Accommodating Logical Logging under Fuzzy Checkpointing
in Main Memory Databases

Seungkyoon Woo Myoung Ho Kim Yoon Joon Lee
Department of Computer Science
Korea Advanced Institute of Science and Technology
373-1 Kusung-Dong, YuSung-Gu, Taejon, 305-701, Korea
{skwoo,mhkim,yjleé@cs.kaist.ac.kr

Abstract Disk-Resident Databases (DRDB), all the contents of mem-
ory can be lost in system failures due to volatility of main
This paper presents a simple and effective method tomemory. To preserve data against crashes, we need a recov-
reduce the size of log data for recovery in main mem- ery method that restores MMDB to a consistent state. Many
ory databases. Fuzzy checkpointing is known to be veryresearches have been done in the past for recovery methods
efficient in main memory databases due to asynchronousn MMDB [2, 4, 7, 8, 10, 11, 14].

backup activities. By this feature, most recovery works in -\ MDB has a goal of high-performance transaction pro-
the past have used only physical logging schemes. Since th‘éessing. Thus a recovery method must be efficiently pro-
size of physical log records is quite large, physical l099ing cegsed with little synchronization and fast recovery. Among
schemes cause the recovery time to be much longer than thale, e rg| tasks in recovery methods, checkpointing is the most
using logical logging schemes. In this paper, we propose ajmnqrtant one for these requirements. Since MMDB has
hybrid logging method that can accommodate logical 10g- g pyfering activities for data stored in the memory per-
ging under fuzzy checkpointing. This method significantly manently, an efficient checkpointing scheme is required.
decreases the size of log data, and hence speeds up th?uzzy checkpointing in MMDB, which has been shown to
recovery time. We also propose a reapplying rule in s€g- pe effective in DRDB, was introduced by Hagmann [S].
mented MMDB, which reduces the number of log records s 72y checkpointing flushes dirty pages asynchronously
for recovery. We evaluate the performance of the proposed,inst transaction activities, the quiescence of transactions
methods through anglytlc analyses. The results show that™ ¢ required. However, only physical logging scheme
we can reduce the size of log data to more than half, com-y,45 considered in fuzzy checkpointing due to asynchronous
pared with those that use only physical logging. flushing in the past MMDB recovery works [5, 11, 12].

) Physical logging causes a recovery time of MMDB to be
Keywords: database recovery, main memory databases|onger than logical logging. This is because a large amount
(MMDB), fuzzy checkpointing, hybrid logging method, of |og data are produced in physical logging [14]. Logical

shadow updating, delayed backup logging can make a long physical log into a record of only
a few words, which can reduce the size of log data signif-

1. Introduction icantly. To achieve faster recovery, we need a method to
reduce the size of log data by accommodating logical log-
ging.

In Main Memory Databases (MMDB) data reside per-
manently in main memory. By the significant decrease

of memory cost with the fast growth of memory capac- X -
ity, the importance of MMDB has been increasingly rec- compression method. These methods are to eliminate the

ognized [3]. There are several database systems that usdedo” part of log records for aborted transactions and the
MMDB as a part of databases [6, 9, 15]. Though MMDB “undo” portion of log records for committed transactions.

can provide faster response time and higher throughput thard? L€hman and Carey [8] and Jagadeshal. [7], redo log
records are flushed to disks and undo log records are dis-

tThis material was supported in part by Ministry of Information and Carqed’ when a transaction is Committed: Salem and Garcia-
Communication, 1996. Molina [14] use a shadow updating policy to record only

There are some researches that attempt to reduce the size
of log data. DeWitet al.[2] and Hagmann [5] present a log

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS 97)
0-8186-8114-4/97 $10.00 © 1997 |IEEE

redo log records. However, two former methods are not restore a fuzzy checkpoint to the same physical state as it
based on fuzzy checkpointing, and in [14] it has been shownwas. After then, the logical log records can be applied to
that fuzzy checkpointing still has longer recovery time than the checkpoint because the checkpointis in exactly the same
other checkpointing methods with logical logging. If sec- state when the log records were generated. This is the basic
ondary index modifications are logged, the recovery time of idea of our approach that can accommodate logical logging
fuzzy checkpointing would be much longer. in fuzzy checkpointing. We refer to the approachbrid

In DRDB there are some works on adapting logical log- Logging Rule
ging under fuzzy checkpointing. Bernsteat al. [1] de-
scribe a penultimate fuzzy checkpointing method with logi-
cal logging. This checkpointing scheme, however, requires
the quiescence of transaction processing. The quiescence
time is determined by duration of active transactions and By using shadow updating and a private log buffer of
the number of dirty pages. Mohat al.[13] introduce @ each transaction, we can make a checkpoint into a transac-
recovery method, called ARIES which is based on a fuzzy tion consistent checkpoint. Under shadow updating, only
checkpointing and WAL logging scheme. ARIES supports committed transactions can update MMDB, which prevents
logical logging, which is, however, restricted to objects with the partial undo of a transaction and generates only redo
increment or decrement kinds of operations, e.g., garbagdog records. Using both shadow updating and private log
collection and changes to the amount of free space. Thepuffers causes log records of a transaction to be written con-
two above-mentioned fuzzy checkpointing methods are for secutively to log. Since these features enable to apply redo
DRDB, not MMDB. This means that flushing of dirty pages |og records by the unit of a transaction, a fuzzy checkpoint
is based on buffering activities. Because MMDB has data in can be restored to a transaction-consistent checkpoint.
main memory permanently, the penultimate checkpointing
idea in [1] and the scheme of un-flushing dirty page in [13] 2.2, System Configurations
cannot be applied for MMDB.

In this paper, we propose a simple and efficient Iogging Our hardware system is based on general system config-
method that uses both physical and logical log records un-yrations, so we do not consider a special stable mefory.
der fuzzy checkpointing in MMDB. The basic idea of the Main memory is partitioned into two areas: system and
method is that a transaction writes physical log records dur-gatabase area. The system area is used by an operating sys-
ing only checkpointing, but uses logical log records in other tem to control the system. The database area is controlled
cases. Shadow updating and private log buffers are used topy a database management system (DBMS) and consists
gether with hybrid logging to make a transaction consistent of MMDB area, log buffer, and shadow area. We assume
checkpoint. We apply the proposed method to segmentedhat the entire database can be stored in the MMDB area.
MMDB in order to support consecutive checkpointings. We The |og buffer has several log pages in which log records of
also present an effective method that can significantly re-transactions are stored. A log page is flushed into disk when
duce thenumberof log records used for recovery. it is full. The shadow area is used for shadow updating and

The rest of the paper is organized as follows. In Sec- keeps updated data. During commit works of transactions,
tion 2, we present the system configurations and the pro-the data are moved to appropriate locations in the MMDB
posed fuzzy checkpointing method. Then we apply the grea.
method to segmented MMDB. Section 3 describes the re- |n disks, two backup databases are maintainecpamgt
covery processing and an effective reapplying method. Inpongbackup policy [14] is used. For each checkpoint, one
Section 4, we evaluate the impact and performance of theof two backup databases is used alternatively. During a
proposed method through analyses. Finally Section 5 hasheckpoint, only portions of the database that have been
conclusions and describes some further works. updated are written out to their corresponding position on

the backup database according to ping-pong policy. This
2. Fuzzy Checkpointing Accommodating Log- increases the number of pages to be flushed, but prevents

ical Logging the violation of WALT_he violation of WAL is a situation

that an updated page is flushed to a backup database before
the corresponding log records are flushed to disk. The viola-
tion may occur when fuzzy checkpointing is used carelessly.
When the system crashes in this situation, the log records
have to be applied to the page in order to redo or undo ac-
tions issued by the corresponding transaction. However, as

Hybrid Logging Rule Write physical log
records during only checkpointing, and use log-
ical log records in other cases.

2.1. Basic Concept

Under fuzzy checkpointing [5] in MMDB, the check-
pointer flushes dirty pages without considering on transac-
tion activities. Thus only physical logging must be used
during checkpointing. With physical log records, we can 1The stable memory is not an important factor on this work.

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS 97)
0-8186-8114-4/97 $10.00 © 1997 |IEEE

Commit Work end_chkpt begi n_chkpt end_chkpt /

Precommit [
I |
Finish
Start re_do
Lo @ || @ |6 |6 poi nt crash
[[[[[[

Transaction Copy Tr'slog Update Release Release Waitto
Execution tolog buffer MMDB Shadow area lock(s) writelog

Figure 2. Redo Point of Normal Checkpoint

Figure 1. Transaction Processing Model stored in a private log buffer of the transaction. After fin-

ishing its operations, the transaction tries to lock the current
log page in order to write its log records. After locking the

the log records are not stored in stable log, the page can ,)
g g Pag log page, the transaction determines the type of log. If the

. Thi I I ing-
notbe recovered. This problem can be solved by ping por]gcheckpointer is at work, the transaction writes physical log

backup policy. records to the log page; the log records are constructed from
With one backup database, the violation of WAL can be g page; the fog : u .
the shadow area. Otherwise, the transaction writes logical

avoided. To do this, the quiescence of transaction process; T .
S) . . . log records that are stored in its private log buffer. As the
ing is required during checkpointing. It is not adequate to

' : lock of current log page is a synchronization point between
MMDB because of high-performance transaction process- : : :
. transactions and the checkpointer, the checkpointer cannot
ing. If we use a stable memory as the log buffer, the WAL

violation can be avoided without two backup databases andfInISh its work while a transaction does logging work.

the quiescence. However, most conventional systems are o

not equipped with stable memory in standard configuration 2-4- Checkpointing

and a method without stable memory can be easily applied

to systems with it. So, in this paper, we do not consider the We use ping-pong backup scheme with fuzzy check-

usage of stable memory. pointing. When a new fuzzy checkpoint begins, the check-
pointer writes a checkpoint beginning maikeginchkpt
2.3. Transaction Processing to the current log page, and then flushes dirty pages to

one database backup in disks without considering on locks

Under shadow updating, updated data of a transactionand other transaction activities. When finishing the backup

are first written to the shadow area, not to the MMDB area \évr?(rilé’h}(hi t((:)hc?Srer?tnlt:r warlt(; :ngr}?ucskﬁgquETgmgamjsrl?o
in place. The updated data are reflected on the MMDB are P g pag g pag

after normal operations of the transaction are finished. Figi[g% ?ésﬁ?ékAILeé t:hheetl:i%opir??eer \r'\gg;rtggnt%ghgg;ﬁovm;

ure 1 shows a transaction processing model for our recovery .

: gin_chkptat a known location on disk. After that, the next
method. We use thgre-commitscheme that has been pre- checkpointing can begin and backup dirty pages to another
sented in [2]. For locking policy a strict two-phase locking P 9 9 p dirty pag

protocol is used backup database. This is a normal fuzzy checkpointing pro-

: : cess [5, 14].
At step 1, operations of a transaction are executed by : . : .
. ; . i) There are two problems in using logical logging under
locking required objects. After that, the transaction mode is - . .
. o - the normal fuzzy checkpointing. One is the WAL viola-
changed to pre-commit mode. A transaction in pre-commit
i L tion, but it can be avoided by ping-pong backup scheme.
mode first writes its log records to the current log page (step : .
. Another problem is related to the redo point of recovery.
2). Next, MMDB is updated through the updated data of Figure 2 shows the redo point under the normal check
the transaction in the shadow area (step 3). And then, the g b

used pages in the shadow area and all acquired locks of thgomtmg process. As we d(.) not consider the quiescence
of database, some transactions may be updating pages at

transaction are released (step 4 and 5). Finally, at step 6 th%eginchkptand partially updated pages can be flushed to

transaction compares the currentlog page with the log pageoackup databases. If the system crashes as shown in Fig-
that has its log records. If two pages are the same, the trans- |

. :) . .ure 2, the redo point for recovery is determined as the small-
action waits the current log page to be flushed; otherwise, |test number amona loa page numbers of these transactions
just commits. Then the user is notified that the transaction g'og pag '

. Thus the redo point is before theginchkptin log.
has committed. o
. . . The problem related to the redo point is that the type of
According to our hybrid logging rule, the type of log log records written by transactions updating some pages at
records to be written at step 2 is determined by the activ- g y P 9 pag

ity (?f the CheCprinting- During _Step 1, atransaction makes 2as ysing shadow updating policy, we do not consider a transaction
logical log records for its operations. These log records areundo.

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS 97)
0-8186-8114-4/97 $10.00 © 1997 |IEEE

begin_chkpt end_chkpt
int numactivetr[N] ;
time | [* N is the number of log pages. */

/* numactivetr[N] are initialized by zero. */
Ti: [exee]logging g int tail;

* tail is an index olhumactivedtr[] ,
which points the oldest log page with updating
transaction(s). */

T2]exec \Iogging\ update

Figure 3. Example of Redo Point Problem
Checkpointing() {
Write beginchkptto a current log pagée

beginchkptis of logical log. This is because the hybrid log- Change the current log page

ging rule obeys logical logging during non-checkpoint du- to the next log page;

ration. As an example, consider a situation in Figuré&'3. Sleep untitail < 4;

andT'2 record their logical log records to a log page accord- Backup dirty pages;

ing to the hybrid logging rule. With physical log records, we Write endchkptto a current log pagg
can restore after-images without worrying about the current and flush it;

state of the data. With logical log records, however, the redo Change current log page to the next log page;
log records may only be applicable to a data item when it Wait the log pageg and its previous all log

is in exactly the same logical state as when the log records pages to be written to log disks;
were created [1]. Thus, the logical log records cannot be Record the position dfeginchkptto a known
applied to the partially updated pagesiof and7'2. location on disk;

To solve this problem, we have to correspond the redo }
point with beginchkpt in the last complete checkpoint.
In other words, the checkpointer must begin its backup) o)
processing after all transactions updating MMDB bat Figure 5. Fuzzy Checkpointing with Delayed
gin_chkpt finish their updating works. By delaying the Backup Timing Point
backup beginning point, the checkpointer can do backup
dirty pages on which all updated data of transactions with
logical log records are reflected. Therefore, we can avoid

applying logical log records to partially updated pages. Fig- - I i)
ure 4 shows this delayed backup mechani&g, s, is the i, a transaction increasesimactivetr[i] by one, and de-
e creasesnumactivetr[ij by one after updating MMDB.

beginning point of backup work. Some pagesI&f and ; L _ :
T4 may be flushed to a backup database during updating,When numactivetr[i] is zero, it means that transactions

which generates partially updated pages. However, thesd@t had written their log records to the log pagnished
pages can be recovered because the type of log records df€ir updating works. By using this variable, the check-
T3 andT'4 is of physical log. pointer can determine the backup timing point.

This delayed backup is easily implemented by using a Figure 5 shows a fuzzy checkpointing algorithm with the
variable. We define the variable asmactivetr[], which ~ delayed backup timing point. After writinigeginchkptto a

represents the number of transactions updating MMDB in currentlog page, the checkpointer sleeps untilil comes
to log page. The indextail is moved by transactions. Af-

ter updating MMDB, the transaction locks the log pgge

each log page. After writing its log records to a log page

begin_chkpt end_chkpt with its log records and decreasasmactivetr[j] by one.
. l Toeckup l At that time, whemumactivetr[j] is zero andiail points
time | to the log page, the transaction set#l to the next adequate
- log page number. If checkpointing is at work, the transac-
TL logging| updat : ; '
j tion wakes up the checkpointer.
T2 [exec [logging| update | This approach adds locking overhead to the transaction

T3 Ogging overhead, because of twice lockings per a log page. How-

ever, the first locking is a normal process for transaction

T4] exec | logging updat# processing, and thereby the overhead has little influence on
transaction processing. Due to the delayed time added to
the checkpointing, the checkpointing interval is increased a
Figure 4. Delayed Backup Concept little. But updating works at MMDB are processed with-

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS 97)
0-8186-8114-4/97 $10.00 © 1997 |IEEE

out disk 1/Os, so they are straightforward works. Thus the o
delayed time may be very small, and the quiescence of the“neckpointing() {

database work does not occur. foreachsegmentlo { _
Write beginchkptsegidto a current log
, pagei;
2.5. Applying to Segmented MMDB Flush the log pagé
S) Change current log page

As fuzzy checkpointing in MMDB has little syn- to the next log page;
chronization with executing transactions, a consecutive Sleep untitail < i;
fuzzy checkpointing has been considered in some previous Record the position dfeginchkptsegid
of a checkpoint becomes tiheginchkptof the next check- Backup dirty pages in segmesitgid;

point. In this way the checkpointer is always active, so there }
is no room to use logical logging.

A way applying our hybrid logging scheme to the con-
secutive checkpointing is to partition MMDB to several seg-
ments and to checkpoint segments circularly in the serial Figure 6. Consecutive Fuzzy Checkpointing
order. A segment consists of one or more pages. Every on Segmented MMDB
database object (relation, index, etc) is stored in a segment.
When the checkpointer is flushing dirty pages in thth
segment, a transaction uses physical logging for objects in
the segment and logical logging for objects in other seg-
ments. To do this, we need some information on the rela-
tion between a log record and its segment. This information
can be stored in the private log buffer of a transaction and
the shadow area. The following rule is the hybrid logging
scheme in segmented MMDB.

of a transaction are stored to the log buffers of correspond-
ing segments. In this case, a global log buffer is required to
check the completeness of transactions and checkpoints. In
the global log buffer, the marks for beginning and ending of
transactions and checkpointings are stored. By using multi-
ple log buffers, the delayed time can be reduced. However,
because of having more lock points, the overhead of locking

) : and its contention will be grown.
Hybrid Logging Rule for Segmented

MMDB Write physical log records for ob-

jects in a segment that is on checkpointing, 3. Recovery Processing
and use logical log records for objects in other
segments. As non-segmented MMDB can be regarded as a special

case of segmented MMDB with one segment, we gener-

The ping-pong backup policy is also used in segmentedally describe the recovery of segmented MMDB. The re-
MMDB. The checkpointer flushes dirty pages in each seg- covery for MMDB is composed of two processes: reloading
ment orderly to one of two backup databases in disks. Thebackup database and reapplying log. The reloading process
delayed backup method is used in order to adjust the redas to move the last complete checkpoint into main mem-
point. Before flushing dirty pages in a segment, the check-ory, and the reapplying process is to apply log data to the
pointer delays the backup timing point. A consecutive reloaded database. Since we use the delayed backup pol-
checkpointing algorithm on segmented MMDB is presented icy for each segment, the redo point of segmerg be-
in Figure 6. We use only the beginning mark of a segment gin_chkpti.
segid beginchkptsegid The mark indicates the beginning For reloading, we have to determine the last complete
of the checkpoint of a segmesegidas well as the ending checkpoint. In the conventional fuzzy checkpointing, the
of the checkpoint of just previous segment. Whenever thelast complete checkpoint has been regarded.askpoint;
checkpointer completes the checkpoint of a segment, thein Figure 7, which shows the checkpointing process of
checkpointer records the positiontodginchkptsegidat a MMDB with 4 segments. The point to note is that the
known location on disk, like the checkpointing in the non- checkpoint of segment 1 afteheckpoint; has a meaning-
segmented MMDB. fulimage. The image is in which all log records of segment

Since we use one log buffer, the delayed time to adjust1 generated during théeckpoint, are applied to the back-
the redo point at each segment checkpoint is equal to thatuiped pages of segment 1 in thkeeckpoint;. This means
of non-segmented MMDB. However, the time is so small thatthe checkpoint of segment 1 aftéeckpoint; includes
that it has little influence on transaction processing. We candata items updated itheckpoint,. So, we have to reload
multiple log buffers, one for each segment. The log recordsthe pages of segment 1 checkpointed aftexkpoint,, not

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS 97)
0-8186-8114-4/97 $10.00 © 1997 |IEEE

Checkpoint, MMDB under conventional fuzzy checkpointings that per-
mit only physical logging scheme. Following is the general
12 3 e L2 s expression of the reapplying policy:

I I I I I I

/ Reapplying Rule When recovering the last com-

plete checkpoint of segmented MMDB, in each

segment reapply log records related to its segment
and previous recovered segments in the last com-
plete checkpoint. After recovering the last com-
plete checkpoint, reapply all remain log records
in checkpoint,. This approach can be applied to segment 2 to MMDB till log records of the last complete
and 3. Therefore, the last complete checkpoint for recovery transaction.

is checkpoints. This approach has been proposed in [12], By the last lete t i the last t
which reduces the amount of log required for recovery. By 2y (he fast compiete transaction, we mean the 1ast trans-
action whose all log records are stored in log disk. In our

lying thi h t hybrid loggi h , .) 7 S
applying this approacn fo our nybria 'ogging scneme, we configurations, determining whether a transaction is the last

can reduce the more size of log data to be read from disks, . .
which reduces the more number of disk I/Os. complete transaction can be readily checked, because the

After pages backuped during the last complete check-log records of a transaction are stored in log consecutively.

point are reloaded into memory, the log records generatedThe reapplying rule enables to reduce the number of log

during the checkpoint are applied to the pages. However,records to be applied.

we do not have to apply all physical and logical log records

to the reloaded pages. This is because, according to the de4. Performance Evaluation
layed backup mechanism, the checkpointing of segment

begins only after all transactions that write their log records This section shows the effect and recovery performance
beforebeginchkpti finish updating works. This meansthat qyer the hybrid logging scheme through simple analyses.
backuped pages during the checkpoint of segmeémdve oyr metrics are the size of log data generated in a com-
all after-images of the corresponding log records generateqﬂete checkpointghkpt-log-sizp the size of log data to
beforebeginchkpti. Thus, when segmeritis recovered, apply for recovering the last complete checkpoapgly-
we do not have to reapply log records stored befoge |g.-sizg, and recovery timechkpt-log-sizeletermines the
gin_chkpti. number of disk I/Os and it has great influence on the recov-
We focus the reapplying method on the last complete ery time. apply-log-sizes for presenting the influence of
checkpoint. Figure 8 shows components of log records tpe reapplying rule.
of the last complete checkpoint in Figure 7. The check- e consider consecutive checkpoints on segmented
point of segment 4 begins witbeginchkpt4, and the log MMDB. MMDB is partitioned to N segments. We assume
records generated during the checkpoint consists of phystnat transactions access segments with equal access ratio;
ical log records for objects in segment 4 and logical 109 thatis, log records generated during the checkpoint of a seg-
records for objects in other segments. When we considerment includeS log records for each segment. $o, N log
the checkpointed image of segment 1, it includes all up- records are included in a segment checkpoint. 2 & the
dates of logical log records of segment 1 among log recordss;ze of a physical log record arfdthe size of a logical log
generated during the checkpoint of segment 4; the delayed.qcorg.
backup mechanism guarantees this. So, we do not have to gjnce we assume the equal access ratio to segments,
apply logical log records of segment 1 in segment 4 to the chkpt-log-sizein only physical logging is the sum of the
reloaded database at all. Therefore, we can recover a Seug size of each segment multiplied B; that is, (S - V) x
ment by reapplying only logical log rgcords of the previ-_ P x N = SN2P. If hybrid logging scheme is used, the log
ously recovered segments and physical log records of itSrecords generated in a checkpoint consist of physical log
segment to the reloaded database. _ records of the checkpointed segment and logical log records
The reapplying method can be also used in segmenteqy other segment. The size of log records generated during
a segment checkpointx P + S x (N — 1) x L. Thus

begi n_chkpt_4 begi n_chkpt _2 chkpt-log-sizes
begi n_chkpt _1

Checkpoint.,

Figure 7. The Last Complete Checkpoint

begi n_chkpt_3

|
["[1 12 13 PA¥][P1 L2 13 L4Y¥[L1 P2 L3 L4[¥[L1 L2 P3 L4] |] (SxP+S(N—-1)xL)xN
= S-N(P+L-N-1L)
Figure 8. Contents of Log of Figure 7 = SN2L+SNP—SNL.

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS 97)
0-8186-8114-4/97 $10.00 © 1997 |IEEE

Table 1. Rate of the size of log

Case| Logging | Reapplying| chkpt-log- | apply-log-
Rule size size
1 Physical X 1 1
2 | Physical o 1 T4+ 55
3 | Hybrid o F+x | st w
_ L __L_
NP 2NP

Next, we analyzeapply-log-size If only physical log-
ging scheme is used and our reapplying rule is not consid-
ered, apply-log-sizein segmented MMDB isSN2P, like
chkpt-log-size When the reapplying scheme is used with

physical logging, thapply-log-sizes

S xP
+ SxP+SxP

+ SxP+SxPx(N-1)

= SP(1+2+3+...+N)

= prw

2

1 1
= -SN?P+ -SNP.
25 +25

1 T T T T T T T T

(apply-log-size of case 2) —— |
(chk-log-size of case 3) ~—
(apply-log-size of case 3) —— |

09
0.8 |
0.7
0.6

0.5

Reduced Rate

0.4

0.3

02 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Number of Segments

Figure 9. Rate of The Reduced Log

the reapplying scheme, so the recovery process can be per-
formed faster. For simple and straight analyses, we consider
only chkpt-log-sizeon next analyses.

Next, we consider a database with hotspots and assume
that fy portions of all database pages h&ve- fy) of ac-
cesses, e.g20-80rule Let H be thenumberof log records
generated during a complete checkpoint. If a database is
partitioned into two segments: hotspot segment and non-
hotspot segment, we can assume that rates of generation of
dirty pages and checkpointing time in the hotspot segment
are similar to the access rate of hotsgot- fi). Thus, the

When hybrid logging scheme is considered, logical log number of log records generated during the checkpoint of
records are applied to the previous segments by using théhe hotspot segment i§ — fu) x H. When considered
reapplying rule. Thapply-log-sizahus is

To evaluate the impact of physical logging and the reap-
plying scheme, table 1 shows rates of the log size in hybrid
logging to the log size in only physical logging; that is, all
above equations are divided 5yV2P. According to [14],
we assume thak is 64 words andP is 192 words. The
rate of reduced size of log data to varyingis presented

SxP

SxP+SxL
SXxP+SxLx2

2

SxP+SxLx(N-1)
SPN +SL(14+2+3+...+ N 1)
SPN+SLM

%SNQL + SPN — %SNL.

a uniform distribution over accessed positiofis,— f)
portions of (1 — fy) x H log records are related to the
hotspot segment. These portions of log records are physical
log records and the remainders are logical log records. We
can also apply this idea to the non-hotspot segment. Thus,
chkpt-log-sizevith two segments is

(1= fu)H[(1 - fu)P + ful]
+ fuH[faP + (1~ fu)L]

We expand the above idea 16 segments:[N x fy]
hotspot segments andv — [N x fu]) non-hotspot seg-
ments. LetNy be [N x fy]. We assume every hotspot
(or non-hotspot) segments has same access rate. Thus the
number of log generated during the checkpoint of a hotspot
segment is

(]. — fH)H X NLH

Among the above number of the log records, —

at Figure 9. With 4 segments, the size of log data gener- fy)/ Ny portions are only related to the segment that is on
ated during a checkpoint can be reduced to half, compareccheckpointing, and the type of these log records is of physi-

with that of only physical logging. Foapply-log-sizewe

cal log. The type of log records for remaining other hotspot

can reduce it to less than half by using hybrid logging and segments and for all non-hotspot segments is of logical log.

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS 97)
0-8186-8114-4/97 $10.00 © 1997 |IEEE

Thus the size of log data for a hotspot segment is

(- fwH
Ny

(1—fu)
Nu

Similarly, the size of log data for a non-hotspot segment can

be given by

(1 fu)

P
+ Nit

(Nu — 1)L + fHL:| .

fuH

N — Ny
Ju_p, Ju (N = Ng — 1)L+ (1— fu)L
N — Ny N — Ny H e

Since there ar&y hotspot segments and/(— Ny) non-
hotspot segmentshkpt-log-sizes the sum of above equa-
tions multiplied by Ny and (V — Ny), respectively. The
size of log data in only physical logging B P. The rate
of the log size with hybrid logging to only physical logging

thus is
— — L L
(1- fa) [(1 NIfH) + (N}{H)(NH - 1)F +fHF]
fu | fu L L
+/fu {N—H + N—H(N — Nu — 1)5 +(1- fH)F}
_ (- fu)? n fii
Nu N — Ny
P2~ fu)? + £+ 2L~)]
L [(1—fH)2 n fa
P Nu N —Ng|’

If we consider equal access rate for each segmént=
1/2, the result of above equation is

1 L L
N + P NP’
which is the same tohkpt-log-sizef case 3 in Figure 1.
Figure 10 shows the rate of reduced size of log data to
varying N for hotspot rates, witt. of 64 words andP of
192 words. This result says that our hybrid logging method
has great impact on reducing the size of log data. Wfgen
is 20%, 45% of the log size are reduced with six segments,
compared with that of only physical logging.
Finally, we measure the recovery time of MMDB. Ta-

08 T T T T T T T
(20%) —<o— |
0.75 (30%) -+~
T (40%) - |
P (50%) -
g oesfp
8 0.6 | >< \
> El \
NN,
p- . -+
05 N]
X . \\L,,, e
0.45 Rong
0.4 I I I I I ?? -
2 3 5 6 7 8 9 10
Number of Segments
Figure 10. Effects of Log Reduction under
hotspots

The size of log data for recovering the last complete
checkpointingSiog, is

Slog = (]- - Pabort) X Trate X ticp X Dredo

wheret;.,, is an inter-checkpoint interval anB,eq, is the
size of redo log data per transaction. If only physical log-
ging is usedDredo = Sinit + Srec X Nact. When only logi-
cal logging is used, we simply assu.qo = Sop + Sinit -
D..q, Of the hybrid logging is calculated according to the
result of Figure 10.

ticp IS @ period between the beginnings of checkpoints
and is determined by the number of dirty pages generated
and the 1/O capability. According to [11], the expected
number of dirty pages generated during a tim® .« (¢),
is

Ndirty(t) =

1- (1 _ Rapa
L Npage

thot X Npage

1— <1 — @
Npage

X(l - fhot) X Npage

) Fhotact X Nact X Trate ><f|

) (1= fhotact) X Nact X Trate Xt]

ble 2 shows some parameters and their default values. They
are derived from [11] and [14]. For the simplicity, the re- WhereNagc iS San/Spage. Since we use ping-pong backup
covery time of the last complete checkpoint is considered. policy, the number of dirty pages to be flushed during time

The recovery time consists of the MMDB reloading time, t, Naush(t), iS Nairty(2 X ticp).

log pages reading time, and log reapplying time. The time
to read the backup databa%g,. is

Sab

page

Tback = X (Tseek + Tlatency + Ttransfer)-

According to [14], the number of pages that can be writ-

ten out to the disks during timg N;,(t) is given by

t

Nio(t) = Nbdisks X :
Tseek X Tlatency X Ttransfer

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS 97)

0-8186-8114-4/97 $10.00 © 1997 |IEEE

860 —
Table 2. Parameters and Their Defaults
[Symbol | Meaning [Defaults | 855
Sdb database size 512 M words 2 g5 f (Physical) —— -
Sipg log page size 1024 words = | S (Hybrid) -+
Spage page size 8K words g 845 | ‘ (Logical) ~= |
Srec record size 32 words 8 \
Sop logical log entry size 32 words x 840 e i
Sinit log header size 32 words A
Trate transaction arrival rate | 1000 TPS 835 1 |
Troek average seek time 0.008 sec g30 L e
Tlatency | average rotation time 0.00417 sec 2 4 6 8 10 12 14 16 18 20
Tiranster | @verage transfer time per0.00039 sec Number of Segments
Moo Ei&eber of backup disks| 20 Figure 11. Recovery Time of a Checkpoint
Nact actions per transaction | 5
Pavort abor_tprobablllty 0.05 logging under fuzzy checkpointing. By using the hybrid
fu fraction of hotspot 0.2 method, the size of log data generated during a checkpoint
frotact | fraction of actions to 1-fu can be significantly reduced. We have also presented an ef-
hotspot : ficient reapplying rule in segmented MMDB. This rule re-
Rspa pages per action 1.1 duces thenumberof log records applied for recovery.

We have shown through analyses that the hybrid method

By settingNusn (t) = Nio(t), we find the minimunt;c. can reduce the size of log data generated during a check-
In general, since disk reading and CPU processing can pdPoint by more than half, compared with those that use only

overlapped together, and since disk I/O time is much largerPhysical logging. The result of the reapplying rule shows

than CPU processing time, the log page reading time maythat we can recover the last complete checkpoint with about

be regarded as total log processing time. Due to locality of h@lf of number of log records generated during the check-

log that is sequential file [11], the time to read log is point. For further works, we are investigating possibility of
appliance to redo/undo schemes and segmenting methods

suitable to the proposed method. Detail analyses through

S
g % (03 % Tecic & Thatency + Tiranser)- experiments are also a subject

Ipg

Figure 11 presents recovery times of three logging
scheme. The recovery time of logical logging (Logical) is References
an ideal case because we cannot use only logical logging
with fuzzy checkpointing in MMDB. Compared with the
recovery time of physical logging, our hybrid logging ap-
proach performs better. As having more segments causes
the size of physical log data to be smaller, the recovery time [2]
of our approach converges to that of logical logging. With
20 segments, the gap of recovery times between physical
logging and hybrid logging is about 20 seconds. This is not
small in the high transaction processing rate. At 1000 TPS, [3]
20000 transactions can be processed during the gap.

[1] P. A. Bernstein, V. Hadzilacos, and N. GoodmaBoncur-
rency Control and Recovery in Database Systefvlison-
Wesley Publishing Co., 1987.

D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R.
Stonebraker, and D. Wood. “Implementation Techniques for
Main Memory Database Systems”. fmoc. of Intl. Conf. on
Management of Datgpages 1-8. ACM SIGMOD, 1984.

H. Garcia-Molina and K. Salem. “Main Memory Database
Systems: An Overview”.|[EEE Trans. on Knowledge and
Data Engineering4(6):509-516, Dec. 1992.

[4] L. Gruenwald and M. H. Eich. “MMDB Reload Algo-
rithms”. In Proc. of ACM SIGMODpages 397-405. ACM,
1991.

R. B. Hagmann. “A Crash Recovery Scheme for a Memory-
Resident Database SystemlEEE Trans. on Computers
C-35(9):839-843, Sept. 1986.

H. V. Jagadish, D. Lieuwen, R. Rastogi, and A. Silberschatz.
“Dali: A High Performance Main Memory Storage Man-
ager. InProc. of the 20th VLDB Confpages 48-59, 1994.

5. Conclusions and Further Work

Fuzzy checkpointing is an efficient checkpointing [5]
method in MMDB, but generates greater size of log data
due to physical logging. This causes the recovery time of
MMDB to be longer since much disk I/Os are required to [g]
read the log. To reduce the size of log data, we have pro-
posed the hybrid logging method accommodating logical

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS 97)
0-8186-8114-4/97 $10.00 © 1997 |IEEE

[7] H.V.Jagadish, A. Silberschatz, and S. Sudarshan. “Recover-
ing from Main-Memory Lapses”. IRroc. of the 19th VLDB
Conf, pages 391-404, 1993.

[8] T.J.Lehman and M. J. Carey. “A Recovery Algorithm for A
High-Performance Memory-Resident Database System”. In
Proc. of Intl. Conf. on Management of Daaages 104-117.
ACM SIGMOD, 1987.

[9] T. J. Lehman, E. J. Shekita, and L.-F. Cabrera. “An Eval-
uation of Starburst's Memory Resident Storage Compo-
nent”. |IEEE Trans. on Knowledge and Data Engineering
4(6):555-566, Dec. 1992.

[10] E.Levyand A. Silberschatz. “Incremental Recovery in Main
Memory Databases SystemslEEE Trans. on Knowledge
and Data Engineering4(6):529-540, Dec. 1992.

[11] X. Li and M. H. Eich. “Post-crash Log Processing for
Fuzzy Checkpointing Main Memory Databases” Aroc. of
Intl. Conf. on Database Engineeringages 117-124. |IEEE,
1993.

[12] J.-L. Lin and M. H. Dunham. “Speedup Recovery From
Fuzzy Checkpoints”. Technical Report TR 95-CSE-17, De-
partment of Computer Science and Engineering, Southern
Methodist University, Sept. 1995.

[13] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. “ARIES: A Transaction Recovery Method Sup-
porting Fine-Granularity Locking and Partial Rollbacks Us-
ing Write-Ahead Logging”.ACM Trans. on Database Sys-
tems 17(1):94-162, Mar. 1992.

[14] K. Salem and H. Garcia-Molina. “Checkpointing Memory-
Resident Databases”. Froc. of Intl. Conf. on Data Engi-
neering pages 452-462, 1989.

[15] K. Salem and H. Garcia-Molina. “System M: A Transac-
tion Processing Testbed for Memory Resident Dat&EE
Trans. on Knowledge and Data Engineer;jraf1):161-172,
Mar. 1990.

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS 97)
0-8186-8114-4/97 $10.00 © 1997 |IEEE

