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Singularity Avoidance of Control Moment Gyros by Predicted Singularity
Robustness: Ground Experiment

Henzeh Leeghim, II-Hyoung Lee, Dong-Hun Lee, Hyochoong Bang, Member, IEEE, and Jong-Oh Park

Abstract—A steering law design for single gimbal control mo-
ment gyros (CMGs) for spacecraft attitude control is addressed.
The novel approach for the new steering law has a close relevance
to the well-known singularity robustness method combined with
the null motion approach. The proposed predicted singularity ro-
bustness (PSR) approach ultimately leads to an optimized solu-
tion of gimbal rates with performance improvement to avoid sin-
gularity by robust gradient null vectors. To apply it to practical
systems, a singularity index, so-called inner-product index, is also
introduced. The null vector induced from the suggested index pro-
vides a more reliable and robust way of escaping singular states
than that of the well-known condition number index. Performance
of the proposed algorithm is demonstrated by using a ground ex-
perimental hardware simulator equipped with four single gimbal
CMGs floating on top of an air bearing.

Index Terms—Control momentum gyros (CMGs), inner-product
index, predicted singularity robustness (PSR), singularity avoid-
ance.

I. INTRODUCTION

ONTROL MOMENT GYROS (CMGs) are commonly

employed to reorient large spacecraft structures by using
large torque capacity. In spite of the favorable performance they
should be provided with complex steering laws for practical
operations, since torque direction of individual wheel continu-
ously changes. Also, general steering laws for CMGs are usually
subjected to singularity problem when torque vectors of CMGs
are aligned together in the same plane or line. During the last
several decades, various attempts have been made to solve the
singularity problem [1]-[6]. A singularity avoidance strategy
so-called the null motion approach was introduced with a series
of follow-on researches [7]. The variable-speed control moment
gyro (VSCMG) the null space is much larger and more flex-
ible than the single gimbal CMG null space. It makes use of the
null space to exploit redundant actuation capability of the CMG
cluster to keep the gimbals angles away from singularity by ad-
justing wheel speeds. It represents a set of gimbal motion that
produce no net control torque. A variety of analytic approaches
to constructing a proper null motion have been investigated. The
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gradient method, as one of the popular null motion approaches,
has received significant attention [7], [8]. For enhancement of
the pseudo-inverse technique and efficient computation of the
null vector, the principle of singular value decomposition (SVD)
and its relationships were analyzed by Junkins and Kim [8].
This algorithm features a powerful capability to keep singular
states far away by guiding gimbals to the best layout while sat-
isfying control torque requirement. However, in a singular con-
figuration it is not easy or impossible to compute the effective
null vector, which contributes to escaping the singular state.
Therefore, this approach does not always ensure escape from
the singular state. As another feasible approach, the singularity
robust approach was introduced in the field of robot manipula-
tors control [9]. This technique has been extended to additional
researches on the analysis of the singularity problem of CMGs
[10]-[12]. With this approach, it may be possible for the CMGs
to escape the singularity. This feature is different from that of
the null motion approach. On the other hand, it couldn’t provide
a substantial way to avoid singular states or to keep them as far
away as possible, and did not satisfy the control torque require-
ment.

An optimization approach to avoid singularity of single
gimbal CMGs was proposed [13]-[15]. The singularity avoid-
ance approach is based on an optimization technique with
one-step ahead singularity cost or proper measures to be min-
imized. The solution derived from the approach ultimately
produces optimized gimbal angular rates with improved ability
to avoid singularity. This paper is an extension of [14] and
[15] while demonstrating the proposed algorithm by ground
experiment. If we could combine the advantages of the two ap-
proaches described in the previous paragraph, it may bring us a
highly efficient singularity avoidance/escape strategy. The pro-
posed approach leads to a solution to the question of blending
the two approaches. That is, the suggested predicted singularity
robustness (PSR) technique offers a robust gradient vector to
escape from a singular configuration even though the CMGs
are already in a singular state. Furthermore, the proposed
technique can provide exact control torque simultaneously
avoiding singularity. Especially, CMG steering law designers
have investigated fast and reliable computational methods for
computing the gradient vector, since the null motion approach
is considered as a promising methodology for the singularity
avoidance. A singularity index to evaluate the gradient vector
is necessarily required. As a popular singularity index, non-di-
mensional condition number is further investigated in this
paper. Furthermore, an inner-product form of singularity index
candidate which is of limited use in special cases is proposed.
Of course, the suggested measure is applicable to development
of CMG steering laws, and offers much more reliable null
vectors.
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Ground-based experiment of spacecraft attitude control of-
fers significant benefit in terms of cost and time saving. There
have been many research attempts using ground hardware sim-
ulators to test attitude control algorithms [4], [16]-[21]. In spite
of limitation of achieving fine pointing accuracy due to model
uncertainty and disturbances, ground experiment is still useful
for quick validation of new control logic. A CMG testbed is an
ideal tool to verify the new steering law at affordable cost and
development time.

In this paper, a spacecraft ground experimental hardware sim-
ulator capable of three-axis attitude maneuver has been devel-
oped to demonstrate the proposed CMG steering law. For three-
axis attitude control, the simulator structure is floating in the
air by an air bearing which can support up to 150 kg of pay-
load. A pyramid-type CMG cluster is mounted to produce con-
trol torque. The spacecraft simulator is also isolated from the
ground control computer from which attitude control commands
are generated and transmitted through RF communication. With
such a hardware setup, the performance of the suggested CMG
steering law was demonstrated.

This paper is organized as follows. In Section I-A, one-step
ahead prediction approach using the constrained optimization
theory is introduced. The PSR steering law is in Section II, and
then a simple index for checking singular states and reliable
computation of the null vector is discussed in Section III. In Sec-
tion IV, a spacecraft hardware simulator installed with a typical
pyramid-type CMG cluster is introduced to demonstrate the new
technique through experimental study.

A. Singularity Avoidance by Optimization Approach

A typical pyramid-type CMG cluster is illustrated in Fig. 1.
This configuration has been widely investigated for the past
decades. The total angular momentum vector for the four CMGs
can be expressed as

ey

where b € R? represents the total angular momentum vector,
and h; € R? is the ith internal angular momentum vectors
produced by the sth CMG. The magnitude of the internal mo-
mentum vector can be assumed as ||h;|| = 1 without loss of
generality. Also, ¥ = [y1,72, 73, V4]” denotes the gimbal angle
vector, 4 = d-y/dt represents the gimbal angular rate vector, and
[ is the skew angle of the CMGs. The total angular momentum
vector of the CMG cluster can be represented by

—cfsiny; — cosys + ¢fsiny3 + cos vy,
cos~y1 — cfsinyy — cosyz + ¢ sinyy
sfBsiny; + sfsinys + sBsinys + sBsiny,

h= @

where cos 3 = c¢f,sin3 = s(. The time derivative of h is
represented by [12]

h=A(v)y=u 3)
where u is the desired torque command vector, and A(y) €
R3*4 is the Jacobian defined as Oh/07y. The control torque is
usually generated from the CMG cluster by adjusting the gimbal
angular rates.

Fig. 1. Pyramid-type CMG cluster.

The optimization approach by predicting the one-step ahead
singularity index is introduced in this section to help the under-
standing of the algorithm to be presented [14], [15]. If the rank
of a range space is smaller than the number of column vectors
for a given matrix, there always exists a null space. Also, dif-
ferent matrices have different null spaces. The Jacobian in (3)
has a null space, and is always varying due to gimbal motion. It
means that the null vector with the gimbal rates are always dif-
ferent. If we can predict the information of the matrix one-step
ahead, then computation of a reliable null vector to avoid singu-
larity may be feasible. It is the main motivation of our approach,
and the performance of singularity avoidance would improve by
one-step ahead prediction of the singularity measure related to
the Jacobian.

A cost function is constructed such that the singularity
avoidance objective is well taken into account. Since our
primary goal is to avoid singularity, construction of a steering
law by predicting the singular state would be a reasonable path
to achieving the purpose. In other words, a singularity index
is explicitly included in the cost function. To formulate the
optimization problem, the cost function to be minimized with a
singularity measure can be selected as [14], [15]

. . 1. .
min vV (y + YAL) + §7TW'y Y
¥
with a torque command requirement
Ay =mu )

where © € R? denotes the desired torque command vector,
whereas v € R™ represents the gimbal angle vector of the
cluster of n single gimbal CMG. The cost function V (y +4At)
represents the singularity measure predicted one-step (At)
ahead, which should be minimized with respect to the gimbal
angular rates. The scalar v € R and the matrix W € R™*" are
the design parameter and a weighting matrix for the singularity
cost and the energy cost, respectively.

A minimum-norm solution minimizing the cost function sub-
jected to (5) can be derived by introducing Lagrange multiplier
vector () such that

1
L=vV(@)+ 37" Wy + XAy —u}  ©)

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on August 20, 2009 at 04:15 from IEEE Xplore. Restrictions apply.



886 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 4, JULY 2009

An optimality condition is expressed as [25]

oL _ oV

T T
— = +4TWHA A=
oY vs. 0 A 0 @)

It is generally difficult to obtain a closed-form solution since the
singularity cost is a nonlinear function. A feasible approach is
linearization of the cost function about the given gimbal angle
vectors. By introducing Taylor series expansion, the singularity
cost can then be expressed as

V(y+9At) = V(y) + V'(v) At
+%"yTAtV”('y)"yAt +-- (8)

where
[V (7) ovinl"
Vi(y) = eR"
(’Y) L 871 a’Yn i
[ o2V(v) V() T
o7 97071
V”(’Y) — . . e Rn)(’n,
0°V (7) 9°V ()
L 8'\/1 8711 87121 -

The partial derivative of the cost function with respect to -y can
be written as
2%
9% = AtV ()T 4+ ATV () 4 - - )
v
By eliminating higher order terms, the optimality condition in
(7) approximately yields an optimized solution:

oL

azﬁT(FJrW)JrgTJFATA:o (10)

where a Hessian (H ) and a gradient vector (g) are defined as

H(y) = AtV (v), g(v) =V'(7) (11)

and the weighting parameter v is selected here as 1/At. Then,
the optimal gimbal rate vector -y satisfies
4=-H *ATA +g) (12)

where the modified Hessian (H = H +W) is newly introduced.
By inserting (12) into (5), one can obtain the Lagrange multi-
plier vector as

A= —(AH AT 'y — (AHT'ATY P AH g (13)
As a consequence, the gimbal angular rate vector + is expressed
as

§=H AT (AH ' AT) u
+[HT'AT(AH AT AHT — H ) g (14)

Note that the Hessian derived from the partial derivatives of
the singularity cost may become singular since it also consists
of varying gimbal vectors. From the result in (14), the direct
cause of the singularity is due to the inverse of the modified
Hessian (H). Such a possibility can be eliminated by adjusting

the weighting matrix and applying a general CMG property.
Let us assume that the Hessian is a bounded linear operator.
Therefore, the matrix norm of the Hessian is bounded by
|H|| < Aty (15)
where v is a positive real parameter. The following inverse the-
orem is helpful to prove the existence of the inverse.
Inverse Theorem: Let X be a linear operator, if || X|| < 1,
then (I — X)~! exists as a bounded linear operator [26]. It can
be readily proven by selecting the weighting matrix W = al

so that the modified Hessian never reaches a singular state. The
modified Hessian can be reconfigured as

H:a<[—|—£>
et

Let —H /a be set to X. By an appropriate selection of the de-
sign parameters, the norm of X can be made smaller than unity
because of the boundedness of the Hessian. By the above in-
verse theorem, there exists a linear operator (I 4 H /a)~! as the
inverse of the modified Hessian. Accordingly, it always guaran-
tees existence of the inverse of H, if the weighting parameter
satisfies « > Atv. Namely, if o and v are fixed, then the time
interval, A¢, must be smaller than «/v.

(16)

II. PREDICTED SINGULARITY ROBUSTNESS (PSR)

The minimization problem in the previous section satisfies the
torque command constraint exactly. However, the well-known
singularity robustness approach does not satisfy the constraint
under the process of singularity avoidance in some cases, be-
cause the singularity problem is solved by adding a small vari-
ation to the steering law. The approach has widely come into
focus due to the favorable feature of successful escape from sin-
gular states. The generalized singularity robustness(GSR) ap-
proach also ensures escape from any internal singularities for
a non-zero constant torque input [10]. However, it may not be
clear whether the singularity robustness approach ensures the
best way to escape from a singular configuration. This technique
allows us to avoid just current singular state.

As elaborated in the introduction part, if the inherent advan-
tages of the PSR and null motion approaches are combined to-
gether, it may produce highly efficient performance to avoid/es-
cape the singularity of CMGs. Thus, the strategy proposed in
this section naturally pushes the singular states as far away as
possible, and establishes the most desirable way to escape sin-
gular configurations by help of guiders, such as possible robust
null vectors in a singular layout. Therefore, the method pre-
sented naturally gives a solution to the question of blending the
two approaches. The key idea of the technique is to allow a small
torque error to effectively escape from singular states by support
of null vectors. The method to improving the performance of the
singularity robustness approach can be constructed by properly
collocating with the one-step ahead singularity prediction tech-
nique described in the previous section. To adopt the idea, the
torque requirement in (5) is slightly modified by adding a torque
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error vector. The error vector here is another state to be mini-
mized. An optimization problem can be formulated by a cost
function defined as

min {%"yTW"y +6u" R~ 6u + oV (y + ")‘At)} (17)

F,bu

with a torque command requirement

A(Y)F = u+ bu (18)
where 6u denotes the torque error vector to be minimized, and
R~ is a positive definite weighting matrix.

Assume that the weighting matrix of the torque error vector
is set to infinity. It means that no torque error is allowed. The re-
sult would be identical to the method in (14). For the improved
escape performance, the torque error should be inevitably cre-
ated in accordance with the weighting matrix, R~*. From the
optimization method, the predicted singularity robustness(PSR)
steering law is readily obtained as

§=H'AT(AH AT + R)"'u
+H'AT(AH 'AT + Ry 'AH ' -~ H Yg. (19)

The steering law consists of the singularity robustness term
as well as the gradient term. The second term enhances the per-
formance of singularity avoidance by the one-step ahead pre-
dicted null vector with robustness due to R. In other words, the
weighting matrix contributes more flexibility for the gradient
calculation. Obviously, the flexibility would ultimately cause
control torque error. However, the modified form could possibly
be used to develop various versions of the steering law.

Selection of R is crucial from the aspect of both torque error
minimization and singularity avoidance. At first, to understand
how the weighting matrix of R affects the singular values of
the Jacobian (A), the definition of singular value decomposition
(SVD) is briefly introduced.

Generally, every m X n matrix (A) with rank(A4) < m can
be expressed in the form

A=X3YT (20)
with XX = XXT = I,,YTY = YYT = I,, where
the matrices are defined as X = [z1,%2,...,Zm], Y =

[¥1,9Y2, - --,¥,], respectively, and 3 denotes the singular value

op 0 - 0 -+ 0
S=l0o . ... 0 0| € R 1)
0 0 0w O --- 0

In the previous equation, o; represent singular values. It is as-
sumed that they are arranged such that oy > 02 --- > 7, > 0.

By using SVD, the term in the steering law in (19) can be
transformed into

AT(AAT + R) L =yxT(2xT +5)71xT (22)

where the weighting matrix R is defined as

R=XeXT (23)
the matrix = denotes a positive semi-definite weighting matrix,
and H is assumed to be an identity matrix for simplification
without loss of generality. Note that the singular values o1 and
o9 of a pyramid-type CMG cluster are always positive. As a
singular configuration approaches, the third singular value of
the Jacobian always tends to zero. To prevent the third element
from becoming zero, the weighting matrix can be selected as

Z2=diagl0 0 ¢] (24)
where « is a small nonnegative value. Consequently, the exis-
tence of the inverse term in (22) is always guaranteed by the
selected weighting matrix such that the only inverse term of the
steering law can be

1 1
22T+ ) =diag |5 &5 55— 25
( ) 8l 2 ota (25)
If « is zero with o3 # 0 such that R = 0 due to Z = 0, then
the steering law can satisfy the control torque requirement ex-
actly without any torque error. A proper adaptation law of « for
satisfaction of the torque command requirement and singularity
avoidance is desired. One of the possible choices, for example,

is [22]

a = g exp (—alag) (26)
where ¢ and o are positive design parameters. The existence
of the inverse guaranteed by the weighting matrix makes the
approach more robust. Furthermore, the robust gradient vector
also adds more flexibility to avid a singular configuration.

III. SINGULARITY INDEX

The PSR method described so far requires a singularity index
to adequately describe singularity condition of CMGs. In this
section, two singularity indices are introduced. First, non-di-
mensional condition number, being used widely, is introduced.
Next, an inner-product based singularity index which is shown
to be reliable and robust is proposed.

Non-Dimensional Condition Number: As an index to mea-
sure the singular state of the Jacobian, condition number or
non-dimensional condition number defined as
g1

V= (27)

03

has been widely employed. A useful algorithm to quickly com-
pute the gradient vector was introduced [8]. The partial deriva-
tives of V' with respect to the gimbal angles are written as

_8V_ 180’1
_a’yf/_

01 803

U% 8’7,‘, '

’ = 28
g s O (28)
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TABLE I
SPEC. OF THE SPACECRAFT SIMULATOR

Parts Features

Spacecraft structure Moment of inertia : diag[24.3, 24.3, 32.7] kg:m?
Weight : 82.0kg

Flying wheel Moment of inertia : diag[ 0.0032, -, - Jkg-m?
IMU(Inertial Measurement Unit) max. angular rate : £100.0°/sec
Rate resolution : < 0.05°/sec
CPU : Via 400MHz

OS : uC OS-II (Real-time OS)

Onboard Flight Computer
Gimbal motor Max. angular speed : 20000.0rpm

Limited max. angular speed : 10.0rpm

Wheel motor  Max. angular speed : 20000rpm

Controlled angular speed : 3500.0rpm

By using (20), the partial derivatives of the singular values with
respect to gimbal angles are given by

dop 7 0A

=gl gy 2
5y = g U (29)

The relationship between the Jacobian and the derivative of h in
(1) with respect to the gimbal angle vector is represented by

oh
A:a_E[fl fo F3 fieR¥ (30)
Y
Note that h; are periodic functions with an interval of 27 such

that [23]

?h;  Of,

E oy T

€1y
By applying the previous properties, (29) can be transformed
into a simple form

80’k

T
— = —y;rxi h;.
8'}% YikTy N

(32)

The Hessian is needed in implementing the proposed steering
law. Using (28), the partial derivatives of the gradient vector
with respect to the gimbal angles can be obtained by

*V. 1 9oy
0707 03070,
1 (80'1 8(73 80'3 8(71 820'3 )
o3 \9i 0v; Oy Ov; 7i0v;
201 820'3
— . (33)
o3 07:0v;
Note that from (32) one can find a property stated as
Dor _ [ —yuslf; ifi=i (34)
07:0v; 0 if i # j.

By inserting the previous property into (33), the Hessian of A
can be readily obtained.

From (28), (33), one can find that there is one drawback of the
gradient and Hessian derived from the non-dimensional condi-

RF Antenna, Battery and Onboard Flight Computer

Motor Controller

Control Moment Gyros

Fig. 2. Ground experimental hardware for CMG tests.

tion number. Assuming that o3 ~ 0, one can see the denomi-
nator of the gradient and Hessian approach near zero. Finally,
they force the gimbals to produce very large angular rates and
cause numerical computation to become unstable. To overcome
such a problematic scenario, a new singularity index is intro-
duced for robustness and reliability.

Inner-Product Index: A simple singularity index is intro-
duced to compute the gradient and Hessian with reliability.
Note that if all the inner-products of two different column
vectors of a given matrix are zero, then the column vectors
are orthogonal to each other. This means that a matrix with
all nonzero length columns, with all dot products of pairs
of columns being zero, is maximal rank. With this idea, the
so-called inner-product index is defined as

4
2.
J=1,i#

1
V==
2

1=

(fi7 fj>2

J

(35)

where (,) denotes the inner-product operator. When the pro-
posed index is zero or minimum, one can conclude that the ma-
trix is full rank or at least maximum rank. Thus, the suggested
index could be taken as a possible singularity index. Note that
the norm of the column vectors f, should be all nonzero values.
If not, the index cannot be replaced with the singularity index.
Fortunately, the column vectors of Jacobian in (30) are all unit
vectors. If a column vector of the Jacobian is assumed to be a
zero vector, it implies that the wheel with zero momentum does
not function as a CMG. As a consequence, the given index can
be used to quantify singularity level for the Jacobian.

First, the gradient vector can be readily obtained as

o(171;)

4
j;i# (£755) —5

9= (36)

1=
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IMU

RF Controller

Spacecraft Simulator

A

RS232 Communication RS232 Communication
Data flow : Data flow : Pyramid-Type CMG Cluster
-Euler attitude information - Attitude command
-Angular rate - Control status Gimbal Motor #4 |
Gimbal Motor ’ Gimbal Motor #3 | I
. Controller Gimbal Motor #2
Control Onboard Flight Gimbal Motor #1
Monitor Computer R$232 Communication e’ Foror
H/W: PC104 <
Real-Time OS : Wheel Motor #4 l
" WhgER € Wheel M“Otor i Wheel Motor #3 |
Controller Wheel Motor #2 |
RF Communication
Data flow : T T Wheel Motor #1 |
- Gimbal/wheel angular rate command .
- Controlled motor status RS232 Communication
Data flow :

- Euler angle and angular rate

- Gimbal/wheel angular rate command
- Controlled motor status

Fig. 3. Overall system block diagram for the real-time controller.

195

190

>
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180
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T T T T
100 120 140 160

time(sec)

Fig. 4. History of pitch/yaw commands and experimental results. (a) Yaw angle. (b) Pitch angle.

By using (31), the partial derivative of the inner-product with
respect to the gimbal angles is represented by

a(f7 1))

= _hl'f..

(37

The ¢th element of the gradient vector is arranged in a compact
form such that

e Y (£71;) (kT 5;)-

i=1j#i

(38)

Next, elements of the Hessian, partial derivatives of the gradient
vector with respect to the gimbal angles, are also given by

oy - 5 (v1) - (55) (39)
Vil
2

—a‘i ; = (1In) (W7 1) + (475) (wms) . a0

Only the angular momentum (h;) and torque vector (f,) are
involved with evaluating the gradient vector and Hessian. They
can be quickly evaluated by using the proposed inner-product
form of singularity index. From the results, it is evident that
the gimbal rates created by the suggested index work as a more
reliable measure than the non-dimensional condition number.

IV. GROUND TESTS

For three-axis attitude control demonstration, a spacecraft
simulator structure designed is floating in the air by an air
bearing which can support up to 150 kg as illustrated in Fig. 2.
This simulator hardware system consists of a supporting
structure, eight motors for running gimbals and wheels, re-
spectively, eight motor controllers, an inertial measurement
unit (IMU) for sensing three-axis attitudes and angular rates of
the octagon-shaped structure. In addition, a RF controller for
communication between the simulator and a ground computer,
and an on-board computer for the attitude control using CMGs
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rpm

T T
100 120

b)

100 120 140 160 180 200

time(sec)

Fig. 5. Experimental response of the gimbal angular rates and angles. (a) Angular rate of gimbals. (b) Angle of gimbals.

are installed. The roll and pitch angle are limited to 6 degrees,
whereas the yaw angle about the vertical axis is unlimited.

Overall specifications of the simulated spacecraft hardware
including a pyramid-type CMG cluster and several hardware
systems are listed in Table I. The moment of inertias of the
spacecraft structure and wheels are roughly estimated by
CATIA CAD design tool. Thus exact values of them are un-
known and the best estimation of the parameters are out of
scope in this paper. Attitude control computer is designed using
PC-104 hardware single board computer system. The control
computer features several interfaces ports to communicate
with the gimbal/wheel motor controllers, the IMU, and the RF
controller. For real-time attitude control, ©C OS-II operating
system is selected. The attitude control update frequency is 20
Hz such that the speed commands of the gimbal motors are
issued at the same frequency.

The overall system block diagram of the onboard attitude
controller using CMGs is also illustrated in Fig. 3. Each part
can communicate with other subsystems through serial interface
(RS232C). Data between the ground control computer and the
spacecraft simulator are transmitted by RF communication in-
terface. With on-board power system, this configuration allows
us to operate the spacecraft simulator without much external dis-
turbance sources due to messy line connections.

To demonstrate the proposed PSR approach and the inner-
product index, experimental study is performed. The nominal
angular speed of the flying wheels is set to 3500 r/min. Sinu-
soidal form of attitude commands are generated from the con-
trol computer. Experimental results of the attitude control using
the proposed approach are plotted in Fig. 4. The attitude control
results by the proposed algorithm show perfect match with the
commands. The next figure shows the CMG’s responses of the
above attitude control experiment. In this experiment, the max-

25 4

2.0

1.5

det(AA"

1.0

0.5

0.0 T T T T T T T T T T T T T T T 1
0 25 50 75 100 125 150 175 200
time(sec)

Fig. 6. Singularity index of the CMG cluster.

imum gimbal rate is limited to 10.0 rpm due to hardware speci-
fications. For production of desired control torque, response of
the gimbal rates is plotted in Fig. 5(a). The steering law based
on the PSR technique always offers allowable angular speed of
gimbals such that the required control torque is also generated in
smooth profiles. From the gimbal angles illustrated in Fig. 5(b),
one can see that the proposed steering law is claimed to be re-
liable and flexible. The performance of the CMG steering law
can be readily proven by analyzing the singularity index. The
last plot in Fig. 6 shows determinant of the Jacobian as a sin-
gularity index. If the index reaches zero, it implies singularity.
Note that there can be various sources to make it difficult to
control the attitude of the simulator. One of the major sources
is gravity effect by which the unwanted disturbance torque is
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induced due to mass unbalance of the simulator. These effects
make CMGs easily fall into singularity during operation. Never-
theless, the PSR technique displayed in Fig. 6 always provides
a substantial performance to keep the singularity away from the
current layout with the help of the robust null vector obtained
from the inner-product index. It is the reason why the attitude
control torque is always generated in a stable fashion without
any torque error.

V. CONCLUSION

The predicted singularity robustness (PSR) technique for
CMG:s steering law is synthesized using the singularity robust-
ness technique combined with the one-step ahead singularity
prediction technique. The development of a novel steering law
for control moment gyros provides additional insight for singu-
larity avoidance. One can conclude that the approach has some
favorable features to avoid singularity efficiently. Some unique
cost functions lead to different results to avoid singularity of
CMGs. It means that choice of a new cost function results in
an effective singularity avoidance algorithm. The inner-product
index for measuring the singularity seems to offer reliability
and consistency in evaluation of the gradient vector and Hes-
sian for deriving the CMG steering laws. Ground experimental
demonstration further strengthens the potential capability of the
proposed algorithm. Despite many technical limitations in the
ground experimental study, meaningful results were obtained
highlighting the value of experiment.
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