Model Base Management for Multifacetted Systems*

Bernard P. Zeigler, Cheng-Jye Luh, and Tag-Gon Kim!

Al-Simulation Rescarch Group
Department of Electrical and Computer Enginecering
University of Arizona, Tucson, AZ 85721
tDepartment of Electrical and Computer Engincering
University of Kansas, Lawrence, KS 66049

ABSTRACT

A multifacetted system needs not just one, but many, models
on which to base control, management, design and other in-
terventions. These models differ in level of abstraction and in
formalism. Concepts and tools are need to organize the models
into a coherent whole. This paper deals with the management
of model bases using system entity structure concepts. We show
how the pruning process supports reuse of previously pruned
structures. Concepts of context-sensitive pruning and parti-
tioned entity structure bases are introduced to promote model
base coherence and evolvability.

1. INTRODUCTION

The Systems Entity Structure/Model Base (SES/MB)
framework was proposed by Zeigler [12] as a step toward marry-
ing the dynamics-based formalism of simulation with the sym-
bolic formalisms of Al It consists of two components: a system
entity structure and a model base. The system entity struc-
ture, declarative in character [4][5][13], represents knowledge of
decomposition, component taxonomies, and coupling specifica-
tions and constraints. The model base contains models which
are procedural in character, expressed in dynamic and symbolic
formalisms. The entities of the entity structure refer to concep-
tual components of reality for which models may reside in the
model base. Also associated with entities are slots for attribute
knowledge representation. An entity may have several aspects,
each denoting a decomposition and therefore having several en-
tities. Associated with an aspect is coupling information needed
to interconnect the entities of that aspect. An entity may also
have several specializations, each representing a classification of
the possible variants of the entity.

One application of the SES/MB framework is to the design
of systems [8][9]. Here the SES serves as a compact knowledge
representation scheme of organizing and generating the possible
configurations of a system to be designed. To generate a candi-
date design we use a process called pruning which reduces the
SES to a so-called pruned entity structure (PES). Such struc-
tures are derived from the governing structure by a process of
selecting from alternatives where ever such choices are presented.

*Research supported by NASA-Ames Co-operative Agreement No.
NCC 2-525, “A Simulation Environment for Laboratory Management by
Robot Organization”.

TH0308-7/90/0000/0025/$0.100 © 1990 IEEE

25

Not all choices may be selected independently. Once some alter-
natives are chosen, some options are closed and others are en-
abled. Moreover, rules may be associated with the entity struc-
ture which further reduce the set of configurations that must be
considered.

As shown in Figure 1, pruned entity structures are stored
along with the SES in files forming the entity structure base
(there may also be subsidiary SESs in the base as we shall show).
Hierarchical simulation models may be constructed by applying
the transform function to pruned entity structures in working
memory. As it traverses the pruned entity structure, transform
calls upon a retrieval process to search for a model of the current
entity. If one is found, it is used and transformation of the entity
subtree is aborted. Retrieve looks for a model first in working
memory. If no model is found in working memory, the retrieve
procedure searches through model definition files, and finally,
provided that the entity is a leaf, in pruned entity structure
files. A new incarnation of the transform process is spawned to
construct the leaf model in the last case. Once this construction
is complete, the main transform process is resumed.

— SYSTEM ENTITY STRUCTURE BASE |

pruned

structures entity

and structures
save
transform
T >
retrieve
II MODEL BASE II

\
model — working
structures memory

Figure 1. The System Entity Structure/Model Base (SES/MB)
Environment.

The result of a transformation is a model expressed in an
underlying simulation language such as DEVS-Scheme [13][15]
which is ready to be simulated and evaluated relative to the
modeler’s objectives.

The fact that the transform process can look for previously
developed pruned entity structures, in addition to basic model
files, has an important consequence for reusability — as we shall
see later.

As an example of a multifacetted system, let us consider
a space-borne laboratory environment whose partitioned entity
structure base shown in Figure 2 [16]. Such a laboratory en-
vironment is implemented as a centrally coordinated structure
containing a SPACE model as coordinator, and OBJECTS as
components. The SPACE model maintains the overall spa-
tial relations of OBJECTS. Each OBJECT is specialized into
ROBOT and INSTRUMENT. Each ROBOT is decomposed into
MOTION-SYSTEM, SENSORY-SYSTEM, IMAGE-SYSTEM
and COGNITION-SYSTEM. The MOTION-SYSTEM keeps
track of a ROBOT’s motion information such as position, di-
rection, speed, etc. It accepts such motion commands as move,
change-speed, etc. from the COGNITION-SYSTEM. When
a robot changes its position, the MOTION-SYSTEM sends
its new location and direction to the SPACE model. Basi-
cally, a ROBOT receives and sends messages via its SENSORY-
SYSTEM. The IMAGE-SYSTEM is employed to generate an
OBJECT’s image in response to external visual interrogations.

The COGNITION-SYSTEM is also implemented as centrally
coordinated structure consisting of a SELECTOR as coordi-
nator, and MPUS (Model-Plan Units) as components. MPUs
are task specialists that are designed by employing models of
intended tasks and plans of action based on such models. MPUS
is an example of a multiple entity (shown with three lines). Any
number of instances may be generated for such an entity.

The MPUs comprising the robot’s brain are of two kinds:
those specialized for carrying out specific tasks and those that
carry out more general tasks involving communication, motion,
vision, co-operation, etc. TASK MPUs are specialists in operat-
ing specific INSTRUMENTS — each has models of its associated
INSTRUMENT on which to base the operation of the INSTRU-
MENT and to diagnose faults if breakdowns occur. Note that
there are several occurrences of the entity INSTRUMENT cor-
responding to the different contexts of its use. INSTRUMENT
is said to be a multiply occurring entity as opposed to a multiple
entity such as MPUS.

INSTRUMENT is a generic entity for laboratory instrument
which is modeled much the same as a ROBOT. However, an IN-
STRUMENT has no COGNITION-SYSTEM. Among the spe-
cialized instruments available in the laboratory are BTL (bottle),
MXR (mixer) and HTR (heater). An INSTRUMENT such as
BTL has models used by the associated MPU as well as a model
that represents the real instrument in a simulation. These mod-
els are expressed in different formalisms at different levels of
abstraction. See Zeigler [15] for more details.

The set of interlocking entity structures, shown in Figure 2,
specifies the family of robot configurations and ob jects that make
up the simulated laboratory environment. We shall return to the
example to illustrate the model base management concepts to be
presented.

This paper describes the development of concepts and tools
for multifacetted (multi-objective, multi-abstraction, multi-

26

SP“T'L“’ Instrument Bl
]
sl-dec i -
instr-spec bil-spec
Objects Btl Mxr Hir I Btl-ex Btl
- -d
”| Space Btl-o I
Object Spﬁce btl-dec
obj-s”cc space-spec
Motion Btl-e
Space-e Sense
Instrument Space-i Btl-im
Robot
Mpu
Robot mpu-spec
rob-dec Talsk ' V‘l 1
Orderer Task Offer Hua
| Assi Navig
Robot-im task-dec ssis
Sense .
vis-dec
Moti -
on Cognition Operator Djagnoser
! I
Space
cog-dec op-dec)
di-dec Object
Recognition
Selector c I .
Mpus ontr Diagn [nsirument
“l Instrument
Mpu
Figure 2. Entity structures for autonomous robot-managed

space laboratory.

formalism) model/knowledge bases. Such systems support the
maintenance of models in a variety of formalisms and levels of
abstraction for a variety of operational, planning and diagnosis
and other objectives.

First, we show how the pruning process supports reuse of
previously developed pruned entity structures. Concepts of par-
titioned entity structure bases and context-sensitive pruning are
then introduced to promote model base coherence and evolvabil-
ity. The particular application context is the foregoing robot-
managed space station laboratory simulation environment.

2. REUSE OF PRUNED ENTITY STRUCTURES

In DEVS-Scheme, a given SES can be pruned to create a
number of pruned entity structures (PES) which are in turn
transformed into simulation models [5](13][15]. The power to
generate a large collection of models brings with it the need to
archive the collection for reuse. Think of the SES as a powerful
“printing press” and the collection of PES’s the “books” to be
archived. Properly cataloguing the books rolling of the press
will help us find existing books that meet our current needs.
The situation is described in Figure 3. In DEVS-Scheme, a PES
uniquely represents a model in that the PES contains all the
information needed by the transformation process to synthesize
it. We assume that the model base is complete in the sense that
it contains models for all the atomic entities referenced in the
PES’s.

’—ENBASE
available for reuse
—~MBASE
. . Pruned
S Entity pruning Entity transform >
tructures Structures

Figure 3. Reusability of pruned entity structures.

2.1 Requirement for PES Cataloguing

The basic requirement of cataloguing is simple to state: a
PES should be catalogued in such a way as to facilitate subse-
quent recognition and retrieval.

Figure 4a depicts how this basic requirement is satisfied in
DEVS-Scheme. Suppose that we have an entity structure E:A
with root A. Pruning E:A we can start at any sub-entity B. This
normally results in a PES with root B. If the user desires to store
this PES, it will be saved under the name P:B@QV, where V is
a symbolic extension that the user supplies. Extensions can be
used to identify different prunings all having the same root and
therefore representing different models of the same entity. Em-
ploying a time-stamp extension would be reminiscent of software
version control. However, in the present context, the extension
should summarize the distinguishing characteristics of the PES.

For example, pruning E:MPU in Figure 2, the PES
P:MPU@NAVIG suggests a navigator MPU; P:MPUQVISUAL
might be another pruning of E:MPU characterized by its visual
ability. Thus, we may save several prunings P:A@QV1, P:AQV?2,
P:A@V3,...of E:A starting from the root A. To reconstruct
a model from version P:A@Vi, we load it using (load-entstr
p:a@vi) and then call the transform procedure with (transform
p:a@vi).

.3 A p:a@vl p:b@v2 pra@v3
b al_a2_a
pruning /\ /N /\
—_—
[]
reuse by: (load-entstr p:a@v)
(transform p:a@v)
(a)
p:b@vl p:b@v2 p:b@v3
e:a b b b
eis /\ /\ /\
/
pruning
~
ea a
b ~<pruning
wb w/automatic
reuse b_pes-spec
b@vl b@v2 b@v3

(b)

Figure 4. Cataloguing of pruned entity structure for hierarchical
reuse.

27

2.2 Hierarchical Reuse of PES Versions

Consider Figure 4b in which there is an SES E:A having a
leaf entity, B. Also, an SES with B as root, E:B exists. We
will return to see how this important situation might arise. As
shown, suppose that several prunings, P:B@V1, P:B@QV2,...of
E:B have already been saved. Our next requirement for reusabil-
ity is that when the leaf entity B is encountered in the pruning
procedure, such versions automatically be available for user se-
lection. This captures the hierarchical sense of model reuse, since
existing versions of B can be “pulled of the shelf” and “plugged
in” as components to a more encompassing model A.

To realize such hierarchical retrieval, the pruning procedure
uses the following rules when encountering a leaf entity B:

1. if there is a model for B in the model base, skip the next
steps,

2. if there is an SES, E:B and there are no PES versions of
B, replace B in E:A by a copy of E:B and allow the user
to continue pruning the new substructure copy of E:B,

3. if there is no SES, E:B and there are no PES versions
of B, then add a new specialization B_.PES-SPEC to B
whose members are named in one-to-one correspondence
with the versions of B. The entity selected by the user
from B_PES-SPEC replaces B in the resulting PES of E:A.
When transforming this PES, transform will encounter the
leaf entity selected by the user, say B@QVi. At this point
it invokes itself recursively to transform the corresponding
PES P:B@Vi. The resulting model for B is employed as
a component in the hierarchical model being synthesized,
and

4. if both a system, and pruned, entity structures exist for B
then allow the user to decide whether to prune the SES as
in rule 2 or to select from existing versions of B as in rule

3.

As an example, suppose we have pruned the SES E:BTL in
Figure 2 to obtain external, operational and diagnostic versions,
viz., P:BTLQE, P:BTL@O, and P:BTL@D, respectively. In any
SES containing BTL as a leaf entity, we can select from these
existing versions of BTL, or prune E:BTL afresh to generate a
new version needed in this particular situation.

3. PARTITIONED SYSTEM ENTITY STRUCTURES

As illustrated in Figure 2, more than one SES may exist
in the entity structure base, each one representing a family of
models for its root entity. In principle, every entity might have
its own SES but this would lead to extreme fragmentation of
the encoded knowledge. Reasons for giving an entity its own
SES include: the large size of its family of possible prunings, its
high likelyhood of being modified, and its occurrence in several
places of existing SESs. Moreover, we shall see that partitioning
is crucial to achieving model base coherence.

Figure 5 shows tools for creating and partitioning SESs.
Given an SES, E:A with a leaf entity, B, we can use an op-
eration, cut-entstr which:

¢ removes the substructure of B from E:A,
e reincarnates it in the form an SES, E:B, and then

¢ allows the user to prune E:B as many times as desired.

Of course, one may also create sub-SESs independently without
extracting them from larger structures.

As discussed above, the pruning process is capable of “sewing
together” pieces of SESs which fit. It does so only as it needs
to, i.e., when it arrives at a leaf entity which has an associated
SES. In this way, we avoid patching in SESs that might never
be reached in the particular pruning being made. If desired, the
user can piece together SESs with a command, add-sub-entstr.

et ea A

/ AN
p:b@vl p:b@v2

cut-entstr
> _4_ pruning

b
uf

Figure 5. Partitioning of Entity Structures.

3.1 Context Sensitive Pruning

Due to the uniformity axiom of the SES [11][18] an entity
subtends the same substructure where ever it occurs. Pruning
however, must be able to break this uniformity so that different
prunings can be made in the different occurrences. One way to
understand the situation is to consider an SES E:A from which
an SES E:B has been extracted (Figure 6a). This leaves an en-
tity B which occurs at a number of places in the exterior of the
structure (by uniformity, if B is a leaf entity in one occurrence
it must be so for all occurrences). When pruning of E:A ar-
rives at B, the user is given the choice of context sensitive or
insensitive pruning. In the latter, E:B is pruned only once; by
uniformity of E:A, B receives the selected substructure at each
of its occurrences.

In context sensitive pruning, copies of E:B are made for each
occurrence of B. Each copy is separately pruned, renamed and
pasted back in the appropriate context. Due to the valid brothers
axiom of the SES [11][18], each occurrence of B is reached by
a uniquely labelled path from the root. This path (actually
the minimal part needed for proper discrimination) provides the
context needed by the user for pruning. Each item in a pruned
copy of E:B is renamed to be distinct from occurrences in other
copies of E:B.! Note that E:B may itself have entities that occur
more than once. Thus context sensitive pruning is a recursive
procedure.

A multiple entity, as shown in Figure 6b, is pruned in a
similar manner. The single entity B is replaced by a set By,
B,,..., B, whose size is determined by the user.? The resulting
SES clearly satisfies the valid brothers axiom. For each such
brother By, a copy of E:B is pruned, renamed in the context of
B; (plus more of the path extending back to the root, if needed),
and attached to B;. Actually, for convenience, the user is asked
to decide on a number of equivalence groups. Elements in the
same group are given the same pruning (but different naming).

'In renaming, couplmgs and priority lists are also altered appropriately.
?This struéture is transformed to a kernel model [4][15].

This obviates the need to specify each version separately. As
an example, in pruning E:SPACE-LAB in Figure 2, we might
select two equivalence groups for the multiple entity OBJECTS:
the first group containing ROBOTS, the second containing IN-
STRUMENTS, all BTLs, say.

e:a a
umform
rumng A
context
b b b sensitive
pruning \ I
(a)
pruning
A& 4 N
I l bs- mull asp
b
bl b2 b3 b4
(b)

Figure 6. Pruning of multiply occurring entities (a) and of mul-
tiple entities (b).

4. MODEL COHERENCE AND CONTEXT
SENSITIVE CONSTRAINT RULES

This section substantiates the claim made earlier that parti-
tioning of SESs is crucial for supporting model coherence. First,
consider an SES for testing a space adapted bottle shown in Fig-
ure 7. The specialized fluid handling MPU (Model-Plan Unit)
[16] is decomposed into an operator for filling and emptying a
bottle and a diagnoser for discovering the causes of any opera-
tional faults. A model of the bottle is referenced in three places
but each is labelled differently: BTL-E (external model), BTL-
O (operational model), BTL-D (diagnostic model). In this ap-
proach there is no formal way of recognizing that models of the
same underlying entity are being referenced. The various models
of BTL are dispersed throughout the structure. We can greatly
improve coherence by using an SES in which the generic entity
BTL replaces each of its special cases and by collecting them
together as specializations in an SES, E:BTL, as in Figure 8.
Organizing models by the entity they model, rather than the
context they are used in, facilitates evolvability. Recall that
models of an entity may be related by abstraction relationships
so that when one is changes others must be amended to retain
consistency. Indeed, this is the case for the models of BTL as of
all INSTRUMENTS.

Choosing context-sensitive pruning, we can select the special-
izations, BTL-E, BTL-O, and BTL-D in the corresponding con-
texts, TEST-DEC, OP-DEC, and DI-DEC, respectively. This is
a slight bit of extra work, but it need only be done once since
the resulting PESs can be saved for hierarchical reuse (section
2.2).

Test
test-dec
Instr-e Mpu
. ” mpu-dec
ins-e-spec
Btl-e Operator Diagnoser
Htr-e
op-dec di-dec
Mxr-e |
| | |]
Contrl Instr-o Diagn Instr-d
Il Il
ins-o-spec ins-d-spec
|
Btl-o Btl-d
Htr-o Htr-d
Mxr-o Mxr-d
Selection R .

If select Btl-e from Instr-e then select Btl-o from Instr-o
and select Bt1-d from Instr-d

Figure 7. Dispersed SES for testing an arbitrary instrument
handling MPU with operational and diagnostic capabilities.

The advantage of such coherence is even more evident when
we generalize the entity structure base so as to apply to an arbi-
trary instrument handling MPU. As shown in Figure 9, we can
choose context insensitive pruning of E:INSTRUMENT to select
aspecialized entity such as BTL to uniformly replace the general
entity INSTRUMENT in E:TEST. After this pruning step, the
pruning of E:BTL proceeds as above. Note that the power in this
approach is that the same SES E:TEST may be pruned to gen-
erate a family of models capable of testing MPUs for handling
the various instruments organized in E:INSTRUMENT. More-
over the system is nicely evolvable: to add a new instrument, we
place its name in E:INSTRUMENT and define a new SES for
its models.

Test
test-dec
Btl
N [
Btl pu btl-spec
mpu-dec
Btl-e Btl-o Btl-d
Operator Diagnoser
op-decc di-dec
Contrl Btl Diagn Bt1

Figure 8. Entity structure base for testing a bottle handling
MPU with operational and diagnostic capabilities.

Test
I Instrument
test-dec . I
inst-spec
M
Instrument pu Btl Htr Mxr
mpu-dec
Operator Diagnoser Btl
) 1
op-dec di-dec btl-spec
| |
Contrl Diagn Btl-e Btl-o Btl-d
Instrument Instrument

rali t itiv

In the context test-dec, select x-e from X-spec
In the contex op-dec, select x-o from x-spec
In the context di-dec, select x-d from X-spec

Figure 9. Coherent Entity Structure Base for testing an arbi-
trary instrument handling MPU with operational and diagnostic
capabilities.

Compare the above with an alternative SES in which the
models of instruments are distributed into specializations accord-
ing to context as in Figure 7. To add an instrument, we must
add the proper specialized version in three different specializa-

tions. To generate a test model for a particular instrument, we
must consistently select the appropriate representative in each

of the specializations. As shown in Figure 7, constraint rules, of
the form:

If select BTL-E from INSTR-E
then select BTL-O from INSTR-O
and select BTL-D from INSTR-D

can enforce the required consistency. A corresponding class of
rules can be defined to assist context sensitive pruning of the
form:

In the context TEST-DEC, select BTL-E from BTL-SPEC.
In the context OP-DEC, select BTL-O from BTL-SPEC.
In the context DI-DEC, select BTL-D from BTL-SPEC.

As shown in Figure 9, we can have the selection of an entity
from a specialization be governed by context. Moreover, impos-
ing syntactic patterns, we can state a generalized rule to replace
an indefinite number of special cases of the same form.

5. EXAMPLE: SPACE-BORNE LABORATORY
SIMULATION CONTINUED

The approach to entity structure base organization just out-
lined helps to organize the models employed in an autonomous
system such as the robot architecture introduced earlier. The
interesting, and complicating, fact of such autonomous systems
is their use of internal models. Valid representations of such sys-
tems must also represent their internal models. We have argued
that such models should be organized according to the entities
they relate to rather than dispersed among the contexts they are

used in. Moreover, as we have seen, simulation models of such
systems must incorporate external models of the same parts of
reality in order to be able to test how well that modelled agents
perform in their environment. Zeigler [15] shows how a base
model of a system is abstracted into internal and external mod-
els.

As a concrete illustration, let us set up a fluid handling exper-
iment in the space-borne laboratory environment. To perform
such a task, a robot must first locate and identify a bottle re-
quired by external specification, then bring that bottle to the
workspace, and finally perform the fluid handling. Thus, to set
up such a particular laboratory environment, the SPACE-LAB
SES shown in Figure 2 is pruned to generate one robot and one
instrument (Figure 10). Upon reaching those entities with asso-
ciated SESs, the pruning process will sew together the underly-
ing SESs piece by piece. For example, the SES E:ROBOT will
be plugged in to replace the entity ROBOT in the SPACE-LAB
SES, and then E:MPU will replace the entity MPU within the
robot. When the pruning proceeds further, the entity INSTRU-
MENT and the specialized instrument, BTL, will be replaced
by E:INSTRUMENT and E:BTL, respectively. Here we might
assume this is our first pruning, so there are no PESs available
for BTL.

Note that the entity INSTRUMENT is a multiply oc-
curring entity. ~We choose context insensitive pruning of
E:INSTRUMENT to select a specialized entity, BTL to uni-
formly replace it. After this pruning step, we choose context
sensitive pruning to select the specializations, BTL-EX, BTL-
0, and BTL-D in the corresponding contexts, OBJECT-SPEC,
OP-DEC, and DI-DEC, respectively.

Space-Lab
|
sl-dec
Btl-ex_Btl_Instrument_Object Robot_Object Space-e
btl-dec rob-dec
ton | 1 | 1
Motion Semse Btl-¢c Sense Robot-im
Btl-im Motion Cognition
cog-dec

Selector |
Task-Orderer_Mpu Navig_Mpu
Task_Mpu Visual_Mpu
task-dec vis-dec
Operator Diagnoser Space-i
Object
op-dec di-dec Recognition
Contrl Diagn
Btl-o_Btl Instrument Btl-d_Btl_Instrument

Within the robot’s COGNITION-SYSTEM, MPUS is de-
fined as a multiple entity. As stated earlier, we can prune such
a multiple entity to generate any number of desired alterna-
tives. In this example, the synthesized robot will contain one
TASK-ORDERER, one VISUAL, one NAVIG, and one TASK,
MPU. The multiply occurring entity, INSTRUMENT, within
the TASK MPU is pruned as stated above. The resulting PES
is shown in Figure 10.3

Among the specialized MPUs, the VISUAL MPU imple-
ments robot vision. Basically, the VISUAL MPU contains a
world map and an object recognition model. The world map
model, SPACE-I, maintains knowledge of locations and orienta-
tions of objects. It is updated whenever the robot successfully
recognizes an object. When the robot starts the visualization, it
checks the world map first to see whether there are objects lo-
cated within the line of its sight. If so, the object that is closest
to it is chosen as the expected target. Then whenever the image
data come in, the VISUAL MPU applies the predefined clas-
sification system for visual identification of laboratory objects.
The external model that corresponds to the robot’s internal rep-
resentation of an object is the image generator, e.g., BTL-IM.
This external model responds with different images from vari-
ous points of view. Such a vision modelling approach has been
implemented by Luh and Zeigler [6].

After successfully identifying the bottle, the robot travels
to the bottle’s site and then brings the bottle to the workplace.
Note that the robot consults its internal world map to determine
the travel path and to avoid collisions. Moreover, the overall
spatial relations of objects, which are maintained in the exter-
nal model of space, SPACE-E, is updated whenever the robot
changes its location. Note that the external model of space,
SPACE-E, and its counterpart, the robot’s internal world map
model, SPACE-I, are selected by context sensitive pruning of
E:SPACE.

Now let’s consider the fluid handling experiment. The
robot’s internal fluid handling ability is realized in the TASK
MPU as shown in Figure 10. The operational model, BTL-0, is
implemented in the table-models class in DEVS-Scheme. Such a
predictive model employs dynamic programming principles [7] to
perform command sequence planning [15] by given goals. The
diagnostic model of the bottle, BTL-D, is implemented in the
forward-models class in DEVS-Scheme. Such a model provides
rules to deduce the origin of a fault. The external model of
bottle, BTL-E, representing the real bottle that the robot oper-
ates on, is able to respond to both operational commands and
diagnostic probes.

To conduct such laboratory management, the robot’s behav-
ior is supervised by the TASK-ORDERER MPU. A more so-
phisticated liquid mixing experiment pruned from the same SES
has been described by Chi and Zeigler [1].

6. CONCLUSIONS AND FURTHER RESEARCH

Building on the basis of the System Entity Structure/Model
Base framework as implemented in DEVS-Scheme, we have ex-
tended the ability of our knowledge/model base tools to sup-

Figure 10. PES for robot-managed fluid handling experiment.

3As illustrated by ROBOT_OBJECT, the sequence of selections from
specializations is reflected in the name automatically given a pruned entity;
the sequence information is later employed to endow the entity with its
inherited properties.

port multifacetted systems design through the ability to gener-
ate family of design alternatives, reusability of models and model
base coherence and evolvability.

As described above, such an approach has been demonstrated
in the design of a robot-managed space-borne laboratory simu-
lation environment. However, much work remains to be done to
extend the same organizational principles to achieve a multi-
formalism, multi-abstraction simulation environment. First,
such a system should provide tools for the systematic derivation
of abstractions through the use of system morphisms [10][11] to
integrate related models. The SES must be extended to rep-
resent knowledge about existing morphisms between models of
an entity. Such knowledge should concern not only the defini-
tion of the morphism itself but also a specification of its domain
of validity. Zeigler [10] presented an approach to this issue us-
ing experimental frame concepts. Moreover, to support multi-
formalism modelling, a great amount of information should be
associated with the entities in the SES. The kinds of knowledge
that must be associated with a model include it’s formalism, in-
tended application, experimental frames that are applicable to
it, etc. Such an approach might be implemented by embedding
the system entity structure in a richer frame-based knowledge
representation scheme called Frames and Rules Associated Sys-
tem Entity Structure (FRASES) [2][3].

REFERENCES

[1] Chi, S.D. and B.P. Zeigler (1990), “DEVS-based Intelligent
Control of Space Adapted Mixing Process”, (accepted for
presentation on Fifth Conference on Artificial Intelligence
for Space Applications, Huntsville, AL).

[2] Hu, J. (1989), Towards A Knowledge-Based Design Sup-
port Environment For Design Automation and Performance
Evaluation, Doctoral Dissertation, University of Arizona,
Tucson, AZ.

[3] Hu, J. and J.W. Rozenblit (1989), “Knowledge Acquisition
Based on Representation for Design Model Development”,
In: Knowledge-Based Simulation: Methodology and Appli-
cations (eds.: P.A. Fishwick and R.D. Modjeski), Springer
Verlag, Berlin.

[4] Kim, T., (1988), A Knowledge-Based Environment for Hi-

erarchical Modelling and Simulation, Doctoral Dissertation,
University of Arizona, Tucson, AZ.

[5] Kim, T., G. Zhang, B.P. Zeigler (1988), “Entity Struc-
ture Management of Continuous Simulation Models”, Proc.
Summer Sim. Conf., Seattle.

[6] Luh, C.J. and B.P. Zeigler (1989), “Hierarchical Modelling
of Mobile, Seeing Robots”, Proc. SPIE Conf. on Intelligent
Robots and Computer Vision VIII: Systems and Applica-
tions, Vol. 1193, pp. 141-150.

[7) Nilsson, N.J. (1981), Principles of Artificial Intelligence,
Tioga Pub. Co., Palo Alto, CA.

(8] Rozenblit, J.W., S. Sevinc, and B.P. Zeigler (1986),
“Knowledge-based Design of LANs Using System Entity
Structure Concepts”, Proc. Winter Simulation Conf., Wash-
ington, D.C., pp. 885-865.

[9] Sevinc, S. and B.P. Zeigler (1988), “Entity Structure Based
Design Methodology: A LAN Protocol Example”, IEEE
Transactions on Software Engineering, Vol. 14, No. 3,
March, pp. 375-383.

[10] Zeigler, B.P. (1976), Theory of Modelling and Simulation,
Wiley, NY. (Reissued by Krieger Pub. Co., Malabar, FL.
1985).

[11] Zeigler, B.P. (1984), Multifacetted Modelling and Discrete
Event Simulation, Academic Press, London and Orlando,
FL.

[12] Zeigler, B.P. (1986), “System Knowledge: A Definition and
its Implications”, In: Modelling and Simulation Methodol-
ogy in the Artificial Intelligence Era (eds.: M.S. Elzas, T.I
Oren, B.P. Zeigler), North Holland Pub. Co., Amsterdam,
pp. 15-17.

[13] Zeigler, B.P. (1987), “Hierarchical, Modular Discrete Event
Modelling in an Object Oriented Environment”, Simulation
J., Vol. 49:5, pp. 219-230.

[14] Zeigler, B.P. (1989), “The DEVS Formalism: Event-based
Control for Intelligent Systems”, Proceedings of IEEE, Vol.
77, No. 1, pp. 27-80.

[15] Zeigler, B.P. (1990), Object-Oriented Simulation with Hi-
erarchical, Modular Models: Intelligent Agents and Endo-
morphic Systems, Academic press, NY (in press).

[16] Zeigler, B.P., F.E. Cellier, and J.W. Rozenblit (1988), “De-
sign of a Simulation Environment for Laboratory Manage-
ment by Robot Organizations”, J. Intelligent and Robotic
Systems, Vol. 1, pp. 299-309.

[17] Zeigler, B.P. and T.G. Kim (1990), “The DEVS-Scheme
Modelling and Simulation Environment”, In: Knowledge-
Based Simulation: Methodology and Applications, (eds.:
P. Fishwick and R. Modjeski), Springer Verlag (to appear).

[18] Zhang, G. and B.P. Zeigler (1989), “The System Entity
Structure: Knowledge Representation for Simulation Mod-
eling and Design”, , In: Artificial Intelligence, Simulation
and Modelling (eds.: L.A. Widman, K.A. Loparo, and N.
Nielsen), J. Wiley, NY, pp. 47-73.

