Enforcement of Integrity Constraints against Transactions
with Transition Axioms

Sang Ho Lee*, Lawrence J. Henschen*, Myoung Ho Kimi, Yoon-Joon Leet

*Database Section, Electronics and Telecommunications Research Institute, Korea
*Dept. of Electrical Eng. and Computer Science, Northwestern University, Illinois, U.S.A.

iDept. of CS and Center for Al Research, Korea Adv. Inst. of Science and Tech., Korea

Abstract

This paper addresses an enforcement technique of
integrily constrainis against transaction updates in a
relational database system. Transition azioms have
been used effectively in checking integrity constrainis
for single update statements. In this paper we ez-
tend the idea of transition azioms to a transaction
which is a sequence of read and update statements. In-
tegrity constrainis in our scheme are simplified without
database access before the aclual operations are per-
formed, avoiding the need to undo an illegal transac-
tion. We also propose transaction partitioning which
can reduce the overhead of checking integrity con-
straints significantly. Partilioning a transaclion be-
comes crucial when a {ransaction is associated with
multiple integrily constraints.

1 Introduction

An Integrity Constraint (/C) in a database is a
predicate (assertion) on database states which repre-
sents time-invariant semantics of data and serves as
the validity criteria of the database. When a database
state is changed due to database manipulation oper-
ations, the database should continue to satisfy ICs
after the update operations are completed.

A transaction in database systems is a sequence of
operations including database operations or schema
definitions or manipulation operations, that is atomic
with respect to recovery. The notion of transaction
has been around quite for a long time in the database
community and has been introduced in terms of con-
currency control and recovery which are important
functionalities of database systems. A (typical) trans-
action must have four well-known ACID properties:
atomicity, consistency, isolation and durability [6].

0730-3157/92 $3.00 © 1992 IEEE

162

The consistency property of a transaction states that
each successful transaction commits only legal results
by definition so that it preserves the consistency of the
database. In other words, the intermediate database
states during transaction execution may be inconsis-
tent but the final database state after the transaction
commit time must be consistent with respect to ICs.
When there are some ICs associated with a transac-
tion, we need to enforce the ICs explicitly to keep the
database state consistent at the commit time.

Many researchers [1,2,4,8,11,12,16] have studied on
how to maintain a consistency of a database. Evalua-
tion of IC's in their original form is known to be time-
consuming. This evaluation, however, can be reduced
by taking advantage of the fact that the database is
consistent with ICs before updates, so that a simpli-
fied IC is true if and only if the original IC is true in
database after update operations are completed.

However, most of those researches have focused on
stmple updates (the update is called to be simple when
it can be expressed by single data manipulation state-
ment) and have not explicitly provided the ways of
how to apply their methods on complex updates which
often occur in many typical transactions. Even though
there have been a few IC enforcement techniques on
complex updates in the literature [7,13], their methods
have several limitations. First, the CHANGE opera-
tion in [7,13] is implemented by a DELETE followed
by an INSERT, which may not be correct in some
cases. For example, when there is no tuples affected by
the CHANGE operation, the approach of a DELETE
followed by an INSERT will produce spurious tuples.
Second, the transaction in Qian’s work [13] is not al-
lowed to have two updates on the same relation, which
is too severe restriction in practice. Third, Hue and
Imielinski’s method [7] makes use of only the matrix
of ICs in Prenex Normal Form to simplify ICs, which
turns out a preliminary simplification of ICs. Their

simplification of ICs can be improved when informa-
tions about updates and ICs are available.

This paper addresses an enforcement technique
of integrity constraints against a transaction. Our
method, which is logic-based, checks ICs before ac-
tual updates are performed, and handles a transaction
which can be complex updates. Our scheme is fully
compatible with the notion of compilation in which
the simplified ICs are stored and invoked later when-
ever appropriate (for example, upon user’s request, on
actual update operation time, etc). Qur starting point
is with McCune and Henschen’s method [10] in which
the simple update is of main concern. In this paper,
we extend their method toward the transaction con-
cept.

We assume the reader is familiar with the relational
database, its connection with logic [5] and resolution-
style automated reasoning (3.

2 Preliminaries

Before we present the idea of this work, we briefly
describe Henschen and McCune’s work [10] on which
this paper is based. They present a technique which
maintains the integrity of a relational database in a
proof theoretic view. Their method takes an IC and
an update expressed in first-order logic, and either
proves that the update cannot violate IC or gener-
ates a formula IC’ (a complete test) that is satisfied
before the update if and only if IC would continue to
be satisfied after the update. IC’ is frequently much
easier to evaluate than IC. IC’ can also be compiled
at database creation time and invoked when updates
are attempted.

For space limitation, we only describe some ma-
terials [10] relevant to our presentation. To give
a correct characterization of the relationship of the
database states before and after the update, two new
predicate symbols, ROLD and RNEW, are intro-
duced. ROLD (resp., RN EW) represents the state
of relation R before (resp., after) the update. With
the new predicates, relationship between the old and
new state of the database for several kinds of up-
dates can be formulated precisely. We call such
expresions transition axioms (T'AX). The impor-
tance and usage of transition axioms are given in
[10]. For INSERT R(d&), the transition axiom is
((VZ) RNEW(Z) « (ROLD(Z)V £ = d@)). Let C be
a constraint. C[ROLD) (resp. C[RNEW])) denotes
C with all occurrences of R replaced by ROLD (resp.
RNEW). C[ROLD)ATAX — C[NEW] is the the-
orem on which the method is based on. TAX is of

163

the form (VZ) (RNEW(Z) — W(Z)). Let =C[TAX]
be ~C[RN EW] with all atoms over RN EW replaced
with the corresponding instances of W(Z). Then
C[ROLD] ATAX — C[NEW] is a theorem if and
only if CIROLD] A —~C[T AX] is unsatisfiable. The
test clause is obtained from C[ROLD] A ~C[TAX].

A transaction normally contains a sequence of
database access statements. The individual state-
ments in a transaction are executed sequentially one
after the other. In terms of IC enforcements, state-
ments which cause the transition of database states
(i.e. insert, delete and update operations) are only
of concern. Operations such as data retrieval is out
of concern as far as database consistency goes. Even
though the definition of a single data manipulation
statement is varied on a particular database language,
the typical forms of it can be categorized as follows
[10].

- INSERT R(a)

- DELETE R(&,9)

- CHANGE R(d,b, 7, %) to R(@,¢,d,)
Note that a single update in our representation may
correspond to a set of single updates in other repre-
sentations. For convenience, each single statement in
a transaction is numbered for easy reference and each
transaction is terminated with semicolon (;). a,b,...
denote regular constants and @, l;, .
of constants.

In what follows, we present the notion of order
independent transaction which renders a transaction
amenable to our scheme. The update statements in
a transaction are executed sequentially in most cases.
The effect of a single statement in a transaction poten-
tially may be changed by another single statement in
the same transaction, which implies that the sequen-
tial execution sometimes does some redundant work.
For example, suppose we have a transaction T; and
Ty.

denote vectors

Ty 1. INSERT R(a,b)
2. CHANGE R(x,¢c) to R{x,d)
3. DELETE R(a,b);

T{ 1. CHANGE R(x,c) to R(x,d);

A simple inspection shows that the transaction T} is
equivalent to 7] where a transaction is defined to be
equivalent to another transaction if they produce the
same database states. The above phenomenon arises
when there are at least two single updates which con-
flict with each other. Here two update operations are
said to conflict if they operate on the same data item.

Definition 2.1 A transaction T is order dependent if

and only if T' contains at least two conflicting update
operations. Otherwise T is order independent.

Example 2.1 (of Definition 2.1)

Ty 1. INSERT R(a,b)
2. DELETE R(a,b);

T, 1. INSERT R(a,b)
2. DELETE R(c,d);

Transaction T; is order dependent while T} is order
independent. 0

An order independent transaction has an important
advantage of its update statements being executed in
parallel without considering their relative execution
orders. With an order independent transaction we can
consider its single updates in an arbitrary order.

Lemma 2.1 Every order dependent transaction can
be transformed into equivalent order independent
transactions.

Proof: First we show that any two adjacent conflict-
ing updates in an order dependent transaction can be
converted into a set of non-conflicting updates. Be-
cause there are three forms of single updates (i.e. IN-
SERT, DELETE and CHANGE), there are nine pos-
sible combinations of them. We consider each of them
separately.

Case 1. INSERT R(d) is followed by DELETE R(b, 7).
Let R, and Ry be subsets of relation R referenced by
R(@) and R(b,7), respectively. There are three cases
from the relationship between R; and Ry.

(a) R; = R4 (i.e. the two sets are identical): The pure
effect of the two operations is nothing.

(b) R, D R4 (ie. Rqis a proper subset of R,): This
case is impossible to occur.

() R C Ry (ie. R, is a proper subset of Ry):
The pure effect of the two operations is the same as
DELETE R(b T).

Case 2. DELETE R(b, %) is followed by INSERT R(a).
Let R, and R4 be subsets of relation R referenced by
R(d@) and R(b %), respectively. Similarly, there are
three cases.

(a) R; = Ra: The pure effect of the two operations is
nothing.

(b) R. D Ry This case is impossible.

(c) R; C R4: The pure effect of the two operations is
the same as INSERT R(¢) where R(¢) represents tu-
ples in (R4 — R)).

Case 3. INSERT R(é) is followed by CHANGE
R(abzw)toR(acdw)

Let R, and R. be subsets of relation R referenced by
R(€) and R(a, b, Z, W), respectively. Again there are
three cases.

(a) Ri = R.: The pure effect of the two operations

is INSERT R(f) where the inserted tuple R(€) is up-
dated into R(f) by the CHANGE operation.

(b) R, D R.: This case is impossible.

(¢) Ri C R.: The pure effect of the two operations
is the same as CHANGE R(@, b, 7,) to R(@,¢,d,)
and INSERT R(f) where the mserted tuple R(€) is
updated into R(f)

For the other six cases, the similar arguments are ap-
plied.

The termination condition is when there are no
more conflicting updates in a transaction, and it is
clear that the process eventually stops. This com-
pletes the proof. QED

3 Enforcement of /Cs against Trans-
actions

3.1 Transition Axioms for Transactions

To extend McCune and Henschen’s method for
transactions, we need to generate the transition ax-
loms with respect to a transaction. Algorithm 3.1
produces the transition axiom for a transaction. If a
transaction attempts to update several relations, Al-
gorithm 3.1 is applied for each relation which is up-
dated by the transaction, i.e. there is one transition
axiom for each updated (affected) relation.

Algorithm 3.1 Producing the Transition Ax-
iom

1. /* Partl denotes a part of the relation either
unaffected or deleted by the transaction, and
Part2 denotes a part of the relation
affected by INSERT or CHANGE */
/* The final transition axiom is of the form
((V¥) RNEW (%) < partl V part2) */
partl «— ROLD(Z);
part2 — @;
2. /* take care of DELETE operation */
For each DELETE operation R(@, %) do
partl «— partl A 7, # a ;
/* £, is a corresponding subset of & */
3. /* CHANGE operation */
For each CHANGE operation R(d,5, 7, W) to
R(a,c, d, W) do begin
partl — partl A (F},;) # (@,b)
part2 — part2 A (35) (ROLD(&,b, 7}, w)
A(Iwypzj) =(4,¢, d))
end;
/* &;,79,,%;, and z';' is the corresponding renewed

subset of & */
4. /* INSERT operation */
For each INSERT operation R(d) do
part2 «— part2 V (Z = d);
5. The transition axiom is,

(VZ) (RNEW (&) & partl V part2).

O

Theorem 3.1 Algorithm 3.1 correctly produces the
transition axiom for any order independent transac-
tion. [9]

Example 3.1 (of Algorithm 3.1)

T: 1. CHANGE R(a,y) to R(b,y)

2. INSERT R(c,d);
At step 3, we have

partl = (ROLD(z,y) Az # a)

part2 = (ROLD(a,y) Az =b)
At step 4, we get

partl = (ROLD(z,y) Az # a)

part2 = (ROLD(a,y) Az =b) V (z,y) = (c,d))
The transition axiom is,
(Vz)(Vy) (RNEW(z,y) © (ROLD(z,y) Az # a)
V((ROLD(a,y) Az = b) V (z,y) = (c,d))). o

Example 3.2 (of Algorithm 3.1)

T : 1. CHANGE R(a,y,z) to R(b,y,z)

2. CHANGE R(f,c,2) to R(f,d, z)

3. DELETE R(e, f,9);
Similarly the transition axiom of relation R is,
(Vz)(Vy)(Vz) (RNEW(z,y,2) < (ROLD(z,y,z)
Az #al(z,y) # (fe) A (2,y,2) # (e, fL9))V
((R(a,y,z) Az = b) V(ROLD(f,c,z)
Nzy) = (f,d)). O

3.2 Transaction Partitioning

A transaction is very likely to be associated with
more than one IC. Suppose that each of n single up-
dates in a transaction T is related with IC,,...,IC,,
respectively. Checking all ICy,...,IC, against T as
a whole is the waste of time because each of IC,
(# = 1,...,n) is related only one single update of
T. For example, a single update in a transaction T
which is related with /C; may have nothing to do with
I1C5, presuming T is related with ICy and IC,. In or-
der to achieve a significant performance improvement,
we partition T in accordance with ICs into several
sub-transactions which are treated separately. This is
the basic idea behind the simplification of a transac-
tion through partitioning. Furthermore, partitioning

transactions into sub-transactions is more amenable to
the integrity method of Henschen and McCune [10].

Though it may be desirable to partition a transac-
tion into finest sub-transactions as possible, we here
describe a method of partitioning a transaction into
two sub-transactions only.

We now introduce the following notations to de-
scribe our idea clearly.

Comp-Test(U) A derived complete test [10] to check
the validity of an update U.

Eval(F) An evaluation of a closed formula F. The
result of Eval(F) always is either true or false.

Perform(U) An actual update operation of an up-
date U.

Definition 3.1 Let 77 and 75 be two disjoint
sub-transactions of a transaction T such that
T, UTy = 0. T 1s ezecutable prior to Ty
with respect to IC if and only if executing
two sequences, ‘Eval(Comp-Test(T})), Perform(7}),
Eval(Comp-Test(T3)), Perform(T3)’ and ‘Eval(Comp-
Test(T)), Perform(T)’ produce the same results. That
is, both sequences are either accepted or rejected with
respect to IC.

Definition 3.2 T, is defined to be a sub-transaction
of T such that T, contains all single updates which
are known not to violate IC. Define T, to be T — T,.
(Note that T.NT, = @ and T.UT, =T.)

Definition 3.3 A transaction T is partitionable if and
only if T can be partitioned into T, and 7, with T,
non-empty.

There are cases where a single update U to relation
R does not violate an IC. These cases are if one of
the following conditions holds.

1. R has no occurrence in IC.

2. Uis DELETE (INSERT) and R has only nega-
tive (positive, respectively) occurrences in IC.

3. If U is DELETE (INSERT), then for each pos-
itive (negative, respectively) occurrence of R in
IC, either one argument R is a regular constant
which differs from the corresponding (regular)
constant in the update form or the occurrence
of R contains two identical arguments while the
corresponding arguments in update form are dif-
ferent or vice versa.

The first and second cases have been shown in [10] and
the third case has been described in [11].

Example 3.3 (of Definition 3.3)

IC: (Vz)(Vy)(Vz2)

(SUPPLY (2,y,2) N\CLASS(2,T4) = z = C1)
1. INSERT SUPPLY (a, b,c)

2. INSERT CLASS(d, T4)

3. INSERT CLASS(c,T?2)

4. DELETE SALE(TOY,e);

T

Single updates 3 and 4 are known never to violate
IC by case 3 and case 1, respectively. Thus, T is
partitionable into T,={1,2} and 7,={3,4}. [u]

Suppose that a transaction T is partitioned into two
sub-transactions 77 and T3, and 7} is executable prior
to T>. The sequence, Test for T}, if acceptable Perform
Ty, Test for T, if acceptable Perform T3, should suc-
ceed if and only if the original transaction would have
succeeded. Note that a sub-transaction may contain
only one single update.

Processing a partitionable transaction in its unpar-
titioned form incurs considerable overhead in simplifi-
cation of ICs. It may not simplify ICs completely as
well [9]. This is because extra disjunctions in clauses
become an obstacle in extracting paramodulators [3]
in some cases. It is obviously desirable to minimize a
number of single updates which are to be processed at
a time.

Theorem 3.2 T, is executable prior to T}

Proof: Any single statement in T, does not gener-
ate any test clause because a refutation is derived
at the resolution stage (i.e. Comp-Test(T,) = Q).
Thus, the database state remains consistent after T,
is performed (i.e. the effect of T, is then reflected
in the database state). Comp-Test(7.) derived from
the original (initial) database state which is assumed
to be consistent, is certainly applicable because the
database continues to be consistent after T, is per-
formed. Thus, two sequences *Eval(Comp-Test(T,)),
Perform(7}), Eval(Comp-Test(T)), Perform(7.)’ and
"Eval(Comp-Test(T, UT,)), Perform(T, UT.)’ produce
the same effects. The proof is completed. QED

Theorem 3.2 says that we can delete a set of single
updates which belongs to 7, in order to simplify the
transaction. 7, can be processed separately prior to
T, with no regard of database consistency.

3.3 Overall Descriptions
T, does not generate a complete test at all (i.e.

Comp-Test(T,) = @) as explained previously. We
often have a more simplified Comp-Test(T.) if the

166

effect of T, is reflected in deriving Comp-Test(7.)
[9]. One way to achieve that under Closed World
Assumption [14] is to include the effect of T, into
‘C[ROLD)A-C[TAX]’. If a single update in T, is IN-
SERT R(a@) (DELETE R(&,d)), put R(d@) (-R(Z,d),
respectively) in ‘C[ROLD] A ~C[TAX]. If a single
update is CHANGE R(@,b, 7, %) to R(d,¢,d, @), then
put ~R(&,b,7,4) and R(@,é,d,w) in ‘C[ROLD] A
~C[TAX]).

The overall method which extends the technique in
[10] to the transaction notion is as follows.

1. Partition T into T, and T, if possible.

2. Construct a transition axiom for each relation R
which is affected by 7. using algorithm 3.2.

3. Follow the algorithm in [10] to construct Comp-
Test(T.) with ‘C[ROLD] A ~C[TAX]’ reflected
in accordance with the effect of T,.

Then a complete test for a transaction 7" which is eval-
uated on the initial database, is the output of step 3.
The correctness of our method can be easily seen by
Lemma 2.1, Theorem 3.1 and Theorem 3.2.

Example 3.4 (shows the overall steps)

IC: (Vz)(Vy)(32)
(SALE(z,y) = SUPPLY (z,z,y))
1. INSERT SALFE(a,b)
2. INSERT SUPPLY (c,a,b)
3. DELETE SUPPLY (e, f, 9);
At step 1, we partition T into,
T, = {3}, T. = {1,2}.
For T, the transition axiom for SALE is,
(Vz)(Vy) (SALENEW(z,y)
(SALEOLD(z,y) V (z,y) = (a,b))).
The transition axiom for SUPPLY is,
(Vz)(Vy)(Vz) (SUPPLY NEW(z,y,2) &
(SUPPLYOLD(z,y,z) V (z,y,2) = (c,a,b))).
—~C[TAX]is, ~((V2)(Vy)(32) (SALENEW (z,y) =
SUPPLYNEW (z,z,y))).
Then C[ROLD] A -C[TAX] is as below.
1. =SALE(z,y) SUPPLY (f(z,y),z,y)
- SALE(f1,f2) fi=a
- SALE(f1,fa) fa=b
. SUPPLY (2, f1, f2)
. SSUPPLY (e, f,9)
fia fatbz#c
. (1,2,4) fl =a
8.(1,34) fo=b
Note that clause 5 reflects the effect of T,.
By the deletion strategies [10], we have
1. =SALE(z,y) SUPPLY (f(z,y),z,9)

T

5. ~SUPPLY (e, f,9)
9. (4,78) ~SUPPLY(z,a,b)
10. z# ¢
From the above clauses, we can derive a refutation.
11. (10,z==z) O

That is, Comp-Test(T) = @. The transaction T never
violates IC. o

4 Closing Remarks and Discussions

We have presented the general algorithm of enforc-
ing ICs against a transaction T in the context of Mc-
Cune and Henschen’s method. The proposed method
includes the construction of transition axioms for T,
and the simplification of T through partitioning. It is
not hard to see that our method is fully compatible
with the notion of IC compilation.

It commonly occurs for a transaction to be associ-
ated with multiple ICs. Database statements which
do not violate a constraint IC;, are very likely to vi-
olate another constraint IC;. Partitioning a transac-
tion into appropriate subtransactions can reduce the
overhead of IC checking significantly. One way of par-
titioning a transaction into two disjoint subtransac-
tions has been presented.

The assumption that the structure of a transaction
is known beforehands is practical in many areas. The
notion of the stored procedure in Sybase is naturally
compatible with our assumption. The application ar-
eas include on-line transaction processing in which
structures of transactions are generally expected, and
knowledge-base systems where maintenance of data
and knowledge consistencies is important.

References

[1] Bernstein, P. and Blaustein, B., A Simplification
of Algorithm for Integrity Assertions and Con-
crete Views, Proc. of COMPSAC-81,1EEE, 1981,
pp. 90-99.

Bry, F., Decker, H. and Manthey, R.,, A Un:-
form Approach to Constraint Satisfaction and
Constrainl Salisfiability in Deductive Databases,
Proc. of Extending Database Technology, 1988,
pp- 488-505.

Chang, C. and Lee, R.C., Symbolic Logic and
Mechanical Theorem Proving, Academic Press,
1973.

167

[4] Das, S. and Williams, H., A Path Finding
Method for Constraint Checking in Deductive
Databases, Data and Knowledge Engineering
4:223-244 (1989).

Gallaire, H., Minker, J. and Nicolas, J-M., Logic
and Databases: A deductive approach, ACM
Computing Surveys 16(2):153-185 (June 1984).

Haerder, T. and Reuter, A., Principles of
Transaction-Oriented Database Recovery, ACM
Computing Surveys 15(4):287-317 (Dec. 1983).

(5]

(6]

(7] Hue, A. and Imielinski, T., Integrity Checking for
Multiple Updates, Proc. of ACM SIGMOD, 1985,

pp- 152-168.

[8] Kobayashi, I., Validating Database Updates, In-

formation System 9(1):1-17 (1986).
9]

Lee, S.H., On compilation of Integrity Con-
straints against Transaction Updates, Master
Thesis, Dept. of EECS, Northwestern University,

Evanston, IL, 1986.

[10] McCune, W. and Henschen, L., Maintaining
State Constraints in Relational Databases: A
Proof Theoretic Basis, ACM Journal of ACM

36(1):46-68 (Jan. 1989).

Nicolas, J-M., Logic for Improving Integrity
Checking in Relational Data Bases, ACTA Infor-
matica 18:227-253, 1982.

(11]

(12] Olive, A., Integrity Constraints Checking in De-
ductive Databases, Proc. of 17th Very Large Data

Bases, pp.513-523, 1991.

(13] Qian, Xiaolei, An Efficient Method for Integrity
Constraint Simplification, Proc. of 4th Data En-

gineering, 1988, pp. 338-345.

Reiter, R., On Closed World Databases, in Logic
and Data Bases, H.Gallaire and J.Minker Eds.,
Plenum Press, New York, 1978, pp. 55-76.

(14)

(15] Reiter, R., Towards a Logical Reconstruction
of Relational Database Theory, in Conceptual
Modeling, Perspectives from Artificial Intelli-
gence, Databases and Programming Languages,
M.Brodie, J. Mylopoulos and J. Schmidt Eds.,

Springer-Verlag, New York, 1984, pp. 191-233.

Sadri, F. and Kowalski, R., A Theorem-Proving
Approach to Database Integrity, in Foundation
of Deductive Databases and Logic Programming,
J.Minker Eds., Morgan Kaufmann Publisher,
CA, pp. 313-362.

(16]

