
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 12, DECEMBER 2008 1589

An Operation and Interconnection Sharing Algorithm
for Reconfiguration Overhead Reduction

Using Static Partial Reconfiguration
Sungjoon Jung, Member, IEEE, and Tag Gon Kim, Senior Member, IEEE

Abstract—In most reconfigurable architectures, reconfiguration
overhead is a great bottleneck for repetitive reconfigurations. In
this paper, we introduce a resource sharing algorithm exploiting
static partial reconfiguration to reduce reconfiguration overhead
between consecutive configurations. The proposed algorithm al-
lows parameterizing reconfiguration overhead for individual re-
sources. We also present both conservative and aggressive pruning
techniques to reduce computation time. Experiments have been
conducted with generated graphs and real benchmarks using a
synthesizable intermediate representation. The results report that
the algorithm could share up to 6.82% more resources than a pre-
vious interconnection sharing technique, and that the algorithm
could reuse 80.9% resources in the selected benchmarks.

Index Terms—Reconfiguration overhead management, sharing
algorithm, static partial reconfiguration.

I. INTRODUCTION

I N RECENT decades, reconfigurable architectures (RAs)
have proven themselves as one of the most promising so-

lutions in computing domain. However, reconfiguration over-
head in most RAs is a great bottleneck for repetitive reconfigura-
tions [1]–[3]. Frequent changes in application requirements may
make the reconfiguration overhead to overwhelm the computa-
tional speedups, and eventually to degrade the overall system
performance. Therefore, to amortize the overhead, RAs are sup-
posed to execute a kernel thousands of times after a single con-
figuration. In order to relieve the overhead problem, Virtex [4],
PACT XPP [5], and other state-of-the-art RAs support partial
reconfiguration that only configures small differences between
consecutive configurations.

To effectively employ the partial reconfiguration and to
reduce the reconfiguration overhead, this paper adopts resource
sharing to reuse the already configured resources between con-
secutive configurations or temporal partitions. The execution
model that reconfigures a device every time entering temporal
partitions is basically different from a regular time-multi-
plexing model where all configurations are kept valid on a
device throughout the execution. Since it only maintains a
single partition at a time, the given model results relatively
small area, and gets especially useful when loop bodies are
unmappable due to area constraint and there is no other option

Manuscript received May 17, 2006; revised April 11, 2007. Current version
published November 19, 2008.

The authors are with the Electrical Engineering Department, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of
Korea (e-mail: sjjung@smslab.kaist.ac.kr).

Digital Object Identifier 10.1109/TVLSI.2008.2000973

but dividing loops into several parts [6]. Based on the execution
model, this paper introduces a graph model that combines
interconnection and operation sharing problems, and proposes
a resource sharing algorithm derived from a traditional graph
theory. Additionally, we provide pruning techniques designed
for the proposed model.

The rest of this paper is organized as follows. Section II
gives us an overview of previous sharing schemes for RAs. In
Section III, we detail and model the operation and intercon-
nection sharing problem. Section IV explains our algorithm
for the sharing problem and the pruning criteria to reduce
computation time. Section V reports the implementation and
results of the proposed algorithm. Finally, the paper concludes
with Section VI.

II. RELATED WORK

Resource sharing is a traditional problem in high level
synthesis area that is usually divided into data-level, opera-
tion-level, and interconnection-level. Singh [2] proposed a data
sharing scheme, which reuses data in registers and minimizes
data transfer between data memory and configuration memory.
Even though data sharing seems effective to save reconfigu-
ration time, it is also restrictive and can be applied to a few
limited applications having specific data patterns. Operation
sharing is a kind of traditional graph theory, and is well stabi-
lized as a maximum bipartite matching. Huang and Malik [7]
applied and extended the bipartite matching to interconnection
sharing in RAs with weights of edges. In their model, highly
weighted edges have high probability to share operations and
interconnections.

Although the maximum bipartite based algorithm guarantees
fast computation, it produces poor resource sharing due to an
improper model of interconnection sharing that does not ex-
ploit the entire search spaces. Moreano et al. [8] proposed a
maximum clique based algorithm that only models intercon-
nections and covers all possible mappings of interconnections.
Since the maximum clique problem is in NP class, they em-
ployed a heuristic, and showed 24% fewer configuration for
interconnections than Huang and Malik’s solution. Operation
sharing in their algorithm is a result of interconnection sharing
or a result of simple post-pass mapping between remaining un-
shared operations after interconnection sharing. This is mainly
due to their architecture model that is based on interconnection
networks, and such preference to interconnection sharing makes
their algorithm weaker when the overhead of operation recon-
figuration is higher than that of interconnection reconfiguration.

1063-8210/$25.00 © 2008 IEEE

1590 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 12, DECEMBER 2008

Fig. 1. Two partitions and compatibility edges.

III. GRAPH MODEL FOR OPERATION AND INTERCONNECTION

SHARING PROBLEM

In this paper, an application is a list of temporal partitions.
A temporal partition, a unit to be configured and executed on a
device at one time, is a set of data flow graphs (DFGs), where
a DFG is a set of operation nodes and dependency edges. A
dependency edge is a directed edge to represent a dataflow be-
tween two operation nodes. Given two DFGs, there are rela-
tions, called compatibility edges, to describe which operation
is sharable with another in the adjacent partition. For example,
two partitions and compatibility edges between them are illus-
trated in Fig. 1.

From now on, we shall use notations for nodes in
Partition 1 or , for nodes in Partition
2 or , for dependency edges between and

, and for compatibility edges between and , where
and are in the same graph, and and are in different

graphs. Finally, is the set of all compatibility edges.
Since compatibility edges represent sharable nodes, be-

comes sharable only with when all compatibility edges ex-
cept one are removed from both nodes, or when a compatibility
edge is selected. For example, in Fig. 1 can be reused by

if and only if is selected and all the other compatibility
edges are removed from and . When both and are
selected, and are reused by and , therefore, can
also be reused by . In other words, an interconnection sharing
could be said to select two compatibility edges according to de-
pendency edges, as well as an operation sharing is represented
as selecting just one compatibility edge.

Definition 1: For a subset of , an operation sharing
is and an

interconnection sharing is

The only requirement in selecting compatibility edges is that
one node cannot be shared more than once, which will be called
the single reuse constraint.

Definition 2: For any or
, .

When the pairwise cost functions for operation and intercon-
nection sharing are and , the cost
function for the given resource sharing is defined as follows.

Definition 3: The total sharing advantage
by selecting is

.
The cost function is intended to give capabilities to separ-

atively model resource overheads. Although it is sometimes
hard to determine precise reconfiguration overheads without
synthesis, the cost function may represent a user’s sharing ten-
dency to specific resources over the others, as will be described
in Section IV-B.

Now, we can formulate the operation and interconnection
sharing problem as follows.

Definition 4: Given two DFGs, find a subset of to
maximize .

The traditional operation sharing problem is a subproblem
of the operation and interconnection sharing problem. We can
simply derive it by eliminating all dependency edges in DFGs.

IV. ALGORITHM FOR OPERATION AND INTERCONNECTION

SHARING PROBLEM

In this section, we propose a solution for the operation sharing
problem which is a subset of our problem, then extend it for
operation and interconnection sharing.

A. Algorithm For Operation Sharing Problem

In Section III, we suggested that the traditional operation
sharing problem can be obtained from the operation and inter-
connection sharing problem. The operation sharing problem be-
tween two graphs can be stated as a procedure to compare every
node pair in two graphs, which is similar to finding subgraph
isomorphism. In this paper, we adopt a part of the backtracking
based enumeration algorithm [9]: the mapping matrix and the
enumeration procedure.

Let us introduce the mapping matrix to be a
matrix whose elements are 1’s and 0’s.

If is 1, there exists a compatibility edge between
and . The single reuse constraint is modeled

as a condition that any row and any column in the resulting
matrix cannot contain more than one 1. If and the
other elements in the same row and the same column are all 0’s,
then is said to be shared with , which is
equivalent with selecting a compatibility edge . To a matrix,
we added a column to denote not shared. As an exceptional
case, the added column can have more than one 1 because any
node may remain unshared. The enumeration procedure now
systematically changes each and every 1’s in to 0’s and tests
if the single reuse constraint is satisfied. In the operation sharing
problem, the cost function is the number of shared nodes, which
is identical to the number of selected columns.

Fig. 2(a) shows a corresponding mapping matrix to Fig. 1.
Fig. 2(b) is a resulting mapping matrix that satisfies the
single reuse constraint after the enumeration procedure. Re-
maining 1’s mean shared nodes, while unshared nodes are
greyed out. As shown, selecting six compatibility edges

among 17 compatibility edges [the
number of 1’s in Fig. 2(a)] results maximum operation sharing.

JUNG AND KIM: OPERATION AND INTERCONNECTION SHARING ALGORITHM FOR RECONFIGURATION OVERHEAD REDUCTION 1591

Fig. 2. Mapping matrix and best operation sharing for Fig. 1.

Fig. 3. Possible mapping of dependency edges and relation list of compatibility
edges.

B. Extension For Interconnection Sharing

In Section III, we explained that operation sharing and in-
terconnection sharing can be represented as selecting one and
two compatibility edges, respectively. For example, in Fig. 1
may result an interconnection sharing of and if and only
if is selected at the same time. Without being selected,

cannot initiate the interconnection sharing. To clearly iden-
tify such relations between compatibility edges, we generate all
possible mapping of dependency edges between and as
Moreano et al. did in their work [8].

Fig. 3(a) shows all possible mapping of dependency edges for
Fig. 1. In Fig. 3, the possible mapping means that
and can be shared if and only if and are reused by
and .

Once all possible mapping of dependency edges are gener-
ated, we can identify the effect of selecting compatibility edges.

Definition 5: Given two compatibility edges, they are said
to have a relation to each other if selecting both compatibility
edges results an interconnection sharing.

For example, compatibility edges and in Fig. 1 are
related, since both and exist. The relation explains that
once and are shared, sharing with becomes more
beneficial than sharing with another node. All relations be-
tween compatibility edges can be easily found from possible
mappings by the formula,

where and . Fig. 3(b) shows the entire
relation list for Fig. 3(a).

To deal with such relations between compatibility edges in the
enumeration procedure, here we define the varying matrix
that is enhanced from the mapping matrix . Each element

Fig. 4. Varying matrix and best mapping for Fig. 1.

in has a relation list or a list of elements to which has
relations. When an element in is selected, the values
of elements related to are increased. Therefore, elements in

may have any non-negative values as well as 0’s and 1’s.
Positive values denote the profits of selecting elements, where
larger values mean more beneficial mapping than less ones.

Fig. 4 gives an example of for Fig. 1, when the config-
uration overheads for operations and interconnections are the
same to 1. Fig. 4(a) denotes the case that is selected.
Because additional selection of or will initiate inter-
connection sharing of or , the values of and are
increased by 1, which is the advantage we get from interconnec-
tion sharing. Now, means that selecting may result
not only operation sharing but also additional interconnection
sharing. Fig. 4(b) shows the best result. To show the final status
of , we do not change the unselected elements to 0’s, but
just grayed them out. As shown, is 2, is 3, and all the
other selected elements are 1’s, while row 2 remains unselected.
The result is interpreted as all operations except are shared
and , , and are reused by , , and .

For multi-terminal nets, it is sufficient to decompose them
into two-terminal nets and to identify sharing possibilities, while
we need to handle branching points of the nets in routing phase.
If two nets are partially sharable, wiring points or switching ma-
trices in any cells having branching points have to be controlled
to deal with routings only for the successive temporal partitions,
where such reconfigurations will result additional overheads.
The overhead introduces another backend issue of configuration
sharing. We will briefly present the issue later in Section V-C.

The proposed algorithm simultaneously performs operation
and interconnection sharing, and also gracefully handles var-
ious cases of reconfiguration overhead; whether reconfiguration
overhead for operations is higher or lower than that for intercon-
nections, or how many different operation and interconnection
types there are. For example, there are three different intercon-
nection types for Pegasus intermediate representation (IR) in-
cluding data, token, and predicate [10]. By differentiating the
increasing amounts, we can emphasize some interconnections
over the others. Moreover, with initial values in the varying ma-
trix, reconfiguration overheads for operations can be individu-
ally parameterized. For example, logical operations for events
are occasionally implemented as wires, where the initial values
for the corresponding operation sharing can be set lower than
the others.

About the time complexity, the worst case happens in the case
that all pairs of operations are compatible, and the asymptotic

1592 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 12, DECEMBER 2008

Fig. 5. Maximum advantage matrix � .

upper bound of the algorithm becomes , where
.

C. Conservative and Iterative Pruning Techniques

In this section, we propose conservative and aggressive
pruning techniques to reduce computation time.

First of all, let us introduce a maximum advantage matrix
for the branch-and-bound scheme. is a

maximum expected advantage that we can expect by sharing
and . For example, , ,

, and in Fig. 3(b) mean that selecting may
result four interconnection sharing as long as the corresponding
compatibility edges are selected. However, , , , and

cannot be selected simultaneously since it violates the
single reuse constraint. The maximum number of the expected
interconnection sharing with the selection of can be con-
servatively formulated as , where and are
subsets of and that appear in the paired compatibility
edges of in the relation list. For example, may induce

interconnection sharing at most.
Therefore, is constructed with the equation

where is an operation reconfiguration cost and is an in-
terconnection reconfiguration cost.

The maximum advantage matrix for Fig. 1 is shown
in Fig. 5. The column named is the maximum advantage of
each row. The last column named is the sum of maximum
advantages in remaining rows. The search space is pruned if the
following equation is satisfied:

where is a maximum advantage found at the moment,
is a sum of advantages up to currently processing

row, and is the sum of maximum expected advantages
in remaining rows.

In adopting the branch-and-bound scheme, if the earlier
stage of the algorithm finds higher advantage , it is
possible to prune more search spaces. Since interconnection
sharing is highly dependent on operation sharing, operation
sharing to boost interconnection sharing, or visiting elements
in descending order of the size of relation list may increase the
probability to share more interconnections, which eventually
increase the total sharing.

As an aggressive heuristic to downscale the total search space,
we also designed an iterative framework that initially performs a
resource sharing of important elements in the varying matrix and
later matches less-important elements. An element is regarded
as important if its selection is more probable to increase inter-
connection sharing. The enumeration algorithm processes ele-
ments having lots of relations, and resolves resource conflicts
between them under the single reuse constraint. A threshold to
separate elements into important and less-important ones can be
empirically tuned with total number of important elements, total
size of relation lists of important elements, or computation time
of the enumeration procedure. Ignoring elements whose rela-
tion is less than a threshold may dramatically reduce the total
search space. Once resolving conflicts between most-important
elements, the algorithm processes the remaining elements, or
applies another threshold.

V. EXPERIMENTAL RESULTS

To demonstrate the efficiency of the proposed graph model
and the algorithm in reconfiguration overhead management, we
have conducted two experiments with our SW/HW co-design
framework, where the frontend is based on SUIF [11] and the
backend IR is similar to Pegasus [10]. The first experiment
shows the effectiveness of the algorithm over a previous work in
a set of randomly generated graphs, and the other employs real
benchmarks to show how many resources can be shared using
the algorithm. Furthermore, we also provide a preliminary
result on configuration overhead reduction with our backend
enhanced to deal with resource sharing.

A. Experiments on Randomly Generated Graphs

To show the effectiveness of the proposed graph model
and the algorithm, we have conducted experiments using
randomly generated graphs. The random graph generator was
parameterized with number of nodes and probability to create
compatibility edges and dependency edges. It generated 100
graphs for each experiment. As a counterpart, we also imple-
mented Moreano’s algorithm. To find a solution for maximum
clique, we did not employ the same heuristic as Moreano did,
but traversed all the search space. Since Moreano’s algorithm
only deals with interconnections, we performed additional
post-pass mapping for remaining unshared operations. How-
ever, the exponential time complexity of maximum clique
algorithm limited the input graph size, while our algorithm has
several pruning schemes, even aggressive ones to reduce com-
putation time. In each experiment, the sharing improvement of
our algorithm against Moreano’s and the reduction in search
space were obtained and presented in Table I.

Table I shows the statistics of parameters and total sharing
using the equation in Definition 3 , which denotes the
relative improvement of total sharing of the proposed algorithm
against Moreano’s. We slightly increased by 1 compared to

to emphasize operation sharing. #Same means the number
of graphs out of 100 graphs whose total sharing is same to
Moreano’s. In more than half graphs, the results of two al-
gorithm were reported the same. We reused experiment 8 for
experiment 12 since parameters used in two experiments are
identical.

JUNG AND KIM: OPERATION AND INTERCONNECTION SHARING ALGORITHM FOR RECONFIGURATION OVERHEAD REDUCTION 1593

TABLE I
IMPROVEMENT IN SHARING AND REDUCTION IN SEARCH SPACE

In Table I, we can figure out some interesting relations of
results to parameters. First of all, as the number of nodes in-
creases, the number of same results decreases. This is because
increasing the number of nodes generates more cases in which
the preference to interconnection sharing prevents operation
sharing without interconnections. However, increasing the
number of compatibility edges or the number of dependency
edges multiplies the number of interconnections and results
that Moreano’s algorithm also exploits the same sharing. Not
only with high , but sharing efficiency also decreases with
low . This is simply because no algorithm could generate
any interconnection sharing or operation sharing without com-
patibility edges.

About the reduced search space , it seems directly related
to . Actually, according to Table I, the total search space for
low is very small, which makes the pruning technique not
so useful and becomes high. Rather, we have to put more
emphasis on the reason why the total space increases rapidly as

increases. As explained in Section IV-B , the proposed
algorithm consists of exploiting search space and managing re-
lation lists. Both are proportional to density of the varying ma-
trix, which is a function of . Therefore, as increases,
total search space seems to explode. This limitation is also ap-
plicable to Moreano’s algorithm where the problem size of max-
imum clique is also exponentially proportional to the number of
compatibility edges. However, even in those cases, our conser-
vative pruning technique was efficient and successfully reduced
the search space down to 6.80%.

B. Experiments on Real Benchmarks

In addition to the previous experiment on the graph model and
the algorithm, we also conducted another experiment to show
sharing effectiveness in real benchmarks. We used MediaBench
[11] that consists of applications having mostly parallel com-
putations and is the best match for hardware implementation or
RAs.

Out of the benchmark suite, we selected several functions
having interesting patterns to leverage resource sharing. Those

TABLE II
OPERATION AND INTERCONNECTION SHARING

functions are mainly composed of regular and repetitive com-
putations of data streams, and such regularity guarantees many
of operations and interconnections to be shared. Table II shows
how many operations and interconnections are shared between
two partitions.

In Table II, first two rows in each benchmark represent re-
source characteristics of two partitions, and the next row means
how many resources are shared. The number of shared resources
is also normalized against the smaller resources among two par-
titions, where 100% of sharing represents that one partition is a
subset of the other. On average, the algorithm could share 80.9%
of resources. For three benchmarks, mpeg.a, mpeg.c, and gsm,
conservative pruning techniques using maximum advantage ma-
trix and sorting are sufficient to traverse all the search spaces,
while the others need the important-first, aggressive pruning
heuristics. According to Table II, resource sharing in jpeg.a is
relatively low, which is mainly due to its huge search space. The
next two tables, Tables III and IV, detail benchmark character-
istics and resource sharing.

Table III shows operation sharing in detail. In Table III, a
column named Data means arithmetic and logical operations.

1594 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 12, DECEMBER 2008

TABLE III
OPERATION SHARING IN DETAIL

TABLE IV
INTERCONNECTION SHARING IN DETAIL

Control stands for control dependencies, speculation, and pred-
ication, and Memory for token operations resolving memory
dependencies as well as load and store. For the benchmarks
except gsm, many of control operations are reported sharable.
Since control operations usually consists of operations for loop
carried dependencies and loop controls, it means that those
operations are reusable in successive temporal partitions which
have similar loop patterns. For example, in mpeg.a whose
sharing of control operations is notable, both partitions have
triple-nested loops, and only the second partition has two more
conditional branches that are translated into multiplexors. Ac-
cording to the table, memory operations seem highly reusable.
It is mainly due to simple memory-related instructions. How-
ever, those sharing in memory operations does not necessarily
conclude that memory patterns in both partitions are identical,
as we can see in the next results about interconnection sharing.

Table IV details interconnection types in the benchmarks and
sharing results. The column Pred. stands for predicate intercon-
nections for control dependencies, and the column Token for ex-
plicit memory dependencies. In Table IV, the sharing of pred-
icate interconnections are usually high due to similar control

paths. The results for token sharing especially in mpeg.b, jpeg.a,
and jpeg.b, show that their memory access patterns are different
in spite of highly sharable memory operations. However, in the
other three benchmarks, there exist many sharable tokens due
to their similar array accesses. In jpeg.a, the data sharing looks
relatively low partly because of rather different data manipula-
tion patterns and partly because of the huge search space.

Although resource sharing highly depends on IR, parti-
tioning, and architecture model, here are brief comparisons of
the results to other studies. According to the maximum bipartite
based work by Huang and Malik [7], ADPCM was described
by two partitions having 178 and 111 resources, respectively.
Their algorithm could share 78 resources among them, 31
operations and 47 interconnections. The result corresponds to
70.1% of resource sharing in our metric. Also, Moreano et al.
conducted an experiment with 4 benchmarks having 104–276
resources, and reported 30%–50% of interconnection sharing
[8]. In their metric, our experiment corresponds to 174–631
resources and 17.7%(jpeg.a)-87.0%(mpeg.c) interconnection
sharing. In spite of differences in IR, our algorithm deals with
heavier graphs, where search space grows exponentially with
an input graph size, and produces results comparable to or
better than the previous works.

C. Preliminary Results on Configuration Sharing

Although we have proposed the algorithm to share resources
between temporal partitions, there still remain other practical
issues to apply the algorithm to real architectures. Since most
RAs have their own smallest addressable units, it is sometimes
hard to selectively change bits of current configuration for up-
coming temporal partitions. Therefore, in order to guarantee re-
source sharing in configuration level, it is strongly required to
separate shared resources from non-shared ones. This means a
synthesis process including placement and routing has to be en-
hanced to deal with resource sharing. Our recent research intro-
duces configuration sharing that is the resource sharing problem
in a configuration level [12]. In the work, we extend a tradi-
tional min-cut placer with a method to move and swap nodes
between spatial partitions by which nets cut is reduced and spa-
tial resource constraints throughout temporal partitions are sat-
isfied. Additionally, a negotiation-based router adopts a newly
designed cost function to avoid using shared resources as long
as congestion and delay allow.

Fig. 6 shows the preliminary results on configuration sharing.
The figure explains that the amount of configuration sharing is
related to that of resource sharing. mpeg.b shows relatively low
configuration sharing compared to resource sharing because of
congestions. On the contrary, jpeg.a accomplishes many of re-
sources to be reused due to free routable resources. Although we
sacrificed critical path lengths to reduce configuration overhead,
the results show that the resource sharing between temporal par-
titions is a tradeoff problem between configuration overhead and
computation time, and that it may appeal to applications where
loops have relatively small iteration counts compared to recon-
figuration overhead or loops are unmappable onto RAs. We be-
lieve that there remain additional issues of adjusting and im-
proving placement and routing algorithms to deal with resource
sharing between consecutive partitions.

JUNG AND KIM: OPERATION AND INTERCONNECTION SHARING ALGORITHM FOR RECONFIGURATION OVERHEAD REDUCTION 1595

Fig. 6. Preliminary results on configuration sharing.

VI. CONCLUSION

In this paper, we addressed the operation and interconnection
sharing problem, and proposed a graph model. The graph model
is solved by the varying matrix that is enhanced from the map-
ping matrix in graph isomorphism. Furthermore, the varying
matrix enables us to individually parameterize reconfiguration
overhead for operations and interconnections. To reduce com-
putation time, we also presented the conservative techniques and
the iterative framework. The results obtained from generated
graphs report that the proposed model and the algorithm outper-
form the previous work by up to 6.82% when overhead of recon-
figuring operations is higher than that of reconfiguring intercon-
nections. The experiment with benchmarks shows the algorithm
could share 80.9% resources on average. Finally, our on-going
research including back-end tools reveals the resource sharing
scheme could eventually decrease the configuration overhead.

REFERENCES

[1] T. Callahan, J. Hauser, and J. Wawrzynek, “The garp architecture and
C compiler,” IEEE Computer, vol. 33, no. 4, pp. 62–69, Apr. 2000.

[2] H. Singh, M.-H. Lee, G. Lu, N. Bagherzadeh, F. J. Kurdahi, and E.
M. C. Filho, “MorphoSys: An integrated reconfigurable system for
data-parallel and computation-intensive applications,” IEEE Trans.
Comput., vol. 49, no. 5, pp. 465–481, May 2000.

[3] Z. Li, “Configuration management techiniques for reconfigurable com-
puting,” Ph.D. dissertation, Northwestern Univ., Evanston, IL, 2002.

[4] Xilinx, San Jose, CA, “Virtex-II Pro Platform FPGAs: Complete data
sheet,” 2004.

[5] V. Baumgrarte, F. May, A. Nückel, M. Vorbach, and M. Weinhardt,
“PACT XPP – A self-reconfigurable data processing architecture,” in
Proc. Int. Conf. Eng. Reconfigurable Syst. Algorithms, 2001, pp. 64–70.

[6] J. M. P. Cardoso, “Loop dissevering: A technique for temporally par-
titioning loops in dynamically reconfigurable computing platforms,”
in Proc. 17th Int. Symp. Parallel Distrib. Process. (IPDPS), 2003, p.
181.2.

[7] Z. Huang and S. Malik, “Managing dynamic reconfiguration overhead
in systems-on-a-chip design using reconfigurable datapaths and opti-
mized interconnection networks,” in Proc. Conf. Des., Autom. Test Eur.
(DATE), 2001, p. 735.

[8] N. Moreano, G. Araujo, Z. Huang, and S. Malik, “Datapath merging
and interconnection sharing for reconfigurable architectures,” in Proc.
15th Int. Symp. Syst. Synth. (ISSS), 2002, pp. 38–43.

[9] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM, vol.
23, no. 1, pp. 31–42, 1976.

[10] M. Budiu, “Spartial computation,” Ph.D. dissertation, Comput. Sci.
Dept., Carnegie Mellon Univ., Pittsburgh, PA, 2003.

[11] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A
tool for evaluating and synthesizing multimedia and communicatons
systems,” in Proc. MICRO, 1997, pp. 330–335.

[12] S. Jung and T. G. Kim, “Configuration sharing to reduce reconfigu-
ration overhead using static partial reconfiguration,” IEICE Trans. Inf.
Syst., to be published.

Sungjoon Jung (S’05–M’08) received the B.S.,
M.S., and Ph.D. degrees in electrical engineering and
computer science from Korea Advanced Institute of
Science and Technology (KAIST), in 2000, 2002,
and 2008, respectively.

He is currently working at KAIST as a Post-
Doctoral Researcher. His research interests include
a conventional software compiler and a hardware
compiler as well as synthesis algorithms for recon-
figurable architectures.

Tag Gon Kim (SM’95) received the Ph.D. degree
in computer engineering with a specialization in
systems modeling/simulation from the University of
Arizona, Tucson, in 1988.

In Fall, 1991, he joined the Electrical Engineering
Department, KAIST, Daejeon, Korea, as an Assistant
Professor and has been a Full Professor with the
Department of Electrical Engineering and Computer
Science since Fall, 1998. Between 1980 and 1983,
he was a full-time Instructor with the Communica-
tion Engineering Department, Bookyung National

University, Pusan, Korea, and from 1989 to 1991, he was an Assistant Professor
with the Electrical and Computer Engineering Department, University of
Kansas, Lawrence. His research interests include methodological aspects of
systems modeling simulation, analysis of computer/communication networks,
and development of simulation environments. He has published more than
150 papers on systems modeling, simulation, and analysis in international
journals/conference proceedings. He is a coauthor (with B. P. Zeigler and
H. Praehofer) of Theory of Modeling and Simulation (2nd ed.) (Academic
Press, 2000).

Dr. Kim was the Editor-in-Chief of SIMULATION: Transactions of SCS pub-
lished by the Society for Computer Simulation International (SCS). He is a
member of Eta Kappa Nu.

