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The coarsening of polyhedral grains in a liquid matrix was calculated using crystal
growth and dissolution equations used in crystal growth theories for faceted crystals.
The coarsening behavior was principally governed by the relative value of the maximum
driving force for growth (Dgmax), which is determined by the average size and size
distribution, to the critical driving force for appreciable growth (Dgc). When Dgmax was
much larger than Dgc, pseudonormal grain coarsening occurred. With a reduction of
Dgmax relative to Dgc, abnormal grain coarsening (AGC, when Dgmax � Dgc) and
stagnant grain coarsening (SGC, when Dgmax < Dgc) were predicted. The observed cyclic
AGC and incubation for AGC in real systems with faceted grains were explained in terms
of the relative value between Dgmax and Dgc. The effects of various processing and
physical parameters, such as the initial grain size and distribution, the liquid volume
fraction, step free energy, and temperature, were also evaluated. The calculated results
were in good agreement with previous experimental observations.

I. INTRODUCTION

Grain coarsening in a liquid matrix (Ostwald ripening)
is commonly categorized into two types: normal grain
coarsening (NGC) and abnormal grain coarsening (AGC).
When NGC occurs, the microstructure changes in a
uniform manner such that a relatively narrow size distri-
bution of grains results, and the normalized grain size
distribution is independent of time and, hence, scale. In
contrast, AGC is characterized by the rapid growth of a
small number of grains with the consumption of small
matrix grains, and hence often features the development
of a bimodal grain size distribution. With further anneal-
ing, however, the large abnormal grains impinge upon
each other, and the grain-size distribution reverts to a
unimodal distribution.

In many investigations,1–17 it has been observed that
the mode of grain coarsening is closely related to inter-

face morphology. Normal grain coarsening was observed
for macroscopically rounded (atomically disordered and
rough) interfaces and abnormal grain coarsening or coars-
ening inhibition for macroscopically flat (atomically
ordered and faceted) interfaces. The normal grain coars-
ening behavior for rough interfaces has been explained in
terms of diffusion-controlled growth, as rough interfaces
provide an unlimited number of sites for growth.18,19 Lif-
shitz and Slyozov20 and Wagner21 considered diffusion-
controlled grain coarsening for a system where there is no
overlap of diffusional fields among grains (in fact, an
infinitely dispersed system) (Lifshitz–Slyozov–Wagner
theory). Later, the LSW theory was modified by a number
of researchers to consider the effect of solid volume frac-
tion.22–27 All of the previous works reported the continu-
ous growth of grains, with a rate linearly proportional to
the driving force, and with a nonvarying relative size
distribution (stationary size distribution). The only differ-
ence among these studies was the absolute rate of growth
with respect to the solid volume fraction.26 Conversely,
AGC has been explained in terms of a nonlinear migra-
tion of faceted interfaces with driving force, as in the case
of the growth of faceted crystals from a solution or va-
por.18,28 For an appreciable migration of a faceted inter-
face, an energetically stable nucleus should form on a flat
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interface.1,2,18,19 Growth of faceted grains proceeds with
atom attachment on the steps formed along the circumfer-
ence of the nucleus (the step-growth mechanism or the
two-dimensional nucleation mechanism)1,2,19,29,30 if the
grain surfaces are free of defects. Operation of this mech-
anism with a nonlinear relationship between the migration
velocity and the driving force can result in AGC when the
driving force for growth of only a limited number of
grains exceeds the driving force for the formation of
atomic nucleation steps.

While the kinetics and behavior for normal coarsening
of grains with rough interfaces are well established,20–23

those for the coarsening of grains with faceted interfaces
are not as well understood. Due to the nonlinear relation-
ship between the growth rate and the driving forces for
growth, it is difficult to predict the coarsening behavior of
faceted grains; the growth rate of a faceted grain can vary
with such factors as change of system temperature, the step
free energy, and the liquid volume fraction. For this rea-
son, model calculations and simulations have been intro-
duced to understand and predict the coarsening behavior of
faceted grains, albeit in a limited number of works, by
Wynblatt and Gjostein,31 Rohrer et al.,32 and Kang et al.33

(Since the early 1980s, there have been many simulations
on AGC; however, most did not take into account the fact
that the coarsening kinetics are strongly dependent on the
interface morphology, i.e., rough and faceted.)

Using growth kinetics for a continuous growth mecha-
nism (diffusion control) and a two-dimensional nucleation
(2-DN) mechanism (interface reaction control), normal
and abnormal grain coarsening, respectively, were de-
scribed by Wynblatt and Gjostein.31 They assumed that
the effective growth rate is governed either by the diffu-
sion process or the interface reaction process (2-DN) for a
faceted grain. For dissolution, the diffusion of atoms was
regarded as the sole rate determining process, as atomic
dissolution can occur readily at the edge and/or corner of a
faceted grain.19 Wynblatt and Gjostein demonstrated AGC
along with NGC using the evolution of the size distribu-
tion function, indicating that the two types of grain coars-
ening behavior are related to the growth mechanism.

Rohrer et al.32 calculated grain coarsening under the
consideration that the growth kinetics is nonlinear for
faceted grains, as did Wynblatt and Gjostein. However,
as they adopted nonlinear kinetics (2-DN mechanism) for
dissolving grains as well as growing grains,32,34 AGC
was not observed in their calculations. Rohrer et al. also
calculated the growth of defect-bearing faceted crystals,
and predicted NGC, as in the case of rounded grains.
They suggested that abnormal grain coarsening is possi-
ble only when the dislocations distribute heterogeneously
among grains, as grains with defects form abnormal
grains and those without defects become matrix grains.32

Kang et al.33 predicted AGC in a system with two-
dimensional faceted grains by introducing a numerical

solution for a 2-DN mechanism, as previously done by
Wynblatt and Gjostein.31 The results of Kang et al.
would be appropriate for explaining AGC observed in
two-phase systems with faceted grains. However, they
considered a system where the solid volume fraction is
negligible, as in the LSW theory. In real systems, where
the growth of grains is governed by the slower process
between diffusion and interface reaction (mixed con-
trol),35 the liquid volume fraction can also be an impor-
tant parameter for grain coarsening behavior. The other
critical parameters that were not closely examined in the
work of Kang et al. are the step free energy (also known
as the edge free energy) and the initial grain size.
In the present investigation, model calculations for the

coarsening of three-dimensional faceted grains in a liq-
uid matrix were made using the proposed growth kinet-
ics of rounded and faceted grains,30,31 following the
scheme presented in our previous work.36 Various types
of coarsening behavior were obtained, depending on
the relative contribution between the maximum driving
force (Dgmax) for grain coarsening and the critical driv-
ing force for appreciable growth (Dgc). Effects of vari-
ous processing and physical parameters, including the
liquid volume fraction as well as the temperature, step
free energy, grain size, and initial size distribution, were
considered. Successive AGC as well as an incubation
time for AGC were predicted for faceted systems, in
agreement with the observed AGC behavior.12,15 Gener-
al principles of microstructure development in faceted
systems have also been suggested.

II. CALCULATION MODEL AND METHOD

The driving force for grain coarsening arises from the
difference in sizes among grains, irrespective of their
interface structure, and thus the capillary pressure of the
grains.18,19,35 The size of a faceted grain can be defined as
given in the Wulff theorem in conjunction with the sur-
face energy. If the growth or dissolution of an individual
grain is governed by the interaction with a grain of critical
size that is neither growing nor shrinking (the mean field
theory assumption), the capillary driving force of a grain
of size 2r, either rounded or faceted, is expressed as

Dgðr; r�; tÞ ¼ 2gVm

1

r�
� 1

r

� �
: ð1Þ

Here, g is the interfacial energy, Vm the molar volume,
and 2r* the critical size of grains neither growing nor
shrinking, which is the time variant. For spherical grains
with a rough interface, the rate of growth is linearly
proportional to the driving force.19–21,35 For angular
grains with faceted interfaces, however, grain growth
proceeds via step growth mechanisms (2-DN, spiral
growth, etc.), where the growth rates are nonlinear func-
tions of the driving force.18,19,29,30
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When grains are spherical, the growth and dissolution
of the grains are controlled by the diffusion of atoms
through the matrix. To consider the effect of the matrix
volume fraction in the current calculation, the model
proposed by Ardell22 is used. According to Ardell,22 the
rate of continuous grain growth vD takes the form of

vD � dr

dt
¼ A

r

1

r�
� 1

r

� �
� 1þ bðLÞ r

r�
� �

: ð2Þ

Here, b(L) is a function of the liquid volume fraction (L)
and A(= 2gVmDfC1/RT, where Df is the diffusion coeffi-
cient, and C1 the concentration of solute far from the
interface)20–22 is a constant depending on the material.

In the case of a faceted grain, attachment of atoms
onto a flat surface is usually unstable as a result of the
increase in the total interfacial energy accompanied by
the attachment, and the attached atoms tend to dissolve
again into the liquid matrix. However, once a sufficient-
ly large nucleation island forms, it generates energetical-
ly stable ledge and kink sites along the circumference of
the nucleus. Therefore, the growth of a faceted grain
proceeds with the formation of two-dimensional nuclei,
i.e., the 2-DN mechanism,18,19,29,30,35 if there are no
surface atomic steps. The growth rate by 2-DN and
growth, vR, is expressed as

vR � dr

dt
¼ Bexp � C

1=r� � 1=r

� �
: ð3Þ

Here, B and C(= ps2/6kThg, where s is the step free
energy, T the absolute temperature, and h the step
height)19,29 are constants, if polynucleation occurs.19,29

As the size of growing grains is in the order of microns,
the assumption of polynucleation may be acceptable. If
intrinsic atomic steps formed by screw dislocations or
twins are present on the surface, the growth rate will be
higher; however, the growth rate is still expressed as a
nonlinear function of the driving force, as in the case of
2-DN.18,19 In addition, even in the presence of surface
defects, screw dislocations or twins, the growth rate can
be governed by 2-DN.37,38 On the other hand, linear
kinetics should be applied in the case of dissolution, as
each corner acts as a dissolution source without an ener-
gy barrier and the dissolution of a grain can occur over
multilayers.18,30,31 As the size of a dissolving grain
decreases and approaches the size of a two-dimensional
nucleus for growth, there must be an energy barrier for
dissolution, as Rohrer et al. noted.32,34 Nevertheless, as
the driving force for dissolution of such an extremely
small grain is high, the dissolution of the grain must be
governed by diffusion rather than interface reaction.
Therefore, the dissolution of a faceted grain must always
be governed by diffusion and its kinetics linearly propor-
tional to the driving force for dissolution.

Wynblatt and Gjostein31 suggested that for the coars-
ening of faceted noble metal particles in a vapor phase,

the rate of coarsening is governed by both 2-DN and
vapor transport processes. Given that the time, 1/v, con-
sumed in forming a complete atom layer on a particle
will be the sum of the time for nucleation, 1/vn, and the
time taken to supply atoms by vapor transport, 1/vt, the
overall rate of coarsening takes the form of

v ¼ vnvt
vn þ vt

: ð4Þ

Using a similar concept for the growth of a grain in a
liquid matrix, the overall rate of growth can be expressed as

dr

dt
¼ 1

vD
þ 1

vR

� ��1

; ð5Þ

for growth by 2-DN.
For calculations, appropriate and realistic values were

assumed for physical constants, taking values reported in
the literature, including those in Ref. 19 into consider-
ation. The assumed values were h = 1:2� 10�10m, g =
0.1 J/m2, Df = 10�9 m2/s, C1 = 10 at.%, Vm = 10�5 m3,
and s = 0.33hg at T = 1773 K. In the case of 2-DN
[Eq. (3)], the preexponential value B is known to be in
the range of e50 to e65 m/s.18 With the assumed values
the constant C was calculated to be 2:8� 107m�1. The
constants A and B were then taken to be 1:0� 10�20m3/s
and 1:0� 1025m/s, as default values.

The starting system consists of one million grains with
a Gaussian distribution

f ðr0Þ ¼ 1

s0
ffiffiffiffiffiffi
2p

p exp � 1

2

r0 � �r0
s0

� �2
" #

; ð6Þ

where �r0 represents the mean radius and s0 the standard
deviation at time t = t0. To evaluate the rate of growth
(or dissolution) of an individual grain, the critical size r*
should be known. This was determined by a binary
search, using the mass conservation equation,

Xj

i¼1

r2i
Dri
Dt

� �
dissolve

þ
Xk
i¼jþ1

r2i
Dri
Dt

� �
grow

¼ 0 ; ð7Þ

where i = 1, 2, . . ., k indicates the number of grains. The
ri is smaller than r* for i < j, while ri is larger than r* for
i � j+1. The mass changes (changes in size) of all of the
grains were then calculated using Eqs. (2)–(5). For every
calculation time step (CTS), a new r* is obtained using
the same routine, and the incremental/decremental radi-
us of each grain for the next step is determined. For all
numeric integrations, the Runge–Kutta method of a
fourth order formula was used.

III. RESULTS AND DISCUSSION

Figure 1 is an illustration of the growth and dissolution
kinetics given in Eqs. (2) and (3). As shown in Fig. 1,
there is a critical driving force Dgc for appreciable growth
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in the case of mixed control, in contrast to linear growth
in the case of diffusion control. For mixed control, three
types of grains are present—the first is growing grains
(r > rc) whose growth rate is linearly proportional to the
driving force, the second is essentially stagnant grains
(r* � r < rc), and the third is dissolving grains (r < r*).
In the case of mixed control kinetics, the growth rate is
strongly affected by the constants A–C given in Eqs. (2)
and (3), particularly the constant C. As the constant C
affects the growth rate exponentially, it changes the value
of the critical driving force Dgc and drastically alters the
growth behavior of grains in a system.

Because there is a nonlinear range in the variation of
growth rate with driving force, the relative contribution
of this range to the overall coarsening must govern the
coarsening behavior of the system. The relative contri-
bution should be governed by the value of the critical
driving force Dgc relative to the (maximum) driving
force for growth, which varies with annealing time due
to grain coarsening. The relative size distribution should
also vary and be nonstationary. In this respect, the grain
coarsening behavior can be classified into two types,
stationary and nonstationary, unlike the conventional
classification of normal and abnormal.

We first examine the relative contribution of the non-
linear range in terms of the effect of the driving force for
growth for a given Dgc followed by the effect of Dgc for
a given driving force. The effect of some specific param-
eters, including size distribution, liquid volume fraction,
and temperature, are subsequently discussed.

A. General behavior

1. Effect of driving force for coarsening

The driving force for coarsening in a system is mostly
governed by the average particle size, because the

driving force for growth or dissolution of an individual
grain is proportional to the difference in curvature be-
tween the average size grain and the grain concerned.
A change in the average particle size for a given critical
driving force results in a change in the relative contribu-
tion of the nonlinearity region to the overall coarsening
behavior of the system.
Figures 2(a)–2(c) show the calculated change in the

grain size distribution with calculation time steps for
different initial average sizes of particles at a given step
free energy. The results demonstrate the effect of the
driving force. In these plots, the frequency distributions
of the grains are overlapped on the growth rate curves.
The changes in average grain size, �r, the size of the
largest grain, rmax, and the size of the largest grain (rmax)
normalized to the average size, rmax=�r, with calculation
time steps, are also plotted at the end of each series of
plots. In the case of �r0 ¼ 0:5 mm, where Dgmax > Dgc,
several rounds of AGC occur, as shown in Fig. 2(a).
However, the AGC behavior in Fig. 2(a) is not as dis-
tinctive as the conventional AGC, where abnormal
grains much larger than the matrix grains appear during
annealing. As shown in a plot of the average grain radius
with calculation time steps at the end of Fig. 2(a), the
change in the average size of grains with calculation
time steps is close to that calculated (shown as a dotted
curve) for normal coarsening. This apparently pseudo-
normal coarsening behavior is due to the considerable
number of grains that have driving forces larger than the
critical driving force for appreciable growth.
As the initial average size increases, the Dgmax de-

creases, and the number of particles having driving
forces larger than Dgc decreases. When Dgmax 	 Dgc,
only a small number of grains initially have driving
forces larger than Dgc, as in the case shown in Fig. 2(b),
where �r0 ¼ 1:0 mm. Only a small number of grains grow
abnormally fast with the consumption of all of the other
grains. This results in the formation of a small number of
large abnormal grains, as shown in the plot in Fig. 2(b)
at 200 CTS, which is typical of conventional AGC.
When the abnormal grains impinge upon each other, the
maximum driving force can become far below Dgc and it
appears that no further grain coarsening can occur for a
considerable period of time, as given by the subsequent
calculation presented in Fig. 2(b).
When Dgmax < Dgc [Fig. 2(c)], none of the grains ap-

parently grow and grain coarsening is initially suppressed.
Even in this case, however, the grains that are larger than
the critical size grain grow slowly with time, following
Eq. (3), while the grains that are smaller than the critical
size grains dissolve, maintaining the condition of mass
conservation. Because the largest grain has the highest
growth rate, although it grows slowly, it can reach a
driving force larger than Dgc after a certain period of time.
AGC can then suddenly occur after an incubation time.

FIG. 1. Schematic showing the variation of growth rate with driving

force for two different growth modes: diffusion-controlled growth and

mixed-control growth.
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This incubated AGC, which can often result in distinctive
AGC, is shown in Fig. 2(c). If, however, the initial average
size is large and Dgmax is much smaller than Dgc, grain
coarsening will be suppressed for a considerable period of
time, showing stagnant grain coarsening (SGC) behavior.

The predicted change in coarsening behavior with
initial particle size has, indeed, been observed in real
systems.2,12,39,40 As the initial size of particles (grains)

increased in the WC–Co-based system2,12,39 and the
BaTiO3–TiO2 system,40 the growth behavior changed
from abnormal to incubated abnormal or stagnant. When
the starting powder is of fine size and the annealing time
is extremely long, all types of coarsening behavior, from
pseudonormal to abnormal and stagnant, may appear
successively in the same system. Experimental verifica-
tion of this, however, has not yet been made.

FIG. 2. Calculated evolution of the size distribution with calculation time steps at 1773 K in a system with a step free energy of s = 0.33hg and a

liquid volume fraction L = 0.15 for (a) �r0 ¼ 0:5 mm, s0 ¼ 0:1 mm; (b) �r0 ¼ 1:0 mm, s0 ¼ 0:1 mm; and (c) �r0 ¼ 1:6 mm, s0 ¼ 0:1 mm, and that in a

system with �r0 ¼ 0:5 mm, s0 ¼ 0:1 mm for (d) s = 0.57hg and (e) s = 0.99hg, respectively. The arrows in the plots indicate abnormal grains. The

critical variations in the average grain size and the relative size of the largest grain to the average size grain for each case are also presented at the

end of each series of plots. (continued on next page)
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2. Effect of critical driving force (Dgc)

According to crystal growth theories,18,30 the critical
driving force Dgc can be expressed as

Dgc ¼ D
ps2

kTh
; ð8Þ

where D is a constant, which is effectively independent
of the step free energy, temperature, and step height.
Equation (8) indicates that Dgc is proportional to the
square of s. A change in s is achievable by changing
the temperature,11,41–43 adding dopants,5,6,8,11,41,44–47 or,

in the case of oxides, changing the oxygen partial pres-
sure, Po2.

8,15,40,48 In general, an increase in the total
vacancy concentration decreases s due to the enhanced
contribution of mixing entropy.19

For a given average size and size distribution in a
system, a change in Dgc results in a change in the rela-
tive width of the nonlinearity region, as in the converse
case where Dgc is constant and Dgmax is a variable. As
Dgc increases, the contribution of the nonlinearity region
increases. This effect is similar to that of an increase in
initial particle size, which reduces Dgmax, for a system
with a constant Dgc. Therefore, with an increase in the

FIG. 2. (continued)
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step free energy from zero to a high value, the coarsen-
ing behavior can change from NGC (zero s) to pseudo-
NGC (low s, where 0 < Dgc << Dgmax), AGC (high
s, where Dgc � Dgmax), and SGC (very high s, where
Dgc > Dgmax).

Figures 2(a), 2(d), and 2(e) show the calculated varia-
tion of the coarsening behavior with changing step free
energy. (For the step free energy smaller than hg, the
grains are partially rounded.63 Nevertheless, the growth of
partially rounded grains is governed by the growth of
facets.10,16) When the step free energy is zero (Dgc = 0),
normal grain coarsening occurs, as indicated by a dotted
curve in the last plot of Fig. 2(a), following the LSW
theory. When the step free energy is low, at 0.33hg
[Fig. 2(a)], where Dgc < Dgmax, pseudo-NGC (multiple
AGC) occurs. AsDgc increases with an increase in the step
free energy, AGC [Fig. 2(d)] and SGC [Fig. 2(e)] occur.

Change in the coarsening behavior from stagnant to
abnormal and further to normal was observed in a
BaTiO3 system with a reduction of the step free energy
by reducing the oxygen partial pressure.15 A change from
AGC to (pseudo-)NGC with a reduction of s has also
been observed for Al2O3 with MgO addition,45,49 NbC–
Fe with B addition,4 a-SiC with atmosphere change,7 and
SrTiO3 with Po2 reduction or donor-doping.

8

B. Effects of processing parameters

1. Particle-size distribution

As the number of grains with driving forces larger
than Dgc varies with the size distribution as well as the
average size, the size distribution must also considerably
affect the coarsening behavior. Figure 3(b) plots the
variation of average grain radius and maximum grain
radius normalized to the average grain radius for the
system shown in Fig. 3(a), where the average sizes are
the same but the size distributions are different. In this
system, the number of grains that have driving forces
larger than Dgc increases with the broadening of the size
distribution. The coarsening behavior thus changes from
AGC to pseudo-NGC with the distribution broadening.

When a large grain is present in a fine grain matrix,
the grain has a size advantage for rapid growth. It was,
however, reported that in the case of solid-state grain
coarsening with the mean field theory assumption (this
is similar to diffusion-controlled coarsening), a large
grain of more than twice the average size has a negative
relative growth rate value.50 Furthermore, the relative
size of the large grain to the average size grain is re-
duced and the large grain is included in the distribution
of NGC during extended annealing. In the case of mixed
control, NGC behavior may no longer be exhibited, as
the relative growth rate of a large grain can take a posi-
tive value. In real systems, the size distribution of the
raw powder often deviates from the normal distribution

used in our calculation and usually contains larger parti-
cles outside of a unimodal distribution. These particles
can become large abnormal grains, much more than sev-
eral times the average size, during subsequent annealing.

Figure 4 plots the growth curves when a seed crystal of
100 mm radius is inserted in an initial Gaussian distribution
of �r0 ¼ 1:0 mm, s0 ¼ 0:1 mm. The growth behavior of the
grains without the seed crystal showed stagnation (SGC)
only for the CTS up to 200, as presented in Fig. 2(c). In
the presence of the seed crystal, however, SGC is main-
tained and the seed crystal grows continuously until the
complete dissolution of all the grains.

In the solid-state single crystal growth (SSCG) tech-
nique,11,47,51–58 a single crystal seed is usually adjoined
to a polycrystal. The growth condition of the seed crystal
is largely governed by the average size and size distribu-
tion of the matrix grains. To realize the maximum driving

FIG. 3. (a) Growth rate of grains as well as the initial Gaussian

distributions of grains in a system with �r0 ¼ 1:0 mm and s0 ¼ 0:1,
0.2, 0.4 mm as a function of driving force. (b) Variations in average

grain size and the ratio of the largest grain size to the average size

with calculation time steps for the system shown in (a). System with

s = 0.33hg and L = 0.15 at 1773 K.
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force for single crystal growth, the average size must be
as small as possible without rapid growth. The optimal
size of the matrix grains for single crystal growth may be
predicted by a calculation similar to that given in Fig. 4.

2. Liquid volume fraction

The increase in the liquid volume fraction denotes an
increase in the diffusion distance of atoms between grains.
Because the growth of the grains is expected to be gov-
erned by material transport through the liquid pockets at
triple and quadruple junctions, this dependence of diffu-
sion distance on the liquid volume fraction is valid even
for systems with grains that are in contact. In the present
calculations, however, Ardell’s assumption22 regarding the
diffusion geometry was adopted, wherein the particle-to-
particle distance is approximately inversely proportional to
the liquid volume fraction (particle-to-particle distance

l 	 �r0
e8j

R1
8j

x�2=3e�xdx

3j1=3 , where j ¼ 1� L). Figure 5(a) illus-
trates the growth rates of grains having an initial Gaussian
size distribution with �r0 ¼ 0:5 and s0 ¼ 0:1 mm for vari-
ous liquid volume fractions. The growth rate under a
driving force larger than the critical value decreases con-
siderably as the liquid volume fraction increases.

Figure 5(b) shows the change in the maximum grain
size relative to the average size grain with respect to the
liquid volume fraction. With a reduction of the liquid
volume fraction, the growth/dissolution rate of individu-
al grains increases and distinctive abnormal grain coars-
ening results. In systems with a high liquid volume
fraction, however, the difference in the growth rate be-
tween fast growing grains and stagnant matrix grains is
not significant; abnormal coarsening behavior is thereby
substantially reduced [Fig. 5(b)]. Such a dependence of

coarsening behavior on liquid volume fraction was ex-
perimentally observed in an Al2O3-anorthite,

9 and CaO–
Al2O3–SiO2 (CAS) system.59

3. Temperature

Two major changes occur in systems when the tem-
perature changes, in relation to the step free energy and
the diffusion rate. It is well documented that the step free
energy decreases as the temperature increases due to an
increased contribution of mixing entropy.19,60–62 A com-
mon expression of the variation in step free energy with
temperature takes the form

s 	 s0 � exp � Mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR � T

p
� �

; ð9Þ

where M is a nonuniversal constant and TR is the rough-
ening transition temperature.62 The values of s0 and M
were taken to be 1.0hg and 16.7, respectively, for the
calculation, under the assumption of TR = 2000 K and

FIG. 5. (a) Growth rates of grains in systems having initial Gaussian

size distributions of �r0 ¼ 1:0 mm, s0 ¼ 0:1 mm for various liquid

volume fractions. (b) Variations in average grain size and the ratio of

the largest grain size to the average grain size in the system shown in

(a) with liquid volume fractions of 0.15 and 0.95.

FIG. 4. Increase in the size of a seed crystal (rseed ¼ 100 mm at the

beginning) with calculation time steps. System with an initial Gauss-

ian distribution of �r0 ¼ 1:6 and s0 ¼ 0:1 mm, L= 0.15, and s = 0.33hg
at 1773 K.
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s = 0.33hg at 1773 K. As the temperature and step free
energy constitute the term of s2/T in the equation of
the nucleation rate [C in Eq. (3)], the values of s2/T
were incorporated into the calculation as parameters for
the temperature. For the diffusion rate, the activation en-
ergy for an atomic jump Dgy was taken to be 10R kJ/mol,
a common value for diffusion in liquid.

Figure 6 illustrates growth kinetics with temperature
for grains having an initial Gaussian size distribution
with �r0 ¼ 0:5 or 1.0 mm and s0 ¼ 0:1 mm. The size dis-
tributions were plotted for T = 1773 K. As the tempera-
ture increases, the growth rate increases due to enhanced
diffusion, and the number of grains with driving forces
larger than Dgc also increases. Given that a temperature
increase decreases s, and hence Dgc, the effect of tem-
perature is similar to that of Dgc if the temperature effect
on the diffusion rate is ignored. The coarsening behavior
with respect to temperature is thus similar to that with
respect to Dgc; with a temperature increase, the coarsen-
ing behavior can change from stagnant to abnormal,
pseudonormal, and finally to normal. The observations
of an increase in the number of abnormal grains with
temperature increase in WC–Co,2 BaTiO3,

40 and PMN-
PT11 systems reflect that the studied temperature ranges
for the systems were for AGC. On the other hand, the
change in coarsening behavior from abnormal to normal
with increasing temperature in the NbC–Co system10

indicates that the temperature increase resulted in values
of zero for s and Dgc, as revealed by a grain shape
change from faceted to spherical.

IV. CONCLUDING REMARKS

Model calculations for the coarsening of faceted
grains were conducted using available crystal growth
and dissolution equations18,19 of mixed control (diffu-

sion and interface control) and diffusion control for
growth and dissolution, respectively. The effects of criti-
cal parameters, including the step free energy, the initial
particle size and distribution, temperature, and liquid
volume fraction, on the coarsening kinetics and behavior
were predicted. The coarsening behavior was principally
governed by the relative value of the maximum driving
force for growth, Dgmax, to the critical driving force for
appreciable growth, Dgc. If Dgc is zero, normal grain
coarsening occurs with a stationary size distribution, as
predicted by the LSW theory. If Dgc has a finite value,
nonstationary grain coarsening, including pseudonormal,
abnormal, and stagnant grain coarsening, occurs.

When the maximum driving force (Dgmax) decreases by
increasing the initial average particle size for a given
Dgc, pseudo-NGC (Dgmax >> Dgc), AGC (Dgmax � Dgc),
and SGC (Dgmax < Dgc) can occur consecutively. For
Dgmax >> Dgc, however, successive pseudo-NGC fol-
lowed by AGC and eventually SGC can proceed, if the
sample is annealed for an extended period of time. SGC
with a unimodal distribution is a result of the completion
of the final AGC. Even in the case of highly suppressed
GC, however, AGC can occur after an extended annealing
time, as the relative growth rate of the largest grain, al-
though not considerable, is the highest, and the largest
grain may eventually have a driving force larger than
Dgc. This belated AGC reflects an incubation time for
AGC, which has been observed in many systems.

An increase in Dgc, for a given initial size distribution
through an increase in the step free energy or by decreas-
ing the temperature, results in a similar change in the
coarsening behavior to that observed on a grain size in-
crease. A temperature change, however, has an additional
effect on the diffusion rate. The rate of grain coarsening
increases for an identical Dgc. If the effect of temperature
on Dgc is ignored, the effect of an increase of temperature
on the grain coarsening is found to be similar to that of a
reduction in the liquid volume fraction, which decreases
the diffusion distance and hence increases the coarsening
rate. More distinctive AGC occurs with a reduction of the
liquid volume fraction.
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