USER MOBILITY AND CHANNEL HOLDING TIME MODELING IN
MICROCELLULAR SYSTEMS

Sehun Kim* and Ki-Dong Lee**

* Faculty of Industrial Engineering, KAIST, E-mail: shkim@mgt.kaist.ac.kr
** Ph. D. candidate of Industrial Engineering, KAIST, E-mail: starly@mgt.kaist.ac.kr

Abstract

In this paper, we provide a mathematical
formulation to describe the random mobility of users
in cellular radio systems. With this, we can also
study the cell sojourn time (CST) distribution as
well as the channel holding time (CHT) distribution.
The study on user mobility enables to improve the
resource management in cellular radio systems. We
provide a versatile analysis tool that lmpmves the
limit of simplified analyses.
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1. Introduction

In cellular radio telecommunication systems, the channel
utilization is of great importance because it is resource
management problem in view of cconomics [1-5].[8].
There are a number of works on the area of radio channel
utilization. For the efficient radio channel utilization, both
efficient algorithms and performance analyses of the
algorithms are needed. Hence the relevant performance
analysis is very important for system design and
dimensioning. as much as for frequency allocation [1].

Unlike the early second generation of wireless
communications, multimedia traffic will be served in the
next generation. And the quality of service (QoS)
parameters arc needed to be evaluated under the more
exact consideration to guide the system design.
dimensioning, and architecture for the next generation
multimedia services. Therefore, versatile models for more
exact analysis of wireless communication systems are
essential in the next generation. With the mobility model.
we can also study the distribution of the channel holding
time in cellular radio systems.

There have been many simplified analytical models
and simulation models to approximate user mobility in
cellular radio systems. Previous works in this area have
shown that under the simplifying assumptions of constant-
speed subscribers with randomly chosen fixed direction,
the negative exponential closely approximates the CHT
distribution {1]. [3]. For the effective design and
management  of the next generation  wireless
communication systems which serve multimedia traffic,
we should construct a versatile model and newly evaluate
the QoS parameters such as carried load. handoff failure,
and probability of blocking with a relevant CHT

distribution.

We assume that there are two classes of users:
“walking user” and “mobile user”. The mobility pattern of
mobile user is much more subject to the layout of roads
than that of walking user. Unlike the simplified models,
the consideration of site layout may better explain the
mobile user mobility. Also, it may explain that walking
user mobility, because we have a tunable mobility
parameter in the model. which can be estimated through
statistical analysis. The consideration is more significant
as the cell size is smaller. Because the motion of a user on
the roads is more sensitive to the number of handoffs as
the cell size is smaller, the layout of roads has more
significant explanatory power of the CHT distribution as
well as the CST distribution. Previous mobility models
with the assumption of linear motion of users are very
useful in analyzing the cells with highway. Apart from that
case. random mobility model is needed in urban
microcellular systems. In this paper. we assume rect-linear
site layout well known as Manhattan street model so as to
analyze the urban microcellular systems. Furthermore.,
unlike most previous works that assume constant speed
and randomly chosen fixed direction [1]. we assume that a
user would change the speed and direction with some
stochastic characteristics. A user moves bearing one of 4
directions and one of two classes of speed levels in the
model. Also, the user changes the direction state and speed
state after a time unit. This state transition occurs
stochastically ~ with  some  characteristics.  These
characteristics mean that a fast user will be also fast after a
time unit with higher probability and there is a tendency to
move straight rather than to change his direction
drastically.

This paper provides a practical user mobility model
in - microcellular systems. For the next generation
multimedia and high quality telecommunication services,
a versatile and practical mobility model is essential. The
model with more significant traffic parameters improves
the limit of simplified results.

2. Mobility Model

In general. users have variable mobility. That is, a mobile
station (MS) changes the speed and direction continually
during a call. We might find the more practical CHT
distribution if we built up a model with the variable user
mobility. To analyze the mobility, we consider the
following three traffic conditions.

2.1 Site Layout

In practice. a mobile user usually moves along the street
rather than he may go anywhere. This means that the
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layout of roads may have explanatory power for the CHT
distribution as well as CST distribution. In urban
microcellular systems, this explanatory power for CST is
relatively greater than in the cellular systems with macro
cells because the MS mobility to small cells is more
sensitive than that to large cells in terms of the number of
handoffs. Let us consider a cellular system with rect-linear
site layout. We call a “junction point of two roads” a
“lattice” and the distance between a lattice and its

neighbors is d . Let us consider a cellular system consists

of rectangular cells with side length s/—Z_Ld. Then there
are 4L lattices on its 4 sides of cell boundary as shown
in Figure 1.

Figure 1. Rectangular cell structure with lattices

We define L +1 layer sets where & ™ layer set has
4k lattices for k=1,---,L and 0™ layer has one as
shown in Figure 1. It is assumed that a call either moves
from his current lattice to adjacent one or stops there
during a time unit. This means that a call has 2 speed
states and 4 direction states defined in the following
sections.

2.2 Speed

The speed of users is assumed to have the following
propertics.
(1) The various speed levels of users are classified into
two states:
State 0 - speed is very low or a user stops,
State 1 — a user moves fast.
(2) The process of speed state has Markov chain
property and the transition probability matrix is

given by S—[SOO S‘“J where each element of
St Sn

S means the probability that a call will be in state j
given that his current state is / and 0 < Sy <1
for Vi, j . Inmatrix S. s;9+s5;; =1fori=12
and the equilibrium probability vector. denoted by

(¢o,¢’1)-i5[ al “o J[91.

3
So1 810 So1 TS0

2.3 Direction

(1) A user has 4 direction states {1,2,3,4} as shown in
Figure 2.

(2) Each state transition occurs at the lattice. And the
candidate directions are:

no change with probability 7 ;
turning left (right) with probability r, (7}):
turning back with probability r, .

where ry +2r+r, =1.

This means that users move linearly if and only if
ro = 1 .

Figure 2. Moving direction states

3. Cell Sojourn Time

3.1 Cell Sojourn Time Distribution

To find the modeled CST distribution, we need some
notations. Let the random variable X denote the number
of time units till a random user exits his current cell. And

X, denotes the number of time units till a user exits its
current cell given that he is in n® layer set. Let a, (k) be
the probability of X, =k given that the previous speed

state is 1. Also, let b, (k) bethat of X, =k given that

the previous speed state is 0. Then we can find the
following recurrence relation through counting of lattices
(in Figure 1) in a certain layer set and conditioning of
probability:

A(k) = CA(k -1) for k>1

where

AR =[ag (k) - a (k) by - b 0]
and C isa 2(L+1) dimensional square matrix. From
the recurrence relation, we can draw out

Ak) =C* 4.

C is diagonalizable if it has 2(L+1) independent
eigenvectors. We consider this case in this paper. C is
not diagonalizable for some special cases depend on
transition probability matrix of speed state S which we

can rarely experience.
If C is diagonalizable, we can easily get

A(k) = QN Q" 4(1)
where 4,4, -+, A,,,, are the eigenvalues of C, Q is
the orthonormal matrix of which columns are the
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eigenvectors corresponding eigenvalues of C | and

Ao
A= :

Alqﬂj
To find the CST, another two notations are also
needed. Let

L 4

Po Ju #1)<(2142)
and u' isa vector of weighting factors of the laysers.
then the cell sojourn time distribution is
P(X =ky=ul, TON'O" (1)
Hence P(X = k) is of the form

for some real values vy, 4. I C s
diagonalizable, the equation det(C - A/)=0 has
2(L+1y distinct roots Ay, 4,, -+, 4,,,,. Hence we can
casily conclude that the CST in our model is different
from any of well-known distributions. u' described
above indicates that users arc uniformly distributed in

L +1 lavers. Furthermore. we consider a general case of

u' . denoted by M,I,. in consideration of handoff calls.
Under the assumption of uniformly distributed users. new
calls will be initiated uniformly and handoff calls will be
initiated almost only in (L+1)™ layer. Let @ be the
fraction of the average non-blocked new calls out of the
average total number of calls in a cell..

It is clear that the fraction of handoff traffic rate in
cell 7 is not a function of the number of calls in cell 7,
but a function of the number of calls in the neighboring
cellsof cell 1.

3.2 Numerical Example

In the cxample. we consider urban CDMA network with
rect-linear site layout with mobile users that have random
mobility. We take the distance d =100m (in igure 1).
Fo =1 =r =25% and a=67%. In fact. the number
of handoff calls (or the fraction 1—a ) to a cell is
determined by the total number ol calls and the mobility
parameters in the neighboring cells. And the length of a
time unit. 7. is taken as 10 seconds. The mecan CST is
about 7.57 =75seconds. The plot shows a CHT
distribution from our model with L =10,5,, =0.6. and

s,, =0.9 comparing with two nearly fitted exponential
distributions of which notation in the plot are Exp(0.12)
and Exp(0.15). In this example, the cell side length.

J2Ld . is about 1.4km and the mean call holding time
is150 seconds and there are 33% call requests due to
handoff and 67% due to new call. A moving user will be
also moving with probability 90% and stop with 10%.
Also, the average spced of a random user is
(9o0+@,d)/ r=8m/sec. In steady state. a uscr stops

with probability 20% and moves with 80% because
¢, =02 and ¢, =0.8. In this plot. we find “cross

over points™ between our CST distribution function and
the two exponential distribution functions.
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Cell Sojoumn Time (1n 10 seconds)

Also. it can be found that the exponential distribution with
inverse mean 0.12. Exp(0.12), explains well the calls
with relatively long CHT, while the exponential
distribution with inverse mean 0.15, Exp(0.15).
explains well those with relatively short one. From this,
we can sce that there is trade-off because an exponential
distribution that explains well the calls with long CHT
does not explain well those with short one, and vice versa.

4. Channel Holding Time

4.1 Channel Holding Time Distribution

Let Y be a geometrically distributed random variable
(with inverse mean  p ) meaning the number of time units

corresponding to “call holding time” and W be the
random variable meaning the number of time units
corresponding to “channel holding time™. We assume that
both normal call completion and abnormal termination
(due to power-control outage, and so on) determine the
call holding time, Y. And it stands to reason that
assuming that X' and Y are independent. At this point
we can find the mean path length during a call holding
timeis do/p.

Since a channel holding time by a subscriber in a
cell is determined by hanging-up or by handing-off, we
can get the following: W =min(X,Y). Therefore we
can find the CHT distribution is as follows:

PW =k)y=ulTO

P

ai) g +
(gA) (g -7

P

(2 ) g+ ——
v 1- /12/,+I

x 0! A(1)

where g =1-p.
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4.2 Numerical Example

We also take the distance d =100m . The plot shows a
CHT distribution from our model with
L=10,55=0.6,5,,=0.9, and p=1/15 comparing
with two nearly fitted exponential distributions of which
notation in the plot are Exp(0.20) and Exp(0.24). We

consider an arbitrary cell 7 of which side length. J2Ld.
is about 1.4km and the mean call holding time is 150
seconds. The mean CHT is about 46 seconds.
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Hence the average number of handoffs per call in cell
I is 3.26. This means that the fraction of handoff-out calls

incell i is =23% . It is clear that the handoff

1+3.26
calls in cell 7 is not from cell 7 but from the
neighboring cells of cell 7. And the mean path length of a
user is de;/p=12km. A moving user will be also

moving with probability 90% and stop with 10%. In
steady state, a user stops with probability 20% and moves
with 80% because @y =0.2 and ¢, = 0.8. In this plot,

we find cross over points between our CHT distribution
function and the two exponential distribution functions.
Also. it can be found that the exponential distribution with
inverse mean 0.20. Exp(0.20), explains well the calls
with relatively long CHT,. while the exponential
distribution  with inverse mean 0.24. Exp(0.24),
explains well those with relatively short one. From this,
we can see that there exists trade-oft because an
exponential distribution that explains well the calls with
long CHT does not explain well those with short one, and
vice versa. These two kinds of disagreements in CHT
distribution can be explained by the effect of handoffs.
This means that the CST distribution that is different
enough from the exponential distribution can directly
affect the CHT distribution. This also means that whatever
the parameter is, system modeling with the exponential
distribution instead of a CHT distribution based on
practical traffic situation may bring about some significant
errors for both a random call with a long CHT and a
random call with short one. Therefore. we can safely
conclude that we are able to reduce a fraction of the some
errors in analyzing of performance measures such as call
blocking probability, handoff failure, and carried load due
to using exponential model.

5. Conclusion

This paper has focused on the derivation of a
mathematical model for the random user mobility and the
distribution of channel holding time in urban microcellular
systems in consideration of practical user mobility patterns.
And, in this paper the traffic situation is reduced to the
assumption of variable user mobility (i.e., variable
changes in moving speed and direction in rect-linear street
layouts). Under the specified mobility parameters, the
distribution of CHT in the model shows disagreement with
negative exponential distribution as mentioned earlier.
Applications of this kind of practical mobility model. the
system design and architecture will be guided effectively
in the next generation wireless communications.
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