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ABSTRACT

The Winsorizing smoother (W smoother), which is a center
weighted median (CWM) filter giving more weight only to the
central value of each window, is studied. This filter can preserve
image details while suppressing additive white and/or impulsive-
type noise. The statistical properties of the W smoother are
analyzed. It is shown that the W smoother can outperform the
median filter, while its implementation is almost as simple as
median filtering. Some relationships between W smoothers and
other median-type filters, such as the weighted median filter and
the multi-stage median filter, are derived.

Introduction

The median filter is a simple nonlinear smoothing operation
which takes a median value of the data inside a moving window
of finite length. This filter has been recognized as a useful im-
age enhancement technique due to its edge preserving smoothing
characteristics and its simplicity in implementation [1]. Median
filtering preserves edges in images and is particularly effective
in suppressing.impulsive noise. Application of median filtering
to an image, however, requires some caution because median
filtering tends to remove image details such as thin lines and
corners while reducing noise. Recently, in response to these diffi-
culties, several variations of median filters have been introduced.
Specifically, the max/median (2], FIR-median hybrid [3),[4] and
multi-stage median [4],[5] filters have been developed for detail-
preserving smoothing. These variations of median filters preserve
more image details at the expense of noise suppression.

In this paper we investigate the Winsorizing smoother which
was proposed in [6]. This smoother allows a degree of control of
the smoothing behavior through a parameter which can be set,
and thus, is a promising image enhancement technique. It will
be shown that this smoother is identical to the CWM filter [7)-9]
which gives more weight only to the central value of a window,
and thus is easier to design and implement than general weighted
median filters [10}, [11]. We shall analyze the properties of the
W smoothers and observe that the W smoothers preserve more
details at the expense of less noise suppression.

II. Winsorizing Smoothers
Before defining the W smoother, we review the median filter
and introduce some common terminology. If we let {X(.,.)} and
{¥(.,.)} be the input and output respectively, of the median
filter, then

Y(i,§) = median{X(i - 5,5 — 1) [ (s,t) € R}. )

Here R is the window which is defined in terms of the image coor-
dinates in the neighborhood of the origin. For example, (2N +1)
x (2N + 1) square window is given by R = {(s,) | -N < s <
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N,-N <t < N}. The total number of points in a window is
called the window size. Throughout, the window size is denoted
by 2L + 1.

Consider a W(2L+1,2) smoother where 2L + 1 is the window
size and a is the filter parameter that controls the degree of
smoothing. The output Y (i,7) of the W(2L+1, a) smoother is
defined by

Xij(a;2L + 1), if X(i,5) < Xij(a;2L + 1)

Y(i,j) = { Xi;(2L+2-a;20+1), i X(3,5) 2 Xy5(2L+ 2~
a;2L+1)

X(1,7), otherwise
(2)

where X;;(r;2L+1) is the r** smallest one among 2L +1 samples
within the window centered at (4,5), X(i,7) is the input value
at the center of the window,and 1<a <L +1.

The definition of the W smoother in (2) can be expressed as
follows:

Definition: The output Y (i,5) of the W(2L+1,2) smoother is
represented by

Y (i,5) = median{Xij(a; 2L +1), X;;(2L +2 - a;2L +1), X (i, /)}
@)

When a = L + 1, the W smoother becomes the median filter,
and when a = 1, it becomes the identity filter (no filtering).
Obviously, a W smoother with a smaller a performs better in
detail preservation but worse in noise suppression than one with
a larger a.

The W-smoother is very simple to implement. The values
Xij(a;2L +1) and X;5(2L +2-a;2L +1) in (3) can be obtained
efficiently by using algorithms which are slight modifications of
the fast algorithms for median filtering in [12], [13]. When such
algorithms are applied, the average number of comparisons for
the W smoother with a 2-D square window is O(V'L +1).

There is an interesting relationship between the W smoother
and the CWM filter. The following property shows that the
W(2L+1,a) smoother is identical to the CWM filter with central
weight 2L+3-2a.

Property 1: The output Y (4,5) of the W(2L+1,a) smoother is
equivalent to

Y (4,5) = median{X (i—s, j—t), 2L+2—2a copies of X391
(s,)€ B} (4)
Consider the W(3,1) smoother with R = {(-1,0),(0,0),(1,0)}.
Its output is equivalent to the output of the CWM filter having
the central weight equal to three that is Y(4,5) = median{X (i~
l,j),X(z’,j),X(z',j),X(i,j),X(i +1,7)}. Therefore, the proper-
ties of W smoothers discussed in the paper are in fact those of
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CWM filters.

The W smoother also has an interesting relationship with a
multi-stage median filter 4], [5], which employs several 1-D me-
dian filters, and either, the central sample in the window or, one
of the filter outputs is selected using a decision logic based on a
median filtering algorithm.

Property 2: The multi-stage median filter (unidirectional) with
a 3x3 square window is identical to the W(9,2) smoother with
the 3x3 square window.

This equivalence between the W smoothers and the multi-stage
median filters does not hold in general if the window size is
greater than 3x3; see [8] for an example.

IIL. Statistical Properties of W Smoothers

In this section the noise suppression, edge and detail preser-
vation characteristics of W smoothers are statistically studied.
The noise suppression characteristics of W smoothers are inves-
tigated when a constant signal is embedded in additive white
noise. The edge and detail preservation properties are examined
by considering 2-D inputs with step edges and lines which are
also corrupted by additive white noise.
A. Noise Suppression

The probability distribution function for the output of the W
smoother is given in the next property.

Property 3: For independently and identically distributed
(iid.) inputs, the output distribution function Fy(y) of the
W(2L+1,a) smoother is given by

2L
A= Y (N0 - B
=ht (5)

2L
DY (?)F;jc(y)(l - Fx(y))+1-d

i=ka

where k; = a, ky = 2L+2—a, and Fx(.) is the input distribution.
It may be noted that if Fix(z) is symmetric about m then Fy(y)
in (5) is also symmetric around m. Thus, in this case, the W
smoother is an unbiased estimator of the mear, and E[Y (4,5)] =
BX(,5)] = m.

Using (5), the output variances were computed through nu-
merical integration for i.i.d. Gaussian inputs with mean zero and
variance one (V(0,1)). The results associated with the W(9,a)
smoother are tabulated in Table 1. For comparison, the variances
of median filters with different window sizes are also shown. As
expected, among W smoothers, the W(9,5) smoother, which is
the median filter with window size nine, performs the best, and
the output variance of the W smoother increases as parameter a
decreases. When a = 4 (= 3), the W smoother performs better
than the median filter with size 5 (3) but worse than that with
size 7 (5).

The impulse noise suppression characteristic can be analyzed
statistically from Property 3. We evaluated the breakdown prob-
ablity [6] from the output distribution in (5) by assuming a bino-
mial input. Here, roughly speaking, the breakdown probability
is the probablity of an impulse occuring at the output. This
probablity is computed from the output distribution in (5) by
assuming 2 binomial input. Table 2 shows the breakdown prob-
ablity of W(9,a) smoothers, and those of median filters. Again
it is seen that the W smoother with @ = 4 (= 3) performs better
than the median filter with size 5 (3) but worse than that with
size 7 (5).

Table 1 Output Variance
a W(9,a) smoother 2L+1 Median
2 0.673 3 0.449
3 0.415 5 0.287
4 0.237 7 0.210
S 0.166 9 0.166
Table 2 Breakdown Probability
W(9,a) smoother Median
a 2L+1
p=0.0625 p=0.125 p=0.0625 p=0.125
2 0.02521 0.08205 3 0.01123 0.04297
3 0.00531 0.03296 S 0.00222 0.01605
4 0.00067 0.00849 7 0.00046 0.00624
5 0.00010 0.00248 9 0.00010 + 0.00248

Table 2. Breakdown probabilities when the input is binomial,
B(2L+1,p).

B. Edge Preservation

We now consider the effects of W smoothers on noisy step
edges. The 2-D input sequence representing a noisy step edge is
expressed by

V(i) igo
X(,5) = (6)
h+V(ig), j21

where h is a constant representing edge height, V', 5) is i.i.d.
noise with distribution Fi(z). Let the distribution function of
h+V (i, j} be Fp(z). Then, obviously, F3(z) = Fy(z - k).

We will examine the filter behavior near the noisy edge by
using the expected value of the output and the root mean squared
error (rmse). Here the rmse at i,7) denoted by rmse(3,7), is
defined as rmse(i, j) = \/E[Y (i, ) — $(4,7)]? with Y (4, 7) as the
filtered output, S(i, ) equal to 0 if7 <0,and equal to hif j > 1.
In order to compute these quantities, we derive the distribution
function Fy, (y) of the output Y (3,7) of the W smoother which is
taken from m;; samples with distribution Fi(z) and 2L+ 1-m;;
samples with distribution Fy(z) among 2L + 1 samples within
the window centered at (i, 7). Note that the number of samples
having Fi(z) in the window, mi;, depends on the location of the
window,

Property 4: For the noisy step edge input in (6), the output
lciistribution function Fy,(y) of the W(2L+1,a) smoother is given

Y

2L min(k,d)
=YY (DI Awe-Rwe

k=ki~11=maz(0,k-(2L~d))
FFy)(1 - Fa(y))2E= 444 F5(y)

. ZXL: mig,d) (,1) (2L - d) Fly)(1 = Fy(y))*!

i k-1
k=k; I=maz(0,k—(2L~d))
Fi @)1 - B2 (1 - Fy(y)), ™
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where ky = a,ky =2L+2—a,

. d m‘._l’
Fw(y):{Fl@)’ j<0 an d={ i

j<o
Mij, ji21

Fz(y)1 i1,

Using (7), along with the assumption that Fi(z) is N(0,1),
we computed E[Y(¢,7)] and rmse(t, j) along the horizontal filter
path (fixed i, variable j) through numerical integration. Fig. 1
(a) and (b) show plots of E[Y (i,7)] and rmse(3, j), respectively,
for the W smoothers with the 3x3 square window, when the step
edge with A = 4 is degraded by a Gaussian N(0,1) noise. It
is interesting to see that the W(9,2) smoother has the expected
values closest to the ideal step edges, but has the largest rmse
values due to its poor noise suppression- characteristics. The
results show that all of the filters are essentially edge preserving
filters.

C. Line Preservation

The detail preservation characteristic of a W smoother can be
examined by considering a noisy line image X (i,7) defined by

V(4,9), J#0
X(ij) = )]
h+V(i,j), i=0

where h is the height of the line, V (3, j) is i.i.d. with distribution
F(z).

For the noisy line input in (8), the output distribution function
Fy,,(y) of the W(2L+1,a) smoother is the same as (7) except that

{3

Again, under the assumption that Fy(z) is N(0,1), we com-
puted E[Y(i,7)] and rmse(i, j) for the noisy line along the hor-
izontal filter path through numerical integration. The results
associated with the W smoothers with a 3x3 square window are
plotted in Fig. 2 (a) and (b) for h = 4. It is seen that W
smoothers with a = 3, and 2 preserve the line, while the others
remove it.

i#0 and d={m,~,——1, %0
j=0, Mij, ji=0

In summary, the W smoother can preserve edges and details
while reducing noise. However, there exists a clear tradeoff be-
tween detail preservation and noise suppression properties of this
smoother. The parameter @ should be carefully selected de-
pending on both the characteristics of the input image and its
noise. The results presented in this section provide some crite-
ria for determining the parameter of W smoothers. For example,
suppose that an image is corrupted by impulses which occur with
probability 0.0625, and that we wish to remove at least 99% of
the impulses. If a W smoother with a 3x3 square window is used,
then its parameter should be greater than or equal to four (Ta-
ble 2). If the image has lines to be preserved, then the W(9,2)
smoother with a 3x3 square window would be satisfactory. (Sta-
tistical results for CWM filters with a 5x5 square window are
available in {8].)

IV. Experimental Results

The performance of the filters discussed so far is evaluated
by applying them to noisy images degraded by additive white
and /or impulsive noise and then by comparing their respective
results. The original noise-free image is shown in Fig. 3.-.
Three noisy images were generated by adding zero mean i.i.d.
Gaussian noise of variance 100, 200, and 400 to the original im-
age, and then were passed through various filters with 5x5 square

window. In the following, we first compare the normalized mean
square error (NMSE) between the original and filtered images,
and then visually compare some of the filtered images.

Fig.4 exhibits the NMSE’s associated with W(25,a) smoothers.
1t is interesting to observe that the NMSE curve depicted as a
function of a is convex and has a unique minimum value at a
certain value of a. The parameter ¢ which minimizes the NMSE
is dependent on the noise variance: it becomes smaller as the
noise variance decreases. In general, for a given image to be W
smoothed with a certain window, it is most prudent to apply
all W smoothers with 1 < @ < L + 1, and then to choose one
yielding the best result. Table 3 summarizes the NMSE’s of the
W smoothers and median-type filters. In each case, the minimal
NMSE of a W smoother is smaller than the NMSE of a median
filter. The NMSE's of the multi-stage median filters, with the
exception of the one associated with variance 100, are larger than
those measure of the W smoothers with minimal NMSE.

Next we compare the performance of the filters in reducing im-
pulsive noise. The noisy image with the noise variance 200 was
further corrupted by both positive and negative impulses having
values 255 and 0, respectively. By considering two different prob-
abilities of an impulse occurring, p = 0.02 and p = 0.1, two noisy
images were generated, and then passed through the filters. (The
probabilities of occurrence of a positive and a negative impulse
are the same.) Table 4 shows the resulting NMSE’s. The noisy
image degraded by both Gaussian noise o? = 200 and impulses
p = 0.02 and the filtered images (5x5 square window) are shown
in Fig. 5. (The other filtered images are not presented because
they lead to a discussion similar to the one stated below.) Com-
parison of these images clearly indicates that the median filter
performs the worst, and that the W smoothed and multi-stage
median filtered images appear alike. It is clearly seen that the
W smoothers suppress impulses while preserving image details.

The results in this section indicate that the W smoother is an
effective detail-preserving filter that can suppress additive white
and impulsive noise.
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NMSE (Noise type: Gaussian)

Filter Type (5x5) o* =100 o? =200 o° =400

Median 1.86 0.98 0.54

a=10 1.07 0.64 0.47

W(25,a) a=8 0.85 0.59" 0.45
smoother

as6 0.77* 0.63 0.55

Multi-stage median 0.72 0.62 0.55

Table 3. NMSE’s associated with Gaussian noise. (* indicates the
minimal NMSE of W smoothers.)

EwG (@) rmse(i, ) (v NMSE (Noise Type: Both Gaussian and impulsive)
4.0 o +—t 1.0 -‘
———/a—-—\—_- Filter Type (5x5) p=0.02 & p=0.1 &
—_ 3200 o1 =200
Hs
Median 0.51 0.173
2.0 o 0.5 4
a=10 0.33 0.119*
— 3.5
— a=b W(25,a) a=8 0.31” 0.123
—  a=}3 smoother
— a2
a=6 0.32 0.148
T T T "
-2 -2 -1 -] 1 2 3
Multi-stage median 0.34 0.153

Fig. 1. Results of median and W smoothers, with 3x3 square win-

dow, for the noisy step edge h = 4: (a) The output expected values,
(b) The root mean square errors.

rmse(i, j)

E{Y (i, 5)]

a) b
4.0 5 —— 4a5 (=) 4.0 o et =3 ®
— amf W — a=4
— a=]3 — a=3
—x 352 x—x a%2
2.0 + 2.0
k i v v T
-3 =2 -1 °] 1 2 3 -3 =2 -1 [« 1 2

Fig. 2. Results of median and W smoothers, with 3x3 square win-
dow, for the noisy line h = 4: (a) The output expected values, (b)
The root mean square errors.

|
TNMSE

Fig. 4. NMSE’s of
W smoothers with

—— @ =100
0.2 4 o @ =200
—_— a7 =400
g T g v g v B 8
1 2 3 45 678 9 10 11 12 13

5x5 square window.

Table 4. NMSE's associated with both Gaussian and impulsive
noise. {* indicates the minimal NMSE of W smoothers.)

Fig. 3. {riginal image.

¥

Fig. & {¢) wmuti-stage median

4

Tig. 5 (d! W(25,8) smoother
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