
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.11 NOVEMBER 2008
2675

PAPER

Configuration Sharing to Reduce Reconfiguration Overhead Using
Static Partial Reconfiguration

Sungjoon JUNG†a), Student Member and Tag Gon KIM†, Nonmember

SUMMARY Reconfigurable architectures are one of the most promis-
ing solutions satisfying both performance and flexibility. However, recon-
figuration overhead in those architectures makes them inappropriate for
repetitive reconfigurations. In this paper, we introduce a configuration shar-
ing technique to reduce reconfiguration overhead between similar applica-
tions using static partial reconfiguration. Compared to the traditional re-
source sharing that configures multiple temporal partitions simultaneously
and employs a time-multiplexing technique, the proposed configuration
sharing reconfigures a device incrementally as an application changes and
requires a backend adaptation to reuse configurations between applications.
Adopting a data-flow intermediate representation, our compiler framework
extends a min-cut placer and a negotiation-based router to deal with the
configuration sharing. The results report that the framework could reduce
20% of configuration time at the expense of 1.9% of computation time on
average.
key words: configuration sharing, reconfiguration overhead management,
static partial reconfigurable architectures

1. Introduction

Reconfigurable architectures (RAs), whose logics are modi-
fiable after fabrication depending on applications, have been
widely employed in computing domains. Their hardware
reconfigurability allows limited resources to perform multi-
ple functions, and satisfies both flexibility and performance.
Although reconfiguration overhead in most RAs is reported
serious [1]–[3], configuring a kernel and executing it thou-
sands of times could amortize the overhead. However, in
RAs that have relatively small number of resources just like
coarse-grained RAs, some loops cannot be implemented at
one time due to lack of available resources and need to be
divided and to be configured repeatedly [4]. Those frequent
reconfigurations may make the reconfiguration overhead to
overwhelm the computational speedups, and eventually de-
grade the overall system performance.

To relieve the overhead problem, there have been re-
source sharing approaches [5]–[8]. Since the repetitive re-
configurations are mainly caused by inappropriately large
number of required operations, the sharing technique re-
duces the number of operations by sharing the common re-
sources, and makes an application to fit on the given devices.
When an application consists of several temporal partitions
that are units to be configured and executed on RAs at one

Manuscript received August 10, 2007.
Manuscript revised July 1, 2008.
†The authors are with the Department of Electrical Engineer-

ing and Computer Science, Korea Advanced Institute of Science
and Technology, Daejeon, Republic of Korea.

a) E-mail: sjjung@smslab.kaist.ac.kr
DOI: 10.1093/ietisy/e91–d.11.2675

time, and when many operations are common between those
partitions, the resource sharing becomes efficient and dras-
tically reduces the required area. Those research on the
resource sharing are usually based on time multiplexing,
where similar temporal partitions are synthesized concur-
rently with multiplexers. It means that controlling bits or
replacing inputs of multiplexers is enough to change tempo-
ral partitions and that the reconfiguration time is relatively
short. However, due to insertion of multiplexers and de-
multiplexers, datapaths are usually lengthened, which harms
the computation time [7]. In addition, the time-multiplexing
technique still requires large area because all temporal parti-
tions have to be kept valid on a device throughout the whole
execution, which is worsened by multiplexer insertions.

The concept of the configuration sharing between tem-
poral partitions is basically different from multiplexing re-
sources. The configuration sharing rather emphasizes a
static partial reconfiguration, where a successive partition
is loaded upon a current partition just between their execu-
tions. By reusing common configurations without config-
uring them again, the proposed approach directly decreases
the amount of configuration bitstreams. Compared to the
time-multiplexing manner that configures all partitions at
one time, the configuration sharing maintains only one par-
tition at a given time, and requires relatively small area.
However, it needs reconfiguration to change a temporal par-
tition, and shows high reconfiguration overhead due to fre-
quent reconfigurations, while changing inputs of multiplex-
ers is enough in the time multiplexing method. The idea
of reconfiguring a device every time entering each temporal
partition is especially useful when loop bodies are not map-
pable due to resource constraints, for which Cardoso pro-
posed a repetitive configuration technique called loop dis-
severing [4]. Loop dissevering is a partitioning approach
that divides large loop bodies into smaller parts to satisfy the
given resource constraints and reconfigures the parts when
needed. Kim et al. also introduced another partitioning
methodology to balance configuration time and computation
time [9]. However, those techniques only concern how to
break down applications to satisfy resource constraints and
how to distribute and balance configuration overhead and
computation time. The approaches do not provide any effort
to decrease configuration time, and our sharing technique
will further enhance those partitioning techniques with re-
duced configuration time. Additionally, the proposed shar-
ing approach is not exclusive with but complementary to
the context-switching method. Although it provides very

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers

2676
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.11 NOVEMBER 2008

fast reconfiguration, the context-switching needs additional
logic for context controlling whose size is linearly propor-
tional to the number of contexts [10]. Due to such hardware
constraint, we only have limited number of hardware con-
texts, and has to continuously load configurations onto con-
texts. We believe that the proposed configuration sharing
may be applied to such configuring processes also.

For the purpose, this paper introduces a framework
which performs backend processes of placement and rout-
ing for consecutive temporal partitions to increase configu-
ration sharing. The framework eventually reduces the size
of resulting configuration bitstreams, and relieves the over-
head problem of frequent reconfigurations. Xilinx BitGen
also performs a similar task named difference-based partial
reconfiguration to reduce the size of configuration file [11].
However, it is designed to support small modifications af-
ter synthesis, which makes it inappropriate for source-level
changes or similarities. Therefore, it inherently differs from
our framework that considers multiple temporal partitions
from the beginning.

The rest of the paper is organized as follows. In Sect. 2,
we introduce the configuration sharing problem between
consecutive temporal partitions and its relation to back-
end processes. Section 3 presents a partial reconfiguration
model and defines our experimental architecture. Section 4
explains the compiler framework and some implementation
issues in placement and routing. Section 5 reports the re-
sults of configuration overhead reduction with the proposed
framework. Finally, the paper concludes with Sect. 6.

2. Configuration Sharing and Backend Process

2.1 Configuration Sharing Motivation

As explained previously, the partial reconfigurability en-
ables to reconfigure only the differences in configurations
between temporal partitions, which can be utilized to reduce
the reconfiguration overhead. One simple motivational ex-
ample is depicted in Fig. 1. Figure 1 (a) shows two temporal
partitions, where one is dependent on the other and there-

Fig. 1 Configuration sharing motivation.

fore two are sequentially executed. As shown, two opera-
tions of a multiply and an addition (grey boxes) are com-
mon in both partitions. In Fig. 1 (b), configurations for two
temporal partitions are depicted. Because two common op-
erations fortunately have the same locations on the device, it
is sufficient to configure only three operations (white opera-
tions in the second temporal partition) in order to construct
the second configuration upon the first one. This reusing of
the common resources reduces the configuration overhead
of the second temporal partition from 5 cells to 3 without
any insertion of multiplexers or demultiplexers. This moti-
vational example introduces the configuration sharing that is
different from the ordinary time-multiplexed resource shar-
ing. Since the configuration sharing maintains only one par-
tition at a given time as well as no requirement in multiplex-
ers, it is more applicable to relatively harsh area constraints
compared to time-multiplexing, but need repetitive recon-
figurations to change temporal partitions.

2.2 Relation to Backend Process

Since resource sharing is a traditional problem in high level
synthesis, there have been many works on sharing, place-
ment and routing for time-multiplexing [5]–[8]. However, it
is hard to directly employ the approaches to share configu-
rations between temporal partitions and to reduce reconfig-
uration overhead for several reasons.

First, the main reason for which we cannot apply pre-
vious placement techniques is the difference in run-time
model. Although both approaches deal with multiple tem-
poral partitions, the time-multiplexing configures a device
once at the beginning, while the configuration sharing needs
reconfigurations every time changing a temporal partition.
Let us look at Fig. 1 again. Figure 1 (b) is an implementation
with the configuration sharing, while Fig. 1 (c) is with the
time-multiplexing. As shown, both can successfully share
common resources of a multiply and an addition. However,
the difference occurs in placing non-shared operations. The
time-multiplexing needs two separate resources in the first
row to place an addition and a subtract although they be-
long to different temporal partitions, while the configuration
sharing allocates them to only one resource. Therefore, the
example explains that the placer should manage resource us-
ages separately with temporal partitions as well as it has to
assign common operations in the same locations and to keep
critical paths short just like the traditional placer.

Second, we cannot employ the existing routing ap-
proaches, because they are not designed for configuration
sharing. Most RAs have their own smallest addressable or
reconfigurable units, Frames in Xilinx Virtex series, Pro-
cessing Array Elements in PACT XPP, and so forth. It is not
allowed to further divide an addressable unit and to modify
just a single bit for switches or wiring points. Even when
we want to reconfigure a single connection, we have to up-
date a whole reconfigurable unit containing it. Therefore,
in order to keep common resources actually shared between
temporal partitions and to reduce the reconfiguration over-

JUNG and KIM: CONF. SHARING TO REDUCE RECONF. OVERHEAD USING STATIC PARTIAL RECONF.
2677

(a) (b)

(c) (d)

Fig. 2 Configuration sharing example.

head, elements used in successive temporal partitions should
be carefully routed not to cross the already placed resources
with the constraint of the smallest addressable units.

Figure 2 details the effect of routing in configuration
sharing problem. Let us assume that there are two tempo-
ral partitions and three nets, and that the former partition
requires only Net 1, and the latter needs all three nets. It
means that Net 1 is reusable in the latter partition. When a
cell has resources enough for routing, Fig. 2 (a) and (b) show
two different configurations of the three nets, where gray
boxes represent configurations required for the latter parti-
tion. Although different configurations may result from dif-
ferent placements, let us assume the locations of all sources
and sinks are fixed just to exemplify the effect of routing
to the configuration sharing. As depicted, Fig. 2 (a) results
a complete reuse of Net 1 at the cost of path length of Net
2, while Fig. 2 (b) keeps Net 2 short but has to reconfigure a
cell in Net 1. As a result, Fig. 2 (a) requires 6 cells to be con-
figured, while Fig. 2 (b) needs 8 cells. If more cells in shared
nets are reconfigured, the sharing becomes less effective and
the size of configuration gets larger. This simple example
explains that the router has to be redesigned not to harm
the potential configuration sharing by taking rather winding
paths instead of shortest paths. However, such longer paths
may result inefficient implementation with longer computa-
tion time, and the problem to select either Fig. 2 (a) or (b)
must depend on criticality or congestions. When Net 2 is
along the critical path or the resource constraint of Net 3 is
harsh, Fig. 2 (b) becomes more acceptable than Fig. 2 (a).

However, maximizing the reusability does not neces-
sarily mean minimizing the reconfiguration overhead. Fig-
ure 2 (c) and (d) show the counter-example that is the same
to Fig. 2 (a) and (b) respectively except Net 3. In Fig. 2 (c),
shared configurations are not overwritten at the cost of the
delay of Net 2, and 6 cells should be configured. On the
other hand, Fig. 2 (d) does not sacrifice Net 2, and also
achieves small configurations of only 4 cells. This is due
to non-existence of Net 3, and explains that traversing free
cells while avoiding the shared configurations may not re-
duce the total configuration overhead. Therefore, the con-
figuration sharing may become ineffective with sparse nets

where most cells remain free. Fortunately, many applica-
tions suffer from hard resource constraints of RAs, which
means that applications with sparse nets are rare.

As explained with the previous examples, resources
that a graph algorithm discovers sharable does not neces-
sarily represent that the corresponding configurations are
reusable in consecutive temporal partitions. Although
configurations of those resources still remain potentially
sharable, the configuration sharing rather depends on how
to place and route resources, which requires enhancements
in the backend processes.

3. Architecture Model

This section explains the partial reconfiguration model in
which we are especially interested, and details our experi-
mental architecture.

3.1 Partial Reconfiguration Model

Since the reconfiguration overhead seriously degrades a sys-
tem performance, some state-of-the-art RAs including Vir-
tex [11] and PACT XPP [12] support partial reconfiguration.
Partial reconfiguration is to change only a portion of config-
uration including functionality, routing, or constants with-
out completely reconfiguring the entire device. There are
two distinguishable classes in partial reconfiguration: dy-
namic and static partial reconfiguration [11]. In dynamic
partial reconfiguration, a device can be reconfigured while
the remainder still remains active. However, dynamic partial
reconfiguration may support limited reconfiguration since
there would be live data on a device and any careless re-
configuration may produce data hazard like loss or collision,
called internal contention. On the other hand, static partial
reconfiguration requires a device to be completely recon-
figured before active, but it may provide more flexibility in
reconfiguration since there is no risk of internal contention.

In this paper, an application is a list of temporal parti-
tions. At the compile time, temporal partitions are synthe-
sized to manage which and how many resources are required
for the partitions. Such resources are configured onto a de-
vice when the program reaches the entry point of each tem-
poral partition, and released when the partition completes
the given tasks. Once the partition terminates, its resources
are no longer required, and can be simply flushed out, or
reused for the subsequent partition. This execution model
guarantees there is no live data on the device, and makes
static partial reconfiguration proper to the inter-temporal-
partition configuration sharing, which provides more sim-
plicity and flexibility in reconfiguration.

3.2 Experimental Architecture

To make experiments practical, we designed an experimen-
tal system as shown in Fig. 3. The system includes a general
purpose processor, a global shared memory, and a configu-
ration controller as well as a regular array of configurable

2678
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.11 NOVEMBER 2008

Fig. 3 System architecture.

Fig. 4 Cell architecture.

computing and routing elements, called cells. We adopted
the Harvard architecture to separate the data memory and the
configuration memory. In the system, the computing array
with the RA controller serves as a coprocessor†, for which
the controller provides interfaces such as loading configura-
tions and writing run-time variables. When loading config-
urations, the RA controller brings up the configuration bit-
streams from the configuration memory, and passes them to
the leftmost-topmost cell. The bitstream subsequently flows
through the array in a top-to-bottom, left-to-right pipelined
manner, and configures the target cell. The computing ar-
ray is able to access the global shared memory via IO ports
along both sides of the array. We also constrained the paral-
lel memory access up to 4 words per cycle.

The cell architecture, which is very similar to PACT
XPP [12], a commercial coarse grained architecture, is
shown in Fig. 4. As illustrated, a cell consists of one main
ALU and two vertical routing elements, one for forward and
the other for backward routing. Each vertical routing el-
ement also has a basic computing unit to support simple
arithmetic and logical operations during routing. To keep
the synthesis rules simple, we designed that the main ALU
is able to perform most low-level SUIF constructs, and that
the side ALUs are dedicated to IR-specific operators like
ones to resolve control-dependencies.

Figure 4 also explains two independent routing net-
works. One is for data, and the other is for events including
predicates and tokens that usually manage control and mem-
ory dependencies. Each network consists of horizontal and
vertical buses. During vertical routing, data or event may be

buffered at output registers, or simply bypassed. However,
a long routing path cannot satisfy timing constraint without
buffers, and needs buffers to be inserted along the path. The
inserted buffers also become reusable resources in consec-
utive temporal partitions. Horizontal bus is also segmented
by programmable wiring points at both sides. These spe-
cific definitions on switches, wiring points, buffers, and op-
erations provide us a complete encoding. The configuration
bitstream required to configure a single cell is of 13 words
long excluding run-time constants. As we assumed a con-
figuration bus bandwidth 1 word wide, configuring a cell
consumes at least 13 cycles which can be further extended
with constant initializations. Moreover, as mentioned previ-
ously, the configuration bitstream flows to the target cell in
a pipelined manner, which causes propagation delay. There-
fore, run-time constants and cell locations may greatly affect
reconfiguration time, and we need a simulation to accurately
analyze the effect of the configuration sharing.

About data passing protocol of a cell, we adopted the
same synchronization mechanism that PACT XPP proposes.
An ALU computes when all required data and event inputs
are available on input registers. After a computation, the
contents of the input registers are consumed and ready for
another data, while the output registers hold output values
until all successors receive them. The data passing protocol
of the cell architecture is the perfect match to our IR that is
based on a data-flow machine.

Finally, the main differences between our experimen-
tal architecture and PACT XPP are instruction set architec-
tures, bus bandwidths, array sizes, memory controller, bus
delays and especially an encoding scheme to generate con-
figuration binary streams that is an unavailable commercial
property. However, the other characteristics including three
ALUs per cell, two kinds of buses, horizontal bus structures,
and even data passing protocols, are kept as similar as pos-
sible to PACT XPP according to available papers [12]–[14].
Regarding configuration sharing, such differences between
two architectures especially in available resources may re-
sult different configurations, but they do not hurt the main
theme of this paper to reduce the reconfiguration overhead
by sharing consecutive configurations.

4. Backend Process for Configuration Sharing

In this section, we introduce our compiler framework, and
describe extensions for traditional placement and routing
techniques to solve the configuration sharing problem.

4.1 Overall Framework

This section describes our compiler framework, which is
very similar to a conventional hardware-software co-design
framework. As we addressed in Sect. 2.2, the configuration
sharing is highly affected by placement and routing. To our

†The coprocessor instruction set is implemented using SimIt-
ARM interfaces for external devices.

JUNG and KIM: CONF. SHARING TO REDUCE RECONF. OVERHEAD USING STATIC PARTIAL RECONF.
2679

best knowledge, compiler framework being aware of the
configuration sharing is not available, which is the reason
we designed our own framework. Figure 5 shows the entire
toolflow, where a bold box represents our main implemen-
tation scope. First, C program is partitioned into hardware
and software parts. While the software part is compiled
by a regular C compiler, the hardware part is transformed
into SUIF [15] by the SUIF frontend. To alleviate the com-
plexity in synthesis rules, the SUIF transformer, porky, dis-
mantles high level constructs into low level ones. Arrays,
loops and complex operations are transformed into pointers,
conditional branches, and simple operations. Low SUIF, in
turns, is translated into our IR.

For the compiler framework, we also designed an IR
similar to Pegasus that has been proven synthesizable [16].
Our IR assumes a data-flow machine and converts control
dependencies and memory side-effects into explicit data de-
pendencies using predicates and tokens. As mentioned in
Sect. 3, the assumption on a data-flow machine is a good
match for our cell architecture whose computation begins
with all required inputs ready.

After IR generation, resource sharing on DFGs follows.
Based on a graph model and a resource sharing algorithm
introduced in [17], resources are annotated with sharing in-
formation, and passed to placer and router for further pre-
cise and efficient configuration sharing. We perform place-
ment again with loosening the area constraint when routing
fails due to the resource constraint. After routing all data-
flows, both configuration streams and stub codes are gener-
ated. Stub codes include configuration loading instructions
and run-time variable passing instructions, which are inte-
grated into and simultaneously compiled with the applica-
tion’s software parts.

Fig. 5 Compiler framework.

4.2 Placement and Routing

Considering the configuration sharing problem, we carefully
designed a backend for placement and routing. Thanks to
the cell architecture executing most low SUIF constructs,
technology mapping in gate level becomes less important.
Instead, we could concentrate our effort to placement and
routing. As mentioned in Sect. 2.2, the configuration shar-
ing problem is tightly related to placement and routing, and
needs some enhancements in the processes.

Among many available placement algorithms, we
adopted a min-cut based placement algorithm that is re-
ported having reasonable computation time and yet gener-
ating effective placements in [18]. Min-cut placement al-
gorithm repeatedly divides the given resources into several
spatial partitions and distributes operations while minimiz-
ing the number of nets cut generated by the partitions. The
net-cut minimization is usually performed with moving op-
erations to the other spatial partition or with swapping oper-
ations between partitions. Our min-cut placement algorithm
is based on a well-known linear-time heuristic by Fiduccia
and Mattheyses [19], and further extended with the terminal
propagation [20].

As mentioned in Sect. 2.2, placement need to han-
dle multiple temporal partitions simultaneously to place the
common operations on the same locations while separately
managing resource usages for each temporal partition. Since
the original min-cut placement algorithm only deals with
operations in a single temporal partition, we enhanced it
for multiple temporal partitions, and modified moving and
swapping methods. Figure 6 details our placement tech-
nique.

Figure 6 (a) shows two temporal partitions, T PA and
T PB, and their DFGs. Nodes named Anumber or Bnumber

stand for operations that are not sharable and only dedicated
to their own temporal partitions. A node named S 1 is the
only sharable operation between two partitions. Let us as-
sume that there are 4 computational resources on the device
which are vertically partitioned into two, as annotated with
S P1 and S P2 in Fig. 6 (b). Therefore, there arises a resource
constraint of 2 resources per each spatial partition which we
have to satisfy at any stage of placement. In other words,
a set of nodes in a spatial partition cannot exceed the re-

(a) (b)

Fig. 6 Placement example.

2680
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.11 NOVEMBER 2008

source constraint at the viewpoint of any temporal partition.
To make it formal, let us define S Pi and T P j to be sets of
operations in a spatial partition i and a temporal partition j
respectively. Also, R(ni) is a set of resources required for a
node ni, while R(S P j) is a set of all resources in S P j. When
T P and S P represent complete sets of temporal partitions
and spatial partitions, the resource constraint is defined as
follows. For all T Pi ∈ T P and S P j ∈ S P,

∑

nk∈T Pi
⋂

S P j

R(nk) ≤ R(S P j) (1)

One of the valid placements is depicted in Fig. 6 (b).
At the viewpoint of T PA, S P1 and S P2 have {A2, A3} and
{S 1, A1}, which satisfies Eq. (1) with 2 resources per each
spatial partition. It is the same with T PB.

With the constraint, we also define moving and swap-
ping of nodes to decrease nets cut. Moving a node n is rela-
tively simple as long as the target spatial partition have free
resources R(n) throughout all temporal partitions containing
n. On the other hand, nodes to swap may have overlap-
ping or non-overlapping temporal partitions, and managing
resource usages throughout the temporal partitions is rather
complicated. Sometimes, it is not sufficient to swap two
nodes but two sets of nodes to conserve the resource con-
straint. Since swapping a set of nodes and testing the valid-
ity requires a sequence of pairwise comparisons, we define
next rules to simplify the process.

For NS 1 and NS 2 that are subsets of S P1 and S P2 re-
spectively, the swapping of two sets is possible if

⋂

ni∈NS 1

T P(ni) = φ, if |NS 1| > 1 (2)

⋂

nj∈NS 2

T P(n j) = φ, if |NS 2| > 1 (3)

⋃

ni∈NS 1

T P(ni) =
⋃

nj∈NS 2

T P(n j) (4)

where T P(n) is a set of temporal partitions containing node
n. For example, {A1} ⇔ {A3} or {S 1} ⇔ {A2, B3} is
a valid swapping, while {B1} ⇔ {A1} is not. Although
{S 1, A1} ⇔ {A2, A3, B1} seems fair and fulfills the resource
constraint, it is prohibited due to Eq. (2) and Eq. (3). Instead,
the swapping could be divided into two independent ones of
{S 1} ⇔ {A2, B1} and {A1} ⇔ {A3}, which makes the process
simple. Equation (4) also forbids {S 1} ⇔ {A2} even if there
is a free resource in T PB ∩ S P1. Instead, B2 first moves to
S P1, then {S 1} ⇔ {A2, B2} follows, which results the ex-
actly same cell distribution to a swapping {S 1} ⇔ {A2}. Al-
though we intend pairwise comparisons for the process to be
as small as possible with Eq. (2)–(4), swapping still requires
a heavy computation. Therefore, it is only performed when
the moving process to reduce nets cut is not available during
the linear-time heuristic by Fiduccia and Mattheyses [19].

Unlike the original placement only considering a sin-
gle temporal partition, the proposed one deals with all nets
simultaneously. It means that nets cut in one temporal parti-
tion may affect nets cut in another partition. Figure 7 shows

(a) (b)

Fig. 7 Temporal partition and its effect on criticality.

the case. In the figure, Ai and B j stand for operations in T PA

and T PB respectively, while S 1 belongs to both temporal
partitions. When Ai and B j require specific locations in S P1

and S P2, a usual min-cut placer tends to choose Fig. 7 (a)
rather than Fig. 7 (b), since the former placement generates
less nets cut than the latter. It explains that routing paths
in T PA may increase to reduce those in T PB. However,
Fig. 7 (b) becomes more acceptable when the net A1-S 1-A2

is along the critical path in T PA. Therefore, we also weight
nets to reduce critical path length instead of minimizing nets
cut. Referring to [21], the slack ratio Ai j of a net i j could be
defined as a ratio of the longest path length containing the
net to the maximum path length. For a critical net whose
slack ratio is near to 1, we imposed high weight so that the
placer would not cut the net.

The IR annotated with the placement information is,
in turns, passed to a router that is based on PathFinder, a
negotiation-based routing algorithm [21]. The PathFinder
algorithm models two important routing factors of delay and
congestion in a single cost function:

Cn = Ai jdn + (1 − Ai j)(dn + hn)pn

where dn is a delay of the node n, hn is a congestion history,
and pn is a current congestion. Since Ai j is a slack ratio
compared to the critical path, a net along the critical path,
Ai j = 1, tends to minimize the delay term, while a net in a
less critical net will take extra delay to reduce congestion.

The main requirement in designing a router for the con-
figuration sharing is that it has to separate shared resource
from non-shared ones and should take rather longer paths
instead of shortest paths to maximize the reused configura-
tions as explained in Sect. 2.2. Therefore, we modify the
cost function like below.

C′n = Cn + Rn

In the cost function, Rn denotes a configuration sharing
based term, whose value is either 0 (means non-shared and
free-to-use) or an empirical constant rn (stands for shared
cell). When the routing algorithm begins, Rn is set to rn

for all shared cells and the routing algorithm tries to avoid
traversing those cells at the cost of delay or congestion.
However, when delay or congestion become so high that Rn

is ignorable to Cn, then the router will no longer avoid but
finally use those shared cells. Once a shared cell is recon-
figured for routing of non-shared nets, there is no necessity
for the router to keep avoiding it. Rn for the cell is set to 0, a

JUNG and KIM: CONF. SHARING TO REDUCE RECONF. OVERHEAD USING STATIC PARTIAL RECONF.
2681

Fig. 8 JPEG decompression process.

congestion history term hn is cleared, and the router will try
to use the cell without any restriction from the beginning.

5. Experiment

We conducted experiments to examine the performance of
the proposed framework to reduce configuration overhead
for repetitive reconfigurations. Out of MediaBench [22],
we used several functions that have interesting patterns to
leverage the configuration sharing. Those functions are
mainly composed of regular and repetitive computations
of data inputs or streams, and such regularity guarantees
many of resources to be shared. The selected benchmarks
include JPEG image compressor/decompressor, G.721
speech encoder/decoder, and MPEG motion compres-
sor/decompressor.

To explain benchmark characteristics, let us exemplify
the JPEG decoder, a standardized decompression method
for images. Among many routines in JPEG, we selected
two IDCT routines, IDCTFST that is fast but rather inaccu-
rate and IDCTINT that is slow but accurate, and YCC2RGB
routine that is used for general colorspace conversion. Fig-
ure 8 shows the JPEG decompression flows. As IDCT is
composed of two sequential loops that processing columns
and rows respectively, we divided the kernels into two in-
dependent ones (tagged with -1 and -2) to save areas. In
run-time, these kernels become loaded on the architecture
depending on accuracy options. For instance, in an accurate
integer IDCT case (the upper path in Fig. 8), IDCTINT-1 is
loaded first, and followed by IDCTINT-2 after computation.
Since IDCT requires tens of iterations, these two configura-
tions become repeatedly loaded. After finishing IDCT com-
putations, the colorspace conversion follows, and IDCT on
next image frames begins again. In the decoder example,
without the configuration sharing, we have to configure all
required cells every time before IDCTINT-1 and IDCTINT-
2. However, adopting the proposed configuration sharing
approach, we can only configure the differences between
two kernels to construct them. Fortunately, two separated
IDCT loops have very similar data access and manipulation
patterns that are proper to the sharing technique, while the
colorspace conversion routine is absolutely different from
the IDCT loops, and requires full reconfiguration. For the
remaining benchmarks, we also similarly selected routines
for the experiments.

Before presenting results on the configuration sharing,
Table 1 gives resource characteristics that are obtained with
our resource sharing algorithm as explained in Fig. 5. In the
table, first two columns named P1 and P2 in each bench-
mark represent resource characteristics of two temporal par-

Table 1 Resource sharing.

Exp. P1 P2 Shared % Shared
IDCTINT 651 620 188 30.3 %
IDCTFST 592 585 179 30.6%
FDCTINT 336 343 245 72.9%
FDCTFST 295 298 240 81.4%

G721.encode 691 586 428 73.0%
G721.decode 691 586 428 73.0%

MPEG.encode 455 579 267 58.7%
MPEG.decode 466 590 274 58.8%

Avg. 51.6%

Table 2 Configuration size (bytes).

Exp.
Non shared Shared

% Tot.
P1 P2 P1 P2

IDCTINT 11,685 12,413 10,901 11,525 93.1%
IDCTFST 11,961 12,309 10,193 9,869 82.7%
FDCTINT 5,989 5,993 3,917 4,185 67.6%
FDCTFST 5,765 5,821 2,441 3,065 47.5%
G721.enc 5,501 5,493 4,961 4,949 90.1%
G721.dec 5,501 5,493 4,961 4,949 90.1%

MPEG.enc 8,877 11,425 8,707 9,537 89.9%
MPEG.dec 9,037 12,161 8,997 9,421 86.8%

Avg. 81.0%

titions like operations and interconnections. Simply speak-
ing, the number explains how many vertices and edges are in
data flow graphs. Although a vertex is usually implemented
with a cell, actual hardware resources required for an edge
highly depend on placement and routing, and this table only
provides potential possibility to share such resources like
buses or buffers.

The next column named Shared explains the resulting
shareable resources between two partitions by our sharing
algorithm. The last column shows the same value that is
normalized against the number of smaller resources among
two partitions. Therefore, 100% of resource sharing repre-
sents one partition is a subset of the other. According to the
table, the IDCT routines usually seem less efficient in re-
source sharing than the FDCT and G.721 routines. This is
partly because the operations and dataflows in IDCT show
different patterns, and partly because heavy graph sizes mul-
tiply the search space for the resource sharing algorithm.
For G.721, the same result for encoding and decoding is be-
cause two benchmarks share the same kernels. Depending
on the data dependency of the benchmarks and the size of
search space, the algorithm could share 30.3–81.4% of re-
sources, 51.6% on average.

Although we provided the graph level sharing, it is not
necessary to conclude the same ratio of configuration bit-
streams could be reused. Instead, the exact reconfiguration
bitstreams are only available after placing and routing those
resources, and Table 2 summarizes the configuration binary
file sizes. In the table, Part. 1 and 2 represent two temporal
partitions in each benchmark. While the column named Non
shared explains the configuration sizes without the config-
uration sharing, the Shared column denotes the configura-
tion sizes required to construct each partition based on the

2682
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.11 NOVEMBER 2008

other partition. For instance, in IDCTINT, 10,901 bytes are
required to configure Part. 1 when Part. 2 exists on the de-
vice, while 11,525 bytes required to load Part. 2 upon Part.
1. The last column % Tot. represents the ratio of the sum
of two configuration sizes. According to the table, the sum
of configuration sizes reduces from 6.9% in IDCTINT to
52.5% in FDCTFST. On average, the configuration file re-
duces 19.0% in size. We can notice that the configuration
sharing becomes more effective in the FDCT routines than
in the IDCT routines just like Table 1 where more resources
in FDCTs are shared than in IDCTs. It seems that the con-
figuration sharing is related to the resource sharing, and con-
cludes that the efficient resource sharing algorithm may help
the configuration sharing.

Table 3 shows the RA area that is required to execute
each benchmark. Since two partitions are executed sequen-
tially, the results do not mean the sum of the areas of two
partitions, but represent the larger area among them. Ac-
cording to the table, the shared cases seem to need slightly
more areas than the non-shared cases. It is because that the
shared cases require more spaces for routing unshared re-
sources so as not to cross the already placed shared cells.

Even though Table 2 provides configuration bitstream
sizes, the accurate configuration cycles in our pipelined
model only be available with run-time evaluation. More-
over, the configuration sharing is usually done at the cost of
path length as discussed in Sect. 2.2, which may increase the
computation time and decrease the overall sharing effective-
ness. Therefore, we also conducted cycle-accurate run-time
experiments with our RA simulator in conjunction with the
SimIt-ARM simulator. As depicted in Sect. 3, we assumed
that the configuration propagates throughout the architecture
in a pipelined fashion, and considered delays due to buffers
that were inserted to match timing constraints.

Table 3 Allocated area (column × row cells).

Exp. Non shared Shared
IDCTINT 12 × 18 12 × 19
IDCTFST 12 × 18 12 × 18
FDCTINT 12 × 8 12 × 8
FDCTFST 12 × 8 12 × 9
G721.enc 12 × 8 12 × 9
G721.dec 12 × 8 12 × 9

MPEG.enc 12 × 18 12 × 19
MPEG.dec 12 × 19 12 × 19

Table 4 Configuration and computation cycles.

Non shared Shared
Exp. Total Execution Computation Configuration Total Execution Computation Configuration

IDCTINT 1,571,615 924,434 647,181 1,528,459 (97.3%) 944,432 (102.2%) 584,027 (90.2%)
IDCTFST 1,525,661 892,521 633,140 1,416,042 (92.8%) 894,649 (100.2%) 521,393 (82.4%)
FDCTINT 965,383 659,632 305,751 883,956 (91.2%) 680,907 (103.2%) 203,049 (66.4%)
FDCTFST 952,192 657,079 295,113 799,642 (84.0%) 665,164 (101.2%) 134,478 (45.6%)
G721.enc 3,773,414 2,053,514 1,719,900 3,597,241 (95.3%) 2,054,550 (100.1%) 1,542,691 (89.7%)
G721.dec 3,779,264 2,059,364 1,719,900 3,603,390 (95.3%) 2,060,699 (100.2%) 1,542,691 (89.7%)

MPEG.enc 741,888 268,800 473,088 712,786 (96.1%) 288,768 (107.4%) 424,018 (89.6%)
MPEG.dec 2,298,240 814,464 1,483,776 2,103,720 (91.5%) 820,224 (100.7%) 1,283,496 (86.5%)

Average 92.9% 101.9% 80.0%

Table 4 shows computation cycles and configuration
cycles for the benchmarks. To show how much reconfig-
uration overhead is reduced, we carried out two indepen-
dent experiments with and without the configuration sharing
respectively. The other parameters were kept the same for
both experiments. In the tables, Computation and Configu-
ration are cycles for computation and configuration, while
Total Execution is the sum of the other two. The percentage
in the Shared column represents the normalization against
the corresponding value in the Non shared case. As shown,
the repetitive reconfigurations makes the configuration over-
head in all benchmarks comparable to the computation cy-
cles. In MPEG benchmarks, relatively short computation
time in kernels permits the configuration overhead to be
more than half the total execution time. For those bench-
marks having high reconfiguration overhead, the proposed
framework reduces 20.0% of configuration cycles on av-
erage. The reduction is mainly due to small configuration
sizes as shown in Table 2, and seems directly proportional
to the decease in bitstream sizes. While the configuration
overhead is successfully reduced, the reduction is achieved
at the cost of 1.9% longer computation cycles due to wind-
ing nets not to touch the shared resources. As a result, the
total execution time decreases by 7.1% on average. The re-
sults explain that the proposed technique relieves the recon-
figuration overhead with the small increases in computation
time and is especially helpful for repetitive reconfigurations.

Table 5 shows comparisons of the proposed configu-
ration sharing to other time-multiplexed resource sharing.
The time-multiplexing usually aims to reduce the required
area by sharing common operations, which is the same with
our goal because the reduced area means that the config-
uration time is also decreased in partial reconfigurable ar-
chitectures. Table 5 summarizes reductions in area or LUT
usages. Since the reductions are highly dependent on bench-
marks, partitioning units, or architecture models, the table

Table 5 Comparisons to other time-multiplexed resource sharing.

Approaches % Area (Shared/Non-shared)
Lin et al. [5] 85.8% LUTs

Fischer et al. [6] 52.6 – 77.7%
Mondal and Memik [8] 50.8 – 91.1

Memik et al. [7] 56%
Proposed approach 47.5 – 93.1%

JUNG and KIM: CONF. SHARING TO REDUCE RECONF. OVERHEAD USING STATIC PARTIAL RECONF.
2683

does not mean that one approach is better or worse than an-
other, but only provides just simple comparisons. As de-
picted in the table, the resource sharing could reduce the
area down to 50.8% at the best case. On the other hand,
the configuration overhead is decreased down to 47.5% in
the case of FDCTFST with the proposed configuration shar-
ing, which is better than or competitive with the other time-
multiplexed resource sharing techniques. Moreover, two ap-
proaches of Mondal’s and Memik’s adopt JPEG Jdmerge in
MediaBench as their benchmarks, which enables additional
comparisons of the proposed one. In a case of Jdmerge,
Mondal’s could reduce the area down to 53%, and Memik’s
to 52%, while the proposed method decreased the config-
uration size down to 54.7%. Although the results seem to
be very similar, the meanings are absolutely different. For
two approaches using the time-multiplexing, the resulting
area of 52% or 53% is the size that should be maintained
throughout the entire execution time as two temporal par-
titions have to remain valid as shown in Fig. 1 (c). How-
ever, in the configuration sharing, 54.7% only means the
sum of two temporal partitions that do not need to be con-
figured at one time. Therefore, the required area for the
proposed case is much smaller than the remaining time-
multiplexing ones, which explains that it is possible to im-
plement the given tasks on smaller devices. In Memik’s
work, there is also mentioned the increase in computation
time. As explained in Sect. 2.1, time-multiplexing requires
multiplexer/demultiplexer insertions, which results the in-
crease in critical paths and eventually in computation time.
Memik denotes that computation time is lengthened by 6%
on average. However, the proposed configuration sharing
is free from multiplexers/demultiplexers, and harms compu-
tation time only by 1.9%, which is relatively smaller than
Memik’s.

Currently, we do not have plentiful optimizations in the
compiler frameworks. The lack of pointer analysis results
that many false dependencies including memory dependen-
cies and loop carried dependencies remain unresolved. The
false dependencies make the benchmarks run rather sequen-
tially, and our system executes the same kernels approxi-
mately twice faster than ARM when we consider config-
uration time, computation time, and run-time variable ini-
tialization time, altogether. We believe that further imple-
mentation on pointer optimizations may boost the system
performance, although the technique do not directly affect
the effectiveness of the configuration sharing. Instead, we
could figure out architecture specific placement issues that
are likely to enhance the configuration sharing. Since a cell
has three independent ALU components, cramming as many
operations as possible into a cell will help to decrease the
configuration size. However, placing shared resources and
non-shared ones together will obviously hazard the config-
uration sharing. Moreover, the lack of horizontal bus at
the bottom of a cell makes any use of ALUs require buses
of the next cell. Therefore, we need a careful placement
of non-shared operations not to interfere shared operations
with any use of horizontal buses. We believe that those ad-

ditional architecture-specific placement techniques remain
further implementation issues.

6. Conclusion

In this paper, we addressed the configuration sharing prob-
lem using static partial reconfiguration. The configuration
sharing that directly decreases the amount of configuration
bitstream sizes between similar temporal partitions is dif-
ferent from the traditional time-multiplexed resource shar-
ing. In order to ensure that configurations are reused through
consecutive temporal partitions, enhancements in placement
and routing are required to avoid rewriting the already con-
figured resources. We proposed a min-cut placement algo-
rithm to cope with multiple temporal partitions, and intro-
duced a cost function for a negotiation-based router. The re-
sults report that the proposed configuration sharing reduces
20% of configuration time at the expense of 1.9% of com-
putation time on average, and explain that the approach be-
comes reasonable for repetitive reconfigurations.

References

[1] T. Callahan, J. Hauser, and J. Wawrzynek, “The Garp architecture
and C compiler,” Computer, vol.33, pp.62–69, 2000.

[2] H. Singh, M.H. Lee, G. Lu, N. Bagherzadeh, F.J. Kurdahi, and
E.M.C. Filho, “MorphoSys: An integrated reconfigurable system for
data-parallel and computation-intensive applications,” IEEE Trans.
Comput., vol.49, no.5, pp.465–481, 2000.

[3] Z. Li, Configuration Management Techiniques for Reconfigurable
Computing, Ph.D. Thesis, Northwestern University, 2002.

[4] J.M.P. Cardoso, “Loop dissevering: A technique for temporally par-
titioning loops in dynamically reconfigurable computing platforms,”
IPDPS ’03: Proc. 17th International Symposium on Parallel and Dis-
tributed Processing, p.181.2, IEEE Computer Society, 2003.

[5] C.-C. Lin, D. Chang, Y.L. Wu, and M. Marek-Sadowska, “Time-
multiplexed routing resources for FPGA design,” IEEE Custom In-
tegrated Circuits Conference, pp.152–155, 1996.

[6] V. Fischer, M. Drutarovsky, P. Chodowiec, and F. Gramain,
“InvMixColumn decomposition and multilevel resource sharing
in AES implementations,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol.13, no.8, pp.989–992, 2005.

[7] S.O. Memik, G. Memik, R. Jafari, and E. Kursun, “Global resource
sharing for synthesis of control data flow graphs on FPGAs,” Proc.
40th Design Automation Conference, pp.604–609, ACM, 2003.

[8] S. Mondal and S. Öǧrenci Memik, “Resource sharing in pipelined
CDFG synthesis,” ASP-DAC ’05: Proc. 2005 Conference on Asia
South Pacific Design Automation, pp.795–798, New York, NY,
USA, ACM, 2005.

[9] J. Kim, J. Cho, and T.G. Kim, “Temporal partitioning to amortize
reconfiguration overhead for dynamically reconfigurable architec-
tures,” IEICE Trans. Inf. & Syst., vol.E90-D, no.12, pp.1977–1985,
Dec. 2007.

[10] K. Puttegowda, D.I. Lehn, J.H. Park, P. Athanas, and M. Jones,
“Context switching in a run-time reconfigurable system,” J. Super-
comput., vol.26, no.3, pp.239–257, 2003.

[11] Xilinx, Virtex-II Pro Platform FPGAs: Complete Data Sheet, 2004.
[12] V. Baumgrarte, F. May, A. Nückel, M. Vorbach, and M. Weinhardt,

“PACT XPP—A self-reconfigurable data processing architecture,”
International Conference on Engineering of Reconfigurable Systems
and Algorithms, 2001.

[13] PACT XPP Technologies, XPP Core Turorial for XDS 3.2, 2002.
[14] PACT XPP Technologies, PACT XPP64-A Reconfigurable Proces-

2684
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.11 NOVEMBER 2008

sor.
[15] R.P. Wilson, R.S. French, C.S. Wilson, S.P. Amarasinghe, J.A.M.

Anderson, S.W.K. Tjiang, S.W. Liao, C.W. Tseng, M.W. Hall, M.S.
Lam, and J.L. Hennessy, “SUIF: An infrastructure for research on
parallelizing and optimizing compilers,” SIGPLAN Notices, vol.29,
no.12, pp.31–37, 1994.

[16] M. Budiu, Spartial Computation, Ph.D. Thesis, Carnegie Mellon
University, 2003.

[17] S. Jung and T.G. Kim, “An operation and interconnection sharing
algorithm for partially reconfigurable architectures,” ERSA, pp.163–
174, 2005.

[18] K. Shahookar and P. Mazumder, “VLSI cell placement techniques,”
ACM Comput. Surv., vol.23, no.2, pp.143–220, 1991.

[19] C.M. Fiduccia and R.M. Mattheyses, “A linear-time heuristic for
improving network partitions,” DAC ’82: Proc. 19th Conference on
Design Automation, pp.175–181, Piscataway, NJ, USA, IEEE Press,
1982.

[20] A.E. Dunlop and B.W. Kernighan, “A procedure for placement of
standard-cell VLSI circuits,” IEEE Trans. Comput.-Aided Des. In-
tegr. Circuits Syst., vol.4, no.1, pp.92–98, 1985.

[21] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-based
performance-driven router for FPGAs,” FPGA, pp.111–117, 1995.

[22] C. Lee, M. Potkonjak, and W.H. Mangione-Smith, “MediaBench: A
tool for evaluating and synthesizing multimedia and communicatons
systems,” MICRO, pp.330–335, 1997.

Sungjoon Jung received his B.S., M.S.,
and Ph.D. degrees in electrical engineering from
Korea Advanced Institute of Science and Tech-
nology (KAIST) in 2000, 2002, and 2008, re-
spectively. He is currently working at KAIST
as a post-doctoral researcher. His research in-
terests include a conventional software compiler
and a hardware compiler as well as synthesis al-
gorithms for reconfigurable architectures.

Tag Gon Kim received his Ph.D. in com-
puter engineering with specialization in systems
modeling/simulation from University of Ari-
zona, Tucson, AZ, 1988. He was a Full-time In-
structor at Communication Engineering Depart-
ment of Bookyung National University, Pusan,
Korea between 1980 and 1983, and an Assistant
Professor at Electrical and Computer Engineer-
ing at University of Kansas, Lawrence, Kansas,
U.S.A. from 1989 to 1991. He joined in Elec-
trical Engineering Department of KAIST, Dae-

jeon, Korea in Fall, 1991 as an Assistant Professor and has been a Full
Professor at EECS Department since Fall, 1998. His research interests in-
clude methodological aspects of systems modeling simulation, analysis of
computer/communication networks, and development of simulation envi-
ronments. He has published more than 150 papers on systems modeling,
simulation and analysis in international journals/conference proceedings.
He is a co-author (with B.P. Zeigler and H. Praehofer) of Theory of Model-
ing and Simulation (2nd ed.), Academic Press, 2000. He was the Editor-in-
Chief of SIMULATION: Trans. of SCS published by Society for Computer
Simulation International (SCS). He is a senior member of IEEE and SCS
and a member of Eta Kappa Nu.

