual, and j = 1,2,--- ,n.

Figure 1 shows the procedure of QEA that can be ex-
plained in the following:

i) In the step of ‘initialize Q(¢),; oY and B9, i =
1,2,---,m, of all ¢}, j = 1,2,--- ,n, are initialized with
%' It means that one Q-bit individual, q? represents the
linear superposition of all the possible states with the same
probability. However, it should be noted that the performance
of QEA can be influenced by the initial value. The effect of
the initial value was discussed in [6].

ii) This step makes binary solutions in P(0) by observing
the states of Q(0), where P(0) = {x{,x9,---,x2} at
generation ¢ = 0. One binary solution x?, 7=12---n,
is a binary string of length m, which is formed by selecting

‘ G ] @

im

1Q-bit is defined in [1], and means quantum-inspired bit which is different
from qubit.

2QEA uses real numbers for o and 3 of Q-bit in this paper. However,
QEA can be extended to use complex numbers for those of Q-bit to include
more information for mutual dependencies of Q-bits.

Procedure QEA
begin
t—0
i) initialize Q(t)
i) make P(t) by observing the states of Q(¢)
iii) evaluate P(t)

iv) store the best solutions among P(t) into B(t)
V) while (not termination condition) do
begin
t—t+1
Vi) make P(t) by observing the states of Q(¢ — 1)
vii) evaluate P(t)
viii) update Q(t) using Q-gates
iX) store the best solutions among
B(t—1) and P(¢) into B(t)
X) store the best solution b among B(t)
Xi) if (global migration condition)
then migrate b to B(t) globally
Xii) else if (local migration condition)
then migrate b’ in B(t) to B(t) locally
end
end
Fig. 1. Procedure of QEA.

either 0 or 1 for each bit using the probability, either | |?
or [671?,i=1,2,---,m, of q), respectively.

iii) Each binary solution xg? is evaluated to give a measure
of its fitness.

iv) The initial best solutions are then selected among the
binary solutions P(0), and stored into B(0), where B(0) =
{b?,13,---,b)}, and bY is the same as x7 at the initial
generation.

v) Until the termination condition is satisfied, QEA is
running in the while loop. Note that termination criteria were
described in [6].

vi, vii) In the while loop, binary solutions in P(t) are
formed by observing the states of Q(¢ — 1) as in step ii),
and each binary solution is evaluated for the fitness value. It
should be noted that x} in P(t) can be formed by multiple
observations of qul in Q(t —1). In this case, x} should be
replaced by x§l, where [ is an observation index.

viii) In this step, Q-bit individuals in Q(t) are updated by
applying Q-gates defined as a variation operator of QEA,
by which operation the updated Q-bit should satisfy the
normalization condition, [o/|? + |3'|> = 1, where o/ and 3’
are the values of the updated Q-bit. The following rotation
gate is used as a basic Q-gate in QEA:

cos(Ad;) —sin(A6;) 3)
sin(A6;)  cos(A8;) |’
where Af;, 1 =1,2,--- ,m, is a rotation angle of each Q-bit

toward either 0 or 1 state depending on its sign. Af; should
be designed in compliance with the application problem. A#g;

U(Ab;) =
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can be obtained as a function of the sth bit of the best solution
b’, the ith bit of the binary solution x?, and some meaningful
conditions. It should be noted that H. gate which is a novel
Q-gate as a variation operator was designed in [6].

ix, X) The best solutions among B(t — 1) and P(t) are
selected and stored into B(t), and if the best solution stored
in B(t) is better fitted than the stored best solution b, the
stored solution b is replaced by the new one.

xi, xii) If the global migration condition is satisfied, the
best solution b is migrated to B(t) globally. If the local
migration condition is satisfied, the best one in a local group
in B(t) is migrated to others in the same local group. The
migration process can induce a variation of the probabilities
of a Q-bit individual. A local group in QEA is defined as the
subpopulation affected mutually by a local migration, and its
size is the number of individuals in the local group.

1. VERIFICATION OF THE QEA ALGORITHM

There have been some works done based on the theoretical
analysis of EAs for certain simple functions [12], [13],
[14], [15], [16]. However, the theories behind these analyses
cannot be applied to the analysis of QEA, since the structure
of QEA is quite different from any other EAs. In this section,
the reason why and how QEA works is investigated by using
a simple function with two viewpoints like its exploitation
and exploration.

A. Exploitation

A theoretical model for the whole process of QEA is hard
to find, since each state of QEA is dependent on the past
history. However, if a simplified model for a segment of
the QEA process (as shown in Figure 2) is considered, the
abstract model can be regarded as a Markov chain.

Fig. 2. Simplified process model for a segment of the QEA process.
The simplified model of the segment process of QEA
represents the process which is defined during the state
holding period t¢; between the tsth generation when the
current best solution visits and the t.th (or (¢s + tp)th)
generation when the current best solution jumps to another
better solution. In Figure 2, sy is the state which indicates
the state when the current best solution is maintained, and
s1 Is the state which indicates the state when the current
best solution is changed to another better solution. e is the
event that states that the observed solution is worse than the
current best solution, and e; is the event that states that the
observed solution is better than the current best solution. And
pijy 1,7 = 0,1, is the transition probability from state ¢ to

state j. It should be noted that p,o and p;; are not needed,
since the process corresponding to this model is terminated
if the state is changed from sy to s;. The whole process of
QEA can be regarded as a sequence of segment processes.

The segment process of QEA (SPQEA) is described by
using Markov process [17] as follows:

SPQFEA = (E,S,T',p,po) (@)
E ={ep,e1}, S={s0,51},

[(so) = {eo,e1}, T'(s1) ={},

p(s0550,€0) = poo, P(51;50,€1) = Po1,

po(so) =1, po(s1) =0,

where E is an event set, S a state space, I'(s) a set of feasible
events defined for all s € S with T'(s) C E, p(s'; s,¢’) a state
transition probability defined for all s,s’ € S, ¢’ € E, and
such that p(s’;s,e’) = 0 for all ¢ ¢ I'(s), and po(s) the
probability mass function P[Sy; = s, s € S, of the initial
state Sy which is a discrete random variable.
Let us consider the ONEMAX problem as follows:

ONEMAX problem: Maximize

ONEMAX(x) = izi, (5)
i=1

where z; is the ith bit of x, m is the length of x, and the
global maximum value is m at x = 111--- 1.
Let us suppose that all the rotation angles of the rotation
gate in QEA are zeros. Then the QEA process is the same
as the process of random search. In this case, each solution in
the search space has the same probability and its probability
is invariant all the time. It means that this process can be
modelled by using only one SPQEA with pgy = 257 and
Po1 = 2%” The expected running number of generations for
this model is described in the following.

Theorem 1: The expected running number of generations
ty, of the random search is

log 2

~log(1—por)’ ©)

th =
where pg; is the transition probability from state s, to state
S1.
Proof. Let V(s) be the number of generations spent at state
s when it is visited.

P[V(so) =1 = po

P[V(sg) = 2] poopor = (1 —po1)po1
PlV(so)=3] = piopor = (1 —po1)’po
PlV(so)=t] = pho'por = (1 —po1)" 'po1

To give the expected running number of generations ¢, the
summation of the probability P[V (sg) = k] from k =1 to
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k = t;, should be 1.

th

Z PlV(so) =t = 1-(1—pu)" = 3
=

e~ log 2

ol log(1 —po1)’

Theorem 2: The expected running number of generations
t;, of the random search for the ONEMAX problem for length
m is

log 2
ty, = %. (7)
log(1 — 57)
Proof. Each solution in the search space for the random

search has the same probability 5= and its probability is
invariant all the time. Let sy be the state when the current
best solution is one of all the possible solutions except the
global maximum Then the transition probabilities poy and
respectively. By Theorem 1,

2777, 1

log 2 log 2
th = _— =

log(1 — po1) B log(1 — 2%)

However, if the rotation angles are not zeros, the QEA
process should be considered as a sequence of SPQEA
models. Also, one SPQEA model should not be considered as
a homogeneous Markov chain, since the transition probability
pi; is dependent on generation t. Let us consider only
one segment of the QEA process, SPQEA. The transition
probability at the generation ¢ is supposed to be po;(t) =
E(W)por(t — 1), where £(¢t) is the increasing rate of the
transition probability po1(t), 0 < po1(t) <1, £(1) =1, and
1 <&(t) < ﬁ for ¢ > 1, the expected running number
of generations o% SPQEA can be obtained as follows.

Theorem 3: The expected running number of generations
t;, of SPQEA with time-varying transition probability can be
approximated as

h)g < 6 + 2P01(0)>
log(§ — €po1(0))

where po1(0) is the initial transition probability from state
so to state s; and £ is a constant satisfying Zk 1Po1(k) =

> iy £ 101 (0).

Proof Let po1(t) be the transition probability from sq to s1
and £(t) the increasing rate of the transition probability at
the generation ¢, where &(¢) ”Ol(t) for ¢t > 1 and £(1)
= 1. The probabilities for the state <hold|ng period of sq are

(®)

th ~

PV (so) = 1] po1(1) = &£(1)po1(0) = po1(0)
PlV(so)=2] = (1—poi(1))poi(2)
= (1= p01(0))&(2)po1(0)
P[V(so) =3] = (1—p01(0))(1 —&(2)po1(0)) x
€(3)€(2)po1(0)
P[V(so) =4] = (1—p01(0))(1 —&(2)po1(0)) x
(1 —£€(3)€(2)po1(0))€(4)€(3)€(2)po1(0)

adBP N A& x=1.00
2L X =1 -
w AAA + x=1.01
a, O x=1.20
a
10 2a J
AA
AAA
10° IR 1
AA
a
a
6L a 4
10 9N
a
AA
4l Aa 4
10 N
066004#44#**00#0‘6040‘0000‘. AA
Ty N
1&,OOOOOODOOODOOOOOOOOOODOOOOOOODOO'¢QA 4
Oo OOOOOA
o
10t . . . , . ) o]
162 10% 16° 10° 10* o*
P01(0)
Fig. 3. Comparison of the expected running number of generations (¢)

with respect to the initial transition probability (po1(0)) between QEA (¢ =
1.01 and 1.2) and random search (¢ = 1.0). £ is the increasing rate of (8).
A logarithmic (base 10) scale is used for the horizontal and vertical axes.

Let &(¢) be a constant ¢ satisfying Zzzlp01(k) =
S €% 1pg1(0), the above can be rewritten as

PlV(so) =1] = po1(0)
PlV(so)=2] = (1-po1(0))&po1(0)
P[V(so) =3] = (1=po1(0))(1 — £po1(0))&*por(0)
PlV(so) =4] = (1 —-p01(0))(1—&po1(0)) x

(1= €%po1(0))&>po1(0)

T e

PlV(so) =1 = JJQ—&"Ppoi(0)& " poi(0).

k=0

Since ¢ can be considered as (1 + ( ) where 0 < § <
po1(0), P[V(sg) =t] can be approxrmated as

P[V (s0 (1=p0o1(0))" 1 & 'po1(0).

To give the expected running number of generations ¢, the
summation of the probability P[V (sg) = k| from k =1 to
k = t;, should be % Therefore, the expected running number
of generations of SPQEA is obtained as

g N L= (1—po)irgh 1
;P[V(so) =i~ ) 1—(1—po1)§ T2
1og<

£<+ %il%)) I
log(§ — €po1(0))

It should be noted that if £ is 1, ¢, of (8) remains the
same as that of (6) for random search. Figure 3 shows the
expected running number of generations ¢, with respect to
the initial transition probability po; (0). In the case of random
search (¢ = 1.0), if po1(0) is small, ¢, is very large, e.g.
thlpos (0)=1.0x10-13 = 6.9 x 10'% at £ = 1.0. However, for
the cases of QEA (£ = 1.01 and 1.2), the expected running
number of generations is much smaller than that of random
search, e.9. tn|p,, (0)=1.0x10-13 = 2,475 at £ = 1.01 and 151
at £ =1.2.

)=t =

Sty =
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TABLE |
SIMULATION RESULTS FOR THE VERIFICATION OF THE INCREASING
RATE £ BY A SIMPLE CALCULATION FOR THE ONEMAX PROBLEM FOR
LENGTH m, WHERE m = 4. t IS THE TIME STEP (OR GENERATION), x¢
THE OBSERVED SOLUTION AT ¢, po1 (t) THE TRANSITION PROBABILITY
FROM sg TO s1, AND £(t) THE INCREASING RATE pol(t>1> po1(t) WAS
OBTAINED BY THE SUM OF P[X; = 1111], P[X; = 1110],
P[X; = 1101], P[X; = 1011], AND P[X; = 0111].

[ t =1 I t =2 | t=3 ]
[x0 TporM [ & [ x1 [ po1@ | €@ | x2 | po1® | &3 |

0000 0.4590 11923

0001 0.4168 10828

0000 0.3849 12318 |[ 0010 0.4168 10828

0100 0.4209 10935

1000 04209 10935

0000 04168 12052

0001 03761 T.0876

0001 0.3458 11067 |[ 0010 03743 10824

0100 03801 T.0991

1000 0.3801 10991

0000 04168 12052

0001 03783 10824

1100 0.3125 10 0010 0.3458 1.1067 |[ 0010 0.3761 10876
0100 0.3801 T.0991

1000 0.3801 10991

0000 04200 12109

0001 0.3801 T.0934

0100 0.3476 11124 |[ 0010 0.3801 10934

0100 0.3815 10974

1000 03849 11073

0000 04209 12109

0001 0.3801 10934

1000 0.3476 11124 |[ 0010 0.3801 10934

0100 0.3549 11073

1000 03815 10974

Let us consider the ONEMAX problem for length m, where
m = 4. If the initial state sy has the current best solution of
1100, the transition probability is po1(0) = 52 = 0.3125,
since all the solutions have the same probability 2}n att =0
and there are five solutions, such as 1111, 1110, 1101, 1011,
and 0111, better than 1100. Table I shows the simulation
results of all the possible situations from ¢ = 1to ¢t = 3
to verify the value of the increasing rate £(¢). The rotation
angle of p (or |n|) for the rotation gate was set to 0.03«
in this simple calculation. The table shows that the values
of £(t) are greater than 1 in all the possible situations. It
means that the probability at which the better solution is to
be found increases each generation and the better solution
can be found in a shorter span of time as shown in (8).

Figure 4 shows the experimental results of QEA for the
ONEMAX problem for length m, where m = 16. In Figure
4 (a), the dotted line gives a reference for finding a proper &
which can provide an upper bound of the expected running
number of generations for each segment process. If the
segment processes of QEA are modelled by SPQEA, the
expected running numbers of generations of (8) with values
of £ = 1.09, 1.1, and 1.09 can provide the upper bound for
those of the 2nd, 3rd, and 4th segment processes of QEA,
respectively.

It should be noted that the increasing rate £(t) of the
transition probability was greater than 1 in the results of
Table | and Figure 4. Also, the statement that £(¢) is always
greater than 1 for the ONEMAX problem for length m can
be verified by a simple calculation.

Theorem 4: The expected number of Q-bits toward the
state 1 for the ONEMAX problem is a positive value in
SPQEA.

0 1.0 2.0 3(") 4.0 5.0 6.0
Generation

(a) Transition probability (po1(t))

PIX=b]

0.0251

0.02

0.0151

0.01

0.0051

0 10 20 30 4‘0 5‘0 6.0
Generation

(b) Probability of the best solution

Fig. 4. Experimental results of QEA1 for the ONEMAX problem for length
m, where m = 16. The dotted line gives a reference for finding a proper
& which can provide an upper bound of the expected running number of
generations for each segment process. A logarithmic (base 10) scale is used
for the vertical axis of (a).

Proof. Let m be the binary string length and n, the number
of ones for the current best solution. If the number of ones for
the observed binary solution is &, where k < ny, the number
of Q-bits toward the state 1 is (ny — k) and the number

of binary solutions which have k& ones is alt :j - Since
the number of all the possible binary solutlons in SE>QEA is

nlfl

b0 k,(m Tl the expected number of Q-bits toward the
state 1 for the ONEMAX problem for length m is a positive
value:

Zl—sl (ku(yzl! B (n1— k))

Yt Wt
In other words, QEA for the ONEMAX problem has the
tendency of converging to better solutions in a short span of

time. The reason can be explained by the concept of building
block which is a small, tightly clustered group of genes. In

>0. 1 9)
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the case of the ONEMAX problem, the group of ones for
the current best solution can be regarded as a building block
and the probability of this building block is increased by
the rotation gate. As a consequence, the probabilities of the
better solutions increase.

It is worthwhile to mention that a sequence of SPQEA
for the ONEMAX problem guarantees the global solution
in terms of expected running number of generations, since
the number of better solutions always decreases after one
sequence of SPQEA and it eventually becomes 1 to be
considered as the only global solution.

B. Exploration

To increase the performance of EAs for various optimiza-
tion problems, exploration as well as exploitation discussed
earlier should be considered. The global optimum for a
unimodal function which has no local optimum can be
exploited without exploration. However, if an EA has no
scheme for exploration, the global optimum for a multimodal
function which has many local optima is not guaranteed to
be found out.

To verify the strategy of exploration for QEA, Shannon
entropy [18] can be considered as a measure of the amount
of information included in a Q-bit individual. The entropy
of p(x), x € X, is described as

I(p(x)) = —p(x) log, p(x),

where X is a search space, I(-) the entropy (or information)
of the probability, and p(x) the probability of x, i.e. P[X =
x]. The entropy of the probability distribution for the search
space represented by a Q-bit individual is

I(p(x)|x € X) = = > p(x) log, p(x (10)
xeX
where
ZHpi
=1
with
|a1‘, if mi::O
PEZV 1B if wi=1

where z; is the ith bit of x and («;, 8;) is the ith Q-bit. It
should be noted that the entropy initially has the maximum
value of m and it decreases gradually, since each probability
of p(x), x € X, is shifted with a small amount by the rotation
gate as generation advances.

For comparison purpose, let us consider (1 + 1) GA with
mutation rate % where m is the length of binary solution.

Definition 1: A Hamming distance H of the two binary
strings, x; and xs, is defined as the number of their bitwise-
different bits, which is defined as

j{:|$1z_'T2J

where m is the binary string length.

X13X2

RandomSearch

Entropy

127 1

10 N

N e 1+ GA 1
SA

QEAl

0 éO 160 1%0 260 2%0
Generation

Fig. 5.  Comparison of the entropy of the probability distribution for the
search space with respect to the time step (or generation) among QEAL,
(14 1) GA, SA, and the random search. The results were obtained from
the ONEMAX problem for length m, where m = 16.

Theorem 5: The entropy of the probability distribution for

the search space represented by (1 + 1) GA is a constant
regardless of the generation ¢ for ¢ > 0.
Proof. Let x be the current binary solution, x’ the next binary
solution, and A the Hamming distance between x and x’. If
x’ with Hamming distance h from x is x”, the probability
of x" can be described as

m—h h
m—1 1
- () )
m m
and the number of all the possible x" is

m)!

M (m — h)!”

The entropy of the probability distribution for the search
space is obtained as
_ Z p(x

xeX

Therefore, the entropy of the probability distribution for
the search space represented by (1 + 1) GA is a constant
regardless of the generation ¢ as shown in (11). ]

Let us also consider a simulated annealing (SA) method
which is a specific version for binary representation (see
Appendix A).

Theorem 6: The entropy of the probability distribution for
the search space represented by SA with binary representa-
tion is a constant regardless of the time step ¢ for ¢t > 0.
Proof. Let x be the current binary solution, x’ the next
solution, and h the Hamming distance between x and x'.
Then the distance h is always 1 for SA with binary repre-
sentation. If the length of binary string is m, the number
of all the possible x* is m and the probability of x* is -
Since p(x") is 0 for all h excluding h = 1, the entropy of

n(x") =
Ip(x)xeX) =

) logs p(x

") logy p(x")) . (11)
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the probability distribution for the search space is obtained

as

I(p)|x € X) = - Y p(x

xeX

Therefore, the entropy of the probability distribution for the
search space represented by SA with binary representation is
a constant regardless of the time step ¢ as shown in (12).

Figure 5 shows the differences of the entropy of the
probability distribution for the search space among QEAL,
(14 1) GA, SA, and the random search. While the entropy
values for (1+1) GA, SA, and the random search are constant
values of (11), (12), and m, respectively, that of QEAL is
not a constant. The entropy value of QEAL is initially the
same as that of the random search, and it decreases gradually
as generation advances. This result shows clearly that the
strategy of QEA for exploration differs from those of (1+1)
GA and SA. It is hard to say that which strategy is the
superior one compared to others, since the performance of
the strategy may depend on the specific problems. However,
it is clear that QEA starts with a global search scheme
and changes automatically into a local search scheme as
generation advances because of its inherent probabilistic
mechanism, which leads to a good balance between explo-
ration and exploitation as already mentioned in [1].

1
x) log, p(x) = ~log, . (12)

C. Simple Experiments

The theoretical analysis of QEA with a single individual
for the ONEMAX problem had been discussed in Section
I11-A, B. Here, three test functions (see Appendix B) were
considered to verify the performance of QEA with a single
individual. For comparison purpose, SA (see Appendix A)
was considered. As a performance measure of the algorithms,
we picked up the best search cost for the first hitting time
over 50 runs. The number of times the fitness function was
called was regarded as the search cost, since the evaluation of
fitness function generally consumes most of time compared
to any other functions. The number of bits for the three test
functions was set to 25 bits (per variable). The value of ¢ for
the H. gate was set to 0.017.

Table 1l shows the experimental results for the three test
functions (13)-(15). In the results of fpejongt aNd fpeongs
QEA with a single individual yielded better results compared
to SA. In the results of fpejong2, Which is relatively simple
function compared to the other functions, SA performed
better compared to QEA with a single individual. In partic-
ular, it should be noted that the results of fpe.rongs showed
that SA had several failure cases of which search cost was
greater than 10°. The reason is that the function (3) has
many discontinuous valleys as shown in Figure 7 (c) and
SA may fall into one such valley. From these results, it is
worthwhile to mention that QEA with a single individual
performs well although the search space is distorted or it
has many discontinuous valleys.

IV. CONCLUSIONS

This paper discussed the reason why QEA works and
verified how QEA works. The theoretical analysis of the

TABLE I
EXPERIMENTAL RESULTS OF THE THREE TEST FUNCTIONS (13)-(15).
EACH PARENTHESIZED VALUE OF QEA IS THE ROTATION ANGLE p (OR
[n]) AND THAT OF SA IS THE VALUE OF COOLING PARAMETER k FOR ITS
TEMPERATURE SCHEDULER. THE NUMBER OF RUNS WAS 50. m., o, AND
r. REPRESENT THE MEAN BEST OF SEARCH COST, THE STANDARD
DEVIATION OF SEARCH COST, AND THE SUCCESS RATE, RESPECTIVELY.
THE VALUES MARKED WITH * WERE OBTAINED EXCLUDING THE
FAILURE CASES FOR WHICH SEARCH COST WAS GREATER THAN 106,

l “ fDeJongl [ fDeJong2 “ fDeJongB l

m. 315449 9196.0 38021
QEA o 15944.0 1764.2 797.8
(0.00017) | . 50 / 50 50 / 50 50 / 50
m. || 1227121 41172 12299

QEA o 94058.7 3962.7 3445
(0.00057) | . 50 / 50 50 / 50 50 / 50
m. || 1411432 7306.8 894.7

QEA o 90850.7 16085.5 248.4
(0.0017) | 7 50 / 50 50 / 50 50 / 50
m. || 2990971 1705.0 12794

SA o 145643.4 826.3 782.0
0.01) | r 50 / 50 50 / 50 50 / 50
m. || 185057.8 14469 1207.5°

SA o 71646.6 682.3 916.2*
(0.1) . 50 / 50 50 / 50 46 / 50
m. || 1937864 14468 706.27

SA o 64214.7 637.0 409.7*
(1.0) . 50 / 50 50 / 50 21750

simplified model of the segment process of QEA showed
that QEA with a single individual for the ONEMAX problem
guarantees the global solution in terms of expected running
number of generations. The analysis for exploration showed
clearly that QEA starts with a global search scheme and
changes automatically into a local search scheme as gen-
eration advances because of its inherent probabilistic mecha-
nism, which leads to a good balance between exploration and
exploitation. For comparison purpose, simulated annealing
was considered with three test functions. The results support
the conclusions derived from the theoretical analysis of QEA
with a single individual.

It is worthwhile to mention that the proposed approach
with two viewpoints of exploitation and exploration will
be useful in understanding and verifying QEA, although
QEA with a single individual is verified only for ONEMAX
problem.

APPENDICES
A. Simulated annealing

SA is quite similar to the hill climbing method [18].
Instead of picking the best move, it picks a random move.
If the move actually improves the situation, it is always
executed. Otherwise, the algorithm makes the move with
some probability less than 1. The probability decreases
exponentially as time advances.

Figure 6 shows the procedure SA which is a specific
version for binary representation. In this figure, x. is a
current binary string, x,, a new binary string, 7" the current
temperature, ¢ the time step, s(7,t) the scheduler for the
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Procedure SA
begin
t—20
initialize temperature 7'
select a current string x. at random
while (T" > 0) do
begin
t—t+1;, T — s(T,t)
select a new string x,,
in the neighborhood of x. by flipping a single bit of x.
AE — f(xn) — f(xc)
if (AE > 0) then x. «— x,
else if (eprE/T > random|0, 1]) then x. — xy,
end
end

Fig. 6.

Simulated annealing.

(a) fDeJongl (b) fDeJongQ (C) fDeJong3

Fig. 7. Test functions of (13)-(15).

temperature 7', f(-) the fitness function of the problem, and

random/[0, 1] a random number from the range [0,1).
There are several techniques for implementing the temper-

ature scheduler s(7, ). In this paper, the following technique

was used for implementing the scheduler s(T',t) = ﬁ

where k is the parameter for cooling temperature.

B. Test functions

The following numerical optimization functions were con-
sidered in this paper.
De Jong function (1): Minimize

f(x) =100(z? — 22)% + (1 — x1)?, (13)

where —2.048 < x; < 2.048. The global minimum value is
0.0 at (1’1,$Q) = (1, ].)
De Jong function (2): Minimize

5

F0) = 3 integer(x,),

i=1

(14)

where —5.12 < z; < 5.12. The global minimum value is
—30 for all —5.12 < x; < —5.0.
De Jong function (3): Minimize

1
T = S )

where gj(xth) =cj+ Z?:l(xi — aij)ﬁ, —65.536 < z; <
65.536, K = 500, ¢; = j, and [a;;] is

—32
—32

; (15)

—16 0
—-32 -32

16
—32

32
—32

—32
—16

~16  --- 0
—16 32

16
32

32
32

The global minimum is 0.998 at (z1,z2) = (—32, —32).
Figure 7 shows their shapes approximately.

-
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