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Abstract

In this paper, a second-order orientation tensor, orientation average of dyadic product of orientation vector, was adopted to describe three-
dimensional orientation distribution of short fibers in injection-molded parts. For calculation of the fiber orientation tensor, a closure
approximation is needed to reduce the higher fourth-order orientation tensor to the lower second-order. A modified hybrid closure
approximation, which can accurately describe random-in-space, random-in-plane, and uniaxial distribution of fiber orientations, is introduced
to yield better computational results than existing solutions available in references. Comparisons between numerical calculations of the
second-order orientation tensor and the orientation distribution function (ODF) in simple flow field were made in order to demonstrate the
accuracy of the closure approximation proposed. Orientation tensor equation currently introduced was incorporated into a finite-element/
finite-difference program for injection molding analysis. In addition, new numerical technique was developed to reasonably calculate velocity
gradients using constant velocity elements. The developed program was applied to simulation of injection molding for the thin cavity of a
sector of spherical shell. The analysis showed that the currently proposed numerical approach enhances the solution accuracy of fiber

orientation prediction in injection-molded parts made of short-fiber-reinforced thermoplastics.
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1. Introduction

Fiber orientation, which has a large effect on mechanical
properties of injection-molded parts made of short-fiber-
reinforced thermoplastics, greatly changes during proces-
sing. For effective production of such products, it is essential
to predict such a flow-induced variation of fiber orientation.
Therefore, many investigations have been carried out so far
due to importance of the problem for predicting fiber
orientation distribution. Jeffery [1] has derived the equation
of orientation change of an ellipsoidal particle immersed in a
homogeneous flow field-based on hydrodynamics. Folgar
and Tucker [2] have added a diffusion term to Jeffery’s
equation in order to consider the interactions among fibers.
Advani and Tucker [3] have introduced fiber orientation
tensors, the moments of orientation distribution function
(ODF) to describe fiber orientation. In this approach, only a
few components are required to represent the state of
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orientation at each spatial point. This advantage has made
the orientation tensor, especially the second-order tensor, to
be widely used in the calculation of fiber orientation in flow
molding processes [4,5].

In the present investigation, numerical simulation of
three-dimensional fiber orientation distribution in injection
molding was carried out. Second-order fiber orientation
tensor was adopted to describe fiber orientation efficiently
similar to the approach proposed by Advani and Tucker [3].
A weakness of this approach is that a fourth-order tensor
must be approximated as a known second-order tensor to
solve the governing equation. A modified hybrid closure
approximation, which can accurately describe random-in-
space, random-in-plane, and uniaxial distribution of fiber
orientation, is proposed for better predictions.

The goal of this investigation is to improve the solution
accuracy in simulation of fiber orientation distribution dur-
ing injection molding in couple with simulation program for
filling studies. For this purpose, fiber orientation routine was
incorporated into the finite-element/finite-difference program
developed by the authors [6]. The effect of fiber orientation
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upon flow field was neglected, assuming the thickness of the
cavity is thin enough. In numerical implementation, velocity
gradients, which should be determined in solving orientation
tensors, were obtained by averaging the values for the
surrounding control volume (CV) of each node to minimize
numerical errors. Simulation was carried out for the thin
cavity of a sector of spherical shell with three-dimensional
geometry. The simulation results are compared well to
demonstrate the improvement of solution accuracies.

2. Fiber orientation

Orientation of a single short fiber can be represented by
unit vector p = (p',p?,p?). Considering numerous short
fibers, the three-dimensional fiber orientation distribution
can be approximated by orientation distribution function
(ODF: y/(p)) which is described as a probability density
function of fiber orientation distribution. In order to use such
a description of ODF in numerical calculations, a great deal
of effort is required to determine ODF values in every direc-
tions at each spatial point. However, the orientation tensor as
defined in the following can greatly reduce such efforts.

second-order :  a;; = j{pipjx// dA, (1)
s

fourth-order :  a;u = % pip;pipiy dA. 2)
s

Here, S denotes the surface of unit sphere. The fiber orienta-
tion distribution can be effectively visualized by using
eigenvalues and eigenvectors of a; as shown in Fig. 1. By
definition, orientation tensors are symmetric in its indices
and have the following normalized properties.

age =1, (3)
Ajjkke = djj- (4)
Repeated indices indicate summation unless otherwise
specified. Because of such properties the second-order

orientation tensor has only five independent components
to consider at each spatial point.

an

Fig. 1. Schematic representation of orientation distribution by second-
order orientation tensor.

The governing equation of the second-order orientation
tensor which will be used in this investigation is described
by [3]:
Da,-j 1 1 . . .
o 2 (wiay — agwy) + §)~(Vikakj +aiyy; — 2P i)
+ 2CIV(5U — Saij), (5)

where w;; and 7;; are the components of vorticity and shear
deformation rate tensor, respectively, with A being a shape
factor, C; a fiber—fiber interaction coefficient and 7 an
effective shear rate. 1 is defined as a function of aspect
ratio r. by

r;—1
r24+1°

(Gl

j_:

(6)

To solve Eq. (5), the fourth-order orientation tensor a;j; must
be approximated as a function of the second-order orienta-
tion tensor a;. This closure approximation has a critical
effect on the solution accuracy.

3. Modified hybrid closure approximation

In this section, a modified hybrid closure approximation,
which is used in this investigation, is briefly introduced. For
simplification, the problem was considered in the principal
coordinate system of a;. Let 4; be the ith eigenvalue and
n' = (n},nb, n}) be the ith eigenvector. Then the second- and
fourth-order orientation tensors in this coordinate system,
which are denoted by b; and by, respectively, can be
represented as follows:
b; = nf)n{)a()p = /i0jj (no summation on i), 7
biju = nﬁ)n;)nflniaopqr. ®)

Without loss of generality, values of 4; and 4, should lie in
the shaded region of Fig. 2 with the restriction of
A1 2> Z2 > 3. The three points Ry, R, and U represent the
extremities of this region. At these extremities various
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Fig. 2. Available region of eigenvalues in the 1; and 4, plane.
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orientation distributions are possible, but in order to cover
general cases it was assumed that the orientation distribution
was random-in-space at point R, random-in-plane at R,, and
uniaxial at point U.

The main assumption introduced was that these condi-
tions at three extremities should be satisfied for the closure
approximation currently proposed. This closure approxima-
tion is defined as the modified hybrid closure approximation
in the following.

3.1. Modified hybrid closure approximation—model 1

The modified hybrid closure approximation—model I is
defined by assuming, from the given second-order orienta-
tion tensor, an appropriate orientation distribution that
exactly describes the one at the three extremities. It is
reasonable that the orientation distribution should be
expressed as simple as possible, e.g., egg-like near R,
disk-like near Rp, and pen-like near U. At each region,
ODF is defined to be symmetric in each coordinate plane,
i.e., orthotropic, in order to cover general cases. The fourth-
order orientation tensor, which was calculated from this
ODF, has six non-zero components considering symmetries,
i.e., bii11, baozo, b3333, bi122, bi133, and byyz3. From the
assumed ODF, by111, b2, and bz333 for the three extre-
mities are derived as follows:

Egg-like (A3 > 1/5):

B =504 — 1), b5, = £ (10— 1),

35
b5 = 35 (1045 — 1). )
Disk-like (;u} < 1/5,)»1 < 312)Z
: 1 — S . 1 — Ky
b(lhlsrl = T (7)“1 - }“2)7 bglzsé(z = T (—/11 + 722),
b33 = (35)23 (10)

with s = )u’;/(l + 2/13)
Pen-like (13 < 1/5,41 > 37,):
biv = (=r)(1=s)A, b5 = (1=5)2a — r(1—s)Ai,
b3 = (35)%3 (11)
with r = ),2/(/11 + 3}2) and s = A3/(1 + 223).

Other components b,533, by133 and by, can be deter-
mined from the normalized property.

Thus, modified hybrid closure approximation—model I
can be defined as

ac ity > 1,

alfitt = S agy if Ay < 5,4 <3/, (12)

pen .o 4 1
aijk] lf/t,3 < g,)ul > 312

3.2. Modified hybrid closure approximation—model 11

As mentioned earlier, model I has an orthotropic pro-
perty to be used for general cases. Thus, the idea was similar

to the orthotropic closure approximation proposed by
Cintra and Tucker [7]. They proposed two kinds of closure
approximations, orthotropic smooth (ORS) and orthotropic
fitted (ORF). ORS is described by linear interpolations
of three extremities conditions and can be transformed
into another kind of the modified hybrid closure as
follows:

PORS = —0.15 4 1.152; — 0.104,,
bzoszg = —0.15 + 0.1521 + 0.90/127
bR = 0.60 — 0.60; — 0.60%. 13)

Calculations based on model I usually underpredict the exact
solutions of a;;, while calculations based on ORS over-
predict. Therefore, more accurate version of the modified
hybrid closure approximation—model II was defined by
coupling the results from model I and ORS as

™ = (1 — FAC)afjo™" + FAC - ai®. (14)

Interpolation factor FAC in this equation was found as a
function of C; by minimizing errors in selected flow fields as
follows:

FAC = 0.52 — 0.9655C;'/> (0 < ¢y < 0.1). (15)

For verification of closure approximations introduced, ODF
() was solved directly and orientation tensors were calcu-
lated from Egs. (1) and (2). The results were compared to
solutions of the orientation tensor equation of Eq. (5) based
on each closure approximation. In the current investigation,
‘exact solutions’ or ‘exact values’ imply ‘computations
determined by such an ODF’.

Comparisons of exact values and calculation results
based on various closure approximations (hybrid (HYB)
[3], ORS, ORF, model I, and model II) are shown in Fig. 3.
Comparisons were made for simple shear flow assuming
slender fiber particle (4 = 1) with C; = 0 in Fig. 3(a) and
C1 = 0.01 in Fig. 3(b). It can be seen that model II out-
performs HYB, ORS, and model I as expected. In Fig. 3(b),
both model II and ORF predict the fiber orientation better
than the other closure approximations, while in Fig. 3(a)
ORF underpredicts as time increases. This is because ORF
was obtained from the exact solution with C; = 0.01 and
the fiber orientation prediction shows inaccurate behavior
when Cy changes. If ORF was obtained by fitting ODF at
various Cj values, then this specific error might decrease,
but the overall errors increase. Model I gives better results
than HYB when C; = 0, while oscillation occurs when
C1 = 0.01. Thus, it can be seen that model I guarantees
better results only when Ci =0, while model II being
accurate for the whole range of C; values. From such
comparisons for selected flow fields, it was concluded that
model II can be used in the simulation of fiber orientation
distribution for general flow fields regardless of C; values
and can predict exact values better than existing closure
approximations.
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Fig. 3. Comparisons of a;; between the exact solution and simulations for simple shear flow with: (a) C; = 0 and (b) C; = 0.01.

4. Numerical implementation with filling analysis

Numerical algorithm for predicting fiber orientations
described earlier is incorporated into simulation program
of filling study for injection molding [6]. The fiber orienta-
tion distribution was updated based on flow fields at each
time step. The effects of fiber orientation upon flow fields
were neglected in filling analysis.

In filling simulation, incompressible non-Newtonian and
non-isothermal flow field was analyzed by employing lubri-
cation approximation and hybrid of the finite-element/finite-
difference method [8]. Linear triangular elements were used
to describe thin cavity shape and the half thickness was
divided into 10 uniform spacings which yielded 11 layers
from the center to the cavity wall. At each time step, pressure
field was calculated by the finite-element method in plane
direction and temperature field by the finite-difference
method in thickness direction. Velocity field was calculated
from the information of pressure and temperature fields and
used in advancing flow front automatically. Fixed-grid
analysis enables simulation with complex cavity shape.

4.1. Calculation of velocity gradient

In solving Eq. (5), velocity, velocity gradient, and gradient
of a;; should be determined. Velocity gradient in thickness
direction can be easily obtained from the flow formulation.
However, special consideration should be given in calculat-
ing velocity gradients in plane direction, since linear pres-
sure profile produces constant velocity. In several researches
[4,5], nodal velocity was first determined by averaging
velocities of surrounding elements. Velocity gradient at each
element is calculated from this nodal velocity employing the
same shape function of linear triangular element. But this
procedure involves significant numerical errors. For exam-
ple, velocity gradients calculated in this way cannot satisfy
incompressibility requirement. Numerical test shows that
the trace of shear rate tensor is of same order as the effective
shear rate even if meshes are only slightly distorted.

Therefore, in this investigation, new numerical technique
was developed to reasonably calculate velocity fields from
the constant velocity element. The velocity gradient can be
averaged in the CV according to the current approach as
follows.

Fig. 4 shows node N and surrounding CV. Transforming
the volume integration of velocity gradient in CV into
surface integral on boundaries by divergence theorem,
average velocity gradient at node N can be expressed by

1 / 1
Wiy 2 —— [ u;dV =—— niu; dA
[ 7> ]N VCV ov 75 VCV acv J

1 Ou;
Zmz</ M;nidS+Asva—Lg5i3>, (16)
asv

where SV denotes the portion of CV in each surrounding
element, n; the normal vector component, and V and A
volume and area, respectively. This expression satisfies
incompressibility since at each node mass conservation
holds. In treating Eq. (16) in three dimension, special care
must be given upon coordinate change between local and
global system since the velocity component from filling
simulations is given in local coordinate. Since velocity
gradient is known at each node, a;; can be easily calculated
at each node. Spatial gradient of a; which is needed to treat
material derivative in Eq. (5), is calculated at each element,
and the results are averaged at each node.

Fig. 4. Schematic diagram of CV (shaded region) of node N.
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4.2. Initial and boundary conditions

Initially random distribution of fiber orientation was
assumed. To solve Eq. (5), further consideration must be
given at inlet and melt front nodes where spatial gradient of
a;;and velocity gradient cannot be normally obtained. In this
investigation, random distribution was assumed at both
positions. However, any other considerations such as flow
aligned distribution at inlet or fountain flow effect at melt
front, can be accommodated to effectively simulate practical
molding processes.

At the lateral cavity wall, impermeability condition was
imposed in calculating velocity gradient. However, no-slip
condition, if necessary, can be easily imposed.

4.3. Numerical stability

For accurate determination of the orientation equation
following two conditions must be satisfied.

UAt

Courantnumber limit : Co = Ay <1, a7
X

Jeffery number limit :  Je = 9Ar < 1, (18)

where U and Ax denote characteristic speed and mesh size,
respectively.

In this investigation, appropriate time step at each thick-
ness layer was determined by satisfying Eqgs. (17) and (18)
and Eq. (5) is implicitly integrated by using the predictor—
corrector method.

5. Application
Cavity shape for test simulation is shown in Fig. 5. This

cavity is a sector of spherical shell of 5 cm radius with 2 mm
thickness. For processing conditions, inlet and wall tem-
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Fig. 5. Mesh layout for test simulation.

peratures were set to 200 and 30 °C, respectively, and
injection rate was set to 5.0 cm®/s. Material properties used
in the current simulation are as follows:

Density 727.6 kg/m®,

Specific heat 2700 J/kg K,

Thermal conductivity 0.175 W/m °C,

Viscosity n(3,T) =no(T)/
(1 + [no(D)7/2'] ",
nolT) = Bexp(Ty /T)
(n=0.204,t* = 3.07%
10*Pa, B = 0.144 Pass,
T, = 4830K),

For fibres A=1,Ci=0.

Injection molding simula-and (b). In these figures, a;
tion using these informationsat each element was plotted
was carried out. Fiber orienta-for visualization. At the first
tion distributions at the first andlayer, fibers are oriented
seventh layer at the end of fill-transversely except near the
ing are represented in Fig. 6(a)gate and front since radially

B P P o T o

(b)

Fig. 6. Calculated fiber orientation distribution at the end of filling at the: (a) first layer and (b) seventh layer.
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Fig. 7. Comparisons of simulation results using hybrid and model II at node N at the: (a) first and (b) seventh layer.

diverging flow is dominant, while being flow-aligned at the
seventh layer since shear flow is dominant. Thus, it was
found that numerical formulations developed in this study
produced reasonable fiber orientations.

In order to look into the effect of closure approximation,
simulations were carried out using hybrid closure approx-
imation and model II (modified hybrid). The simulation
results at node N of Fig. 5 are compared in Fig. 7(a) and (b).
Both figures show significant differences. Difference is
severer at the first layer where diverging flow is dominant.
Though experiments are not considered in this investigation,
it can be easily construed from this result that modified
hybrid closure approximation enhanced prediction of fiber
orientation distribution and mechanical properties of final
molded parts.

6. Conclusions

In this investigation numerical methods to calculate fiber
orientation distribution in injection-molded parts were
developed based on the second-order tensor approach.
The modified hybrid closure approximation was introduced
for more accurate calculations. This closure approximation
accurately describes random-in-space, random-in-plane,
and uniaxial distribution of fiber orientation, and was found
to predict distributions more accurately in selected flow
fields. Fiber orientation routine was incorporated into filling
simulation program which was based on the fixed-grid finite-
element/finite-difference method.

New numerical technique was proposed to reasonably
calculate velocity gradient from simulation results of filling
study. Test simulation was carried out using three-dimen-
sional thin cavity of a sector of spherical shell. General trend
of fiber orientations was predicted fairly well. The computa-

tional results based on the modified hybrid closure approx-
imation showed that the predictive capability of fiber
orientation distribution in the molded parts was greatly
enhanced under the present processing conditions.
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