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Abstract

In this paper we consider the part-machine cell formation decision of the generalized Group Technology(GT).
problem in which multiple process routes can be generated for each part. The existing p-median model and
similarity coefficient algorithm can solve only small-sized or well-structured cases. We suggest an assignment
method for the cell formation problem. This method uses an assignment model which is a simple linear
programming. Numerical examples show that our assignment method provides good separable cells formation
even for large-sized and ill-structured problems.
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1 INTRODUCTION

Group Technology(GT) is a manufacturing philosophy or concept that identifies and exploits the similar-
ities of product design and manufacturing processes. One application of GT is a cellular manufacturing(CM).
The first and most important step in CM is the cell formation, which groups parts with similar design fea-
tures or processing requirements into families so as to take advantage of their similarities and forms machine
cells by assigning machines dedicated to process only the parts belsnging to each family.

The objective of cell formation decision is to create mutually disjoini machine cells independent of other
cells. Cells are designed so that they can operate independently with minimum interaction between cells and
the result of these separable cell formation is the simplified material flows that allow much easier control
than job shop.

Many researchers have addressed the cell formation problem and proposed numerous methods for clus-
tering machines and parts. Wemmerlov et al!! and Chu! provide extensive reviews of the cell formation
methods. Most of the algorithms or methods developed so far usually assume that each part has only one
fixed process route which indicates the sequence of facilities used to process each part. We will call the cell
formation problem for such case the simple GT problem.

This assumption, however, may not be realistic in the CM environment since each operation of a
particular part may be performed on alternative machines. In a functional layout which is adopted by job
shop production, this is not a consideration because the parts can be routed to any available machines
which are concentrated together on the functionally similar work center. On the other hand, in a GT layout
which is adopted by CM, each manufacturing cell usually consists of functionally dissimilar machines and the
existence of functionally similar machines assigned to different manufacturing cells makes multiple process
routings for a part possible (Nagi et al.®). Hence, a methodology is needed to form machine-part cells under
such flexible routings. This paper considers the cell formation problem in the presence of such multiple
process routes for each part. We will call the cell formation problem including multiple process routes for a
part the generalized GT problem.

Kusiak* first proposed the cell formation problem under multiple process routes. He suggested a p-
median model as a part family formation method. However, the p-median model may require some prohibitive
computation time to solve since it usually has too many 0-1 integer variables even for an intermediate-sized
problem(Wei and Gaither!®). Furthermore, to obtain the proper cell solution using the p-median model, one
may have to solve a sequence of integer programming problems because the proper value of p is, actually,
not known until the most proper cell solution is found (Srinivasan e al®%). Also, the model tries to group
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only parts into families and does not present any subsequent procedure to allocate machines to the corre-
sponding families(Chu?). Kusiak and Cho® suggested another algorithm using similarity coefficients, but
this solves only small-sized problems with completely independent cells.

Recently, Srinivasan et al® presented an assignment model to solve the simple GT problem. Motivated
by their work, we propose a method which uses an assignment model to overcome the limitations of the
p-median model. The assignment model is a simple linear programming. The model is looking for a possible
seed part family which has maximum similarity between those production routes of the parts in the family.
Then our method expands this seed family while minimizing the number of exceptional elements which
prevent from obtaining the completely independent cells. Numerical examples show that our method works
much better than the p-median model.

The organization of this paper is as follows. In Section 2, we provide an assignment model. Section 3
shows the whole algorithm. In Section 4, test results of several numerical examples are presented. The last
section summarizes the conclusion of this paper.

2 ASSIGNMENT MODEL

A basic tool frequently used to represent the GT cell formation problem is a machine-part incidence
matrix [a,;], which consists of 0,1 entries where a;j = 1 indicates that machine ¢ is used to process part J
and a;; = 0, otherwise.

Cell formation solutions often contain exceptional elements that create interaction between two man-
ufacturing cells. Exceptional elements can be considered to be bottleneck machines that are required to
process parts belonging to two or more families or bottleneck parts that require to be processed on ma-
chines assigned to two or more cells. So as to create independent cells minimizing the number of exceptional
elements, maximizing the sum of the similarity coefficients between parts or machines has been widely used.

The assignment model proposed in this section makes use of a square matrix of similarity coefficients
between routes. A similarity coefficient is an indicator showing the degree of dependence between each pair
of routes or machines. Let n be the number of part types, m be the number of machines, F; be the set of
process routes for part j and r = E;zl |F;| be the total number of process routes. A similarity coefficient
si1 between routes k and [ is defined as

—0, if k,1 € F; for some j,
sk =40, if k=1,
Yim16(air,ai), otherwise,

where

. ) _ 1, lf aik = a“)
§(aix, an) = {0, otherwise.

Then our problem can be stated as follows:

ror
Maximize Z Z SEIT k! (1)
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,
subject to E sz; =1, j': l,---,n (2)
keF; I=1
r
DD za=1lj=1n (3)
leF; k=1
Ik]ZO,k=1,"',7';1=1,"',1". (4)

- The decision variable z;; = 1 if the parts produced by process routes k and [ are considered as candidates
to form a portion of a part family. We use the same objective as the p-median model. Constraint (2) implies
that for each part j one process route k € Fj is selected for the row index of the decision variable zy; and



that 2z = 1 for exactly one ! and 0 for others. Similar interpretation can be applied to the constraint (3)
except that the roles of row and column are interchanged. However, we allow that the process routes selected
for row index and column index for a part can be different. In this case, both of the two process routes are
considered as candidates in our cell formation procedure.

Let Z be an optimal solution of the assighment problem and R = {k,{|Z;; = 1} be the set of routes
selected for row or column indices. Then the set R can be partitioned into several disjoint and exhaustive
subsets of the following three types:

Type I (closed loop): A subset Ry = {ki,---,kp} of R such that Zy, k, = Tk, 0, = -+ = Zhy_y b, = Thp b, = L.
Type 1I (open sequence with identical parts at the two ends): A subset Ry = {ky,---,kp} of R such that
1) Tk kg = Thopks = = Zhy_i )k, = 1,

ii) k1 and k, are two different process routes for an identical part.

Type III (open sequence with different parts at the two ends): A subset Rz = {ky,---,kp} of R such that
l) Tky by = Thoky =+ = ik,-x,k; =1,
i1) k; and k, are process routes for different parts.

In a closed loop, each part produced by the routes in the loop has identical row and column process
routes. In a type II or type III open sequence, each part produced by the interior routes(routes except both
ends) in the sequence has identical row and column process routes.

The set of parts produced by the routes in a closed loop or Type III open sequence provides a candidate
for a seed part family. However, the set of parts from Type II open sequence can not be a candidate for a
seed part family because the two process routes at the two ends of the sequence are two different routes for
an identical part and this fact violates the requirement that only one route should be selected for a part.

From each of the Type I closed loops and Type III open sequences embedded in the optimal solution,
we generate a candidate seed family. In all examples tested, we were always able to find a Type I or Type
I1I subset. However, it could be possible that the optimal solution consists of only Type II open sequences.
In this cases, we suggest to generate a candidate seed family from a Type II open sequence by choosing any
one route from the two routes at the two ends of the sequence. _

This assignment model has a totally unimodular constraint matrix and we can exclude the integer
restriction. This saves considerable computational efforts even when the model is applied to large size
problems. Furthermore, the number of decision variables of this model is the same as that of the p-median
model but the number of constraints is 2n which is much smaller compared with r2 4+ n + 1, the number of
constraints of the p-median model.

3  Algorithm

Our algorithm is an iterative procedure. Let us start with an initial incidence matrix. From an optimal
solution of the assignment model, we construct a part family. Remove all parts in the part family from
the initial incidence matrix and obtain a reduced incidence matrix. Solve the new assignment problem and
construct another part family. We repeat this procedure until all parts are removed.

At each iteration, we need to construct a part family from an optimal solution of the assignment problem.
We start with the candidate seed families generated from Type I closed loop or Type III open sequence. For
each candidate seed family, construct a machines cell which is the set of machines used for the production
of the parts in the candidate seed family. Since there could be some other process routes which can be
processed completely by the machines in this machine cell, we expand the candidate seed family by adding
other parts into the family which have such a process route. We apply this procedure to each of the candidate
seed families generated from the assignment model. Among the several expanded candidate part families,

" we choose a larger one which has minimum interaction with existing machine cells.

This procedure may not generate completely independent cells. As a result, some machines may be used
by two or more different part families. If there are such bottleneck machines, then reassign these machines
to the cell giving the smallest number of exceptional elements.

ALGORITHM
Step 0. (Initialization): Set the level number representing the iteration as L = 1.



Step 1. (Transformation): From the current incidence matrix, obtain a similarity coefficient matrix.

Step 2. (Solving assignment problem): Solve the assignment problem with the similarity coefficient matrix.

Step 3. (Identifying candidate seed families): Identify candidate seed families from the solution. A Type I closed
loop or a Type III open sequence provides a candidate seed family. If there is no Type I closed loop or
Type III open sequence, then generate candidate seed family from a Type II open sequence by choosing
any one route from the two routes at the two ends of the open sequence.

Step 4. (Merging parts): For each candidate seed family, form a corresponding machine cell and merge other
parts to the part family which have a process route completely processed within the machine cell.

Step 5. (Selecting a part family and a machine cell): Among the expanded candidate part families, choose the
candidate family with the fewest number of exceptional elements with existing machine cells generated
in previous iterations. If ties occur, choose the one with the largest number of parts.

Step 6. (Revising incidence matrix): Obtain a new reduced incidence matrix by deleting the parts in the selected
part family from the current incidence matrix. If no parts are remaining, go to step 7. Otherwise, let
L =L+1 and go to step 1.

Step 7. (Reassigning machines and stopping): If bottleneck machines exist, reassign each of the machines to the
cell giving the smallest number of exceptional elements. Stop.

4 NUMERICAL EXAMPLES

Only a few examples of incidence matrix have been given in the literature for the generalized GT
problem. In order to test the effectiveness of our algorithm, we select three — small, medium, and large-sized
~ data sets for the generalized GT problem seen in the literature. As a primary measure of effectiveness of
the cell formation methods, we evaluate the number of exceptional elements. This measure has been widely
used as a critical criterion of effectiveness of the cell formation methods (Chu'?),

Figure 1-(a) is the original incidence matrix given by Kusiak* and Figure 1-(b) shows the result by our
algorithm. In this example with completely independent cells, we obtain the same result as the p-median
model.

Insert Figure 1-(a) here
Insert Figure 1-(b) here

Figure 2-(a) is the incidence matrix given by Sankaran and Kasilingam”
and Figure 2-(b) shows the result by our algorithm. In this example, we obtained a solution with two
cells and 2 exceptional elements. On the contrary, the solution of the p-median model gives no visible cell
formation as shown in Figure 2-(c).

Insert Figure 2-(a) here
Insert Figure 2-(b) here
Insert Figure 2-(c) here

Figure 3-(a) is the incidence matrix given by Nagi et al® which is the largest example that has ever
been published. Figure 3-(b) is the result by our algorithm that shows only 1 exceptional element. Figure
3-(c) is the result by the p-median model that gives 3 exceptional elements.

Insert Figure 3-(a) here
Insert Figure 3-(b) here
Insert Figure 3-(c) here

As shown in Figures, our model gives better results than the p-median model in terms of the number of
exceptional elements. Since our algorithm solves an assignment problem at each iteration of the algorithm, at
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most L simple linear programming problems have been solved. The computational burden of this algorithm
is very small. For example, our algorithm takes about 7 seconds in CDC CYBER 960 computer to solve
Nagi et al’s example but the p-median model requires about 147 seconds with a fixed value of p = 5. If
we solve the p-median model for p = 1,2,-.-, L and choose the best solution as Kusiak recommends, the
p-median model will consume far more computation time(Srinivasan et al3).

5 CONCLUSION

In this paper, an assignment model is presented to solve the generalized GT cell formation problem in
which more than one process route can be planned for each part. Even for the Nagi et al’s example which
is known to be an ill-structured and large-sized problem, our model gives a good separable cell formation.
Reducing the number of decision variables by defining the similarity coefficient not between routes but
between machines could be an interesting future research area.
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Figure 1-(a). Kusiak’s original incidence matrix

Parts

11122334455
abcabababab

1 1 11 11 1
Machines 2 111 1
3 1 11 11
4 11 111 1
Figure 1-(b). Result by our model
Parts
245 13
bbb bb
1 111
3 11
Machines
2 11
4 11

Figure 2-(a). Sankaran and Kasilingam’s incidence matrix

Parts

11

11223445555667889900
ababaababcdabaababab

1 1 11 1
2 1111 11 1 1111
3 1 1111 1 1
Machines 4 111111 1111 111 11
5 1 1 1 1 1 1 1 1
6 1111 1 1 1111
Figure 2-(b). Result by our model
Parts
1
1246890 357
aaaaabb aaa
2 111111
4 1111 111
5 111 111
Machines 6 11 11
1 111
3 11
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Figure 2-(c). Result by p-median model
Parts

124689 3570
bbbbaa aaaa

2 111 11

3 1 111
Machines 6 111111

4 11111 11 1

5 1

1 111

Figure 3-(a). Nagi et al.'s incidence matrix

Parts

111111111121111111111112
112233445556677777788999999001112223334445556667890
abababababcababcde fababcde fababcabcabcabcabeabeaaaa

111111111
11 1111111111
111111111
111
11111111 11
1111 1 1111111
1111 11 1111 1
111111111

00 3O G W -

11 11 11

10 1111111111

11 111 111

12 | 11111111111

13 11
14 111 1111

15 111
16 11H111111111111

17 11111 1

18 1 11 11 111111

w o3 ~~0op
©o

— 242 —



Figure 3-(b). Result by our model
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Figure 3-(c). Result by p-median model
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