
732 IEEE COMMUNICATIONS LETTERS, VOL. 11, NO. 9, SEPTEMBER 2007
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Abstract— The application of double space-time transmit di-
versity (DSTTD) scheme to multicarrier systems, such as orthog-
onal frequency division multiplexing (OFDM) systems, requires
calculating the determinations of the antenna permutation ma-
trices for all subcarriers, resulting in a heavy computation load.
In this paper, we show that the signal-to-noise ratio (SNR)-
based antenna shuffling criterion for DSTTD systems can be
reduced to a simple criterion that evaluates determinants of
2 × 2 submatrices of the 4 × 4 equivalent channel matrix. The
new criterion can lighten the computational load by about 95%.
Furthermore, it is shown that the minimum mean square error
(MMSE)-based criterion for antenna permutation can also be
reduced to the same criterion.

Index Terms— Double space-time transmit diversity (DSTTD),
antenna shuffling, space-time block code, multiple-input multiple-
output (MIMO).

I. INTRODUCTION

DSTTD is a multiple-input multiple-output (MIMO) sys-
tem employing two space-time block code (STBC)

encoders at the transmitter [1], [2]. Due to its efficiency
in compromising diversity gain with multiplexing, DSTTD
with four transmit and two receive antennas has received
considerable attention and has become a part of the Broadband
Wireless Access standard [3]. This system suggests the use
of an antenna shuffling (or grouping) scheme for selecting
an appropriate transmit antenna for each STBC encoded data
stream. The criteria for antenna shuffling include the mini-
mization of the spatial correlation between transmit antennas
[1] and the maximization of the minimum post-processing
SNR [2]. It is shown that the latter criterion can yield a smaller
bit-error-rate (BER) than the former.

The DSTTD is usually employed for downlink communica-
tion (from a base station to a mobile). A mobile station selects
a permutation matrix and informs the base station which
matrix is chosen. Then the base station antennas are shuffled
by multiplying the permutation matrix with the STBC encoded
data. The computational load for selecting a permutation
matrix may not be heavy. However, in multicarrier systems,
such as orthogonal frequency division multiplexing (OFDM),
a permutation matrix must be assigned to each subcarrier,
and selection of all permutation matrices can require heavy
computation. For example, the mobile WiMAX standard [3]

Manuscript received March 29, 2007. The associate editor coordinating
the review of this paper and approving if for publication was Dr. Ping Liu.
This work was supported in part by the University Information Technology
Research Center (ITRC) Program of the government of Korea and Brain Korea
21 Project, The school of information technology, KAIST in 2007.

The authors are with the School of EECS, Korea Advanced Institute
of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-gu,
Daejeon, 305-701, Republic of Korea (e-mail: jgjoung@stein.kaist.ac.kr).

Digital Object Identifier 10.1109/LCOMM.2007.070468.

STBC

STBC

Antenna
Shuffling

W

⊕

⊕
AWGN

1x

2x

3x

4x

)0(1y)1(1y

)0(2y)1(2y

Permutation Matrix Index

x

1

2

3

4

1

2

DSTTD
Receiver

Processing

Permutation 
Matrix 

Selection

x̂

R
eo

rd
er

in
g y

S

S
/P

H H

Fig. 1. System model for 2 × 4 DSTTD employing antenna shuffling.

suggests an OFDM system with 1, 024 subcarriers with a 5
msec frame length. If an identical permutation matrix, which
is chosen based on the post-processing SNR, is assigned to
each group of 4 successive subcarriers and if 20 subcarrier
groups are allocated to one user, then 24.6 million floating
point operations (flops) per second are needed to determine all
permutation matrices at a mobile station1. For such systems,
reducing the computational load for selecting the permutation
matrix is of practical importance.

In this paper, we show that the SNR-based criterion, which
evaluates the eigenvalues of a 4 × 4 matrix, can be reduced
to a simple criterion evaluating the determinants of two
2 × 2 matrices. The computational saving achieved by the
simplified criterion is about 95%. Furthermore, it is shown
that the MMSE-based antenna permutation criterion can also
be reduced to the same criterion.

II. PROPOSED ANTENNA SHUFFLING CRITERION

Fig. 1 illustrates the DSTTD system with four transmit and
two receive antennas. The MIMO channel is represented by
a 2 × 4 channel matrix H, whose (i, j)-th element hi,j is
a channel gain between the j-th transmit and i-th receive
antennas. The permutation matrix W, which is employed for
antenna shuffling is chosen from the following set:

W ∈ SW =
{

[i1, i2, i3, i4], [i1, i2, i4, i3], [i1, i3, i2, i4],
[i1, i3, i4, i2], [i1, i4, i2, i3], [i1, i4, i3, i2]

}

where ik, 1 ≤ k ≤ 4, is a 4 × 1 vector whose k-th element
is 1 and the rest are 0s. Given H, the receiver selects an
appropriate permutation matrix from SW and informs the
transmitter of which matrix is chosen—this requires 3-bit feed-
back information because SW contains six matrices. The input
to the STBC encoders and the corresponding received signals
are represented in vector form as x = [x1, x2, x3, x4]T and
y = [y1(0), y∗

1(1), y2(0), y∗
2(1)]T , respectively. To represent y

1Selecting one permutation matrix using the post-processing SNR requires
1, 024 flops (for details see Section II).
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in terms of H and W, these matrices are block-partitioned as
follows:

H =
[
hT

1 hT
2

hT
3 hT

4

]
and W =

[
W1 W2

W3 W4,

]
,

where {hk} are 2 × 1 vectors and {Wk} are 2 × 2 matrices.
The received vector can then be written as

y = Sx + v, (1)

where the equivalent channel matrix

S =

⎡
⎢⎢⎣

hT
1 W1 + hT

2 W3 hT
1 W2 + hT

2 W4

(hH
1 W1 + hH

2 W3)J (hH
1 W2 + hH

2 W4)J
hT

3 W1 + hT
4 W3 hT

3 W2 + hT
4 W4

(hH
3 W1 + hH

4 W3)J (hH
3 W2 + hH

4 W4)J

⎤
⎥⎥⎦,

J =
[
0 −1
1 0

]
,

and the elements of v are additive white Gaussian noise
(AWGN) with variance σ2. The SNR-based criterion in [2]
is given by

arg max
W

(
min

i
(λi)

)
, (2)

where {λi} represent the eigenvalues of the matrix SHS and
the superscript H denotes the complex conjugate transpose.
When the eigenvalue decomposition method [4] is used for
directly evaluating eigenvalues, the SNR-based antenna selec-
tion requires 1, 024 flops2 for one permutation matrix, and for
the case of mobile WiMAX described in the previous section,
the computational load can reach 24.6 M (1, 024× 200× 6×
20) flops per second, which may be burdensome in mobile
stations3. This load can be relieved if a closed-form expression
for the eigenvalue λi is available. Next, we derive such an
expression.

Lemma 1: The eigenvalue λi is represented as

λi =
c1 ±

√
c2
1 − 4(αβ − η)

2
, (3)

where α = |s1,1|2 + |s1,2|2 + |s3,1|2 + |s3,2|2, β =
|s1,3|2 + |s1,4|2 + |s3,3|2 + |s3,4|2, c1 = α + β, and η =
(|s1,1|2+|s1,2|2)(|s1,3|2+|s1,4|2)+(|s3,1|2+|s3,2|2)(|s3,3|2+
|s3,4|2) + 2Re{(s∗1,1s1,3 + s1,2s

∗
1,4)(s3,1s

∗
3,3x + s∗3,2s3,4)} +

2Re{(s∗1,1s1,4 − s1,2s
∗
1,3)(s3,1s

∗
3,4 − s∗3,2s3,3)} (si,j is the

(i, j)-th entry of S.)
Proof: The equivalent channel matrix S in (1) can be

block-partitioned as

S =
[
S1,1 S1,2

S2,1 S2,2

]
,

where {Si,j} are 2 × 2 matrices given by

Si,j =
[

hT
2i−1Wj + hT

2iWj+2(
hT

2i−1Wj + hT
2iWj+2

)
J

]
.

2For a real-valued m × n matrix, the eigenvalue decomposition needs
4mn2 − 4n3/3 flops [4]. For complex-valued matrices, we approximate the
flop count as 24mn2−8n3 by treating every complex operation as a complex
multiplication.

3It is assumed that S and SHS are pre-determined for all W ∈ SW once
H is given.

It can be seen that each Si,j is represented in the form of[ a1 a2
a∗
2 −a∗

1

]
for some complex numbers a1 and a2—such a

matrix is called an Alamouti matrix [5]. Then

SHS =
[
SH

1,1S1,1 + SH
2,1S2,1 SH

1,1S1,2 + SH
2,1S2,2

SH
1,2S1,1 + SH

2,2S2,1 SH
1,2S1,2 + SH

2,2S2,2

]

=
[
αI2 U
UH βI2

]
,

(4)

where Ik represents a k-dimensional identity matrix, and U
is another Alamouti matrix satisfying UUH = UHU = ηI2.
In (4), the second inequality comes from the facts that an
Alamouti matrix has an orthogonal property4 and its structure
remains invariant under the sum or product of two Alamouti
matrices [5]. Then, {λi} satisfy[

αI2 U
UH βI2

] [
z1

z2

]
= λi

[
z1

z2

]
, (5)

where [zT
1 zT

2 ]T is the eigenvector of SHS. Solving this

equation results in
[
αI2 − λiI2 − η

β−λi
I2

]
z1 = [ 0

0 ], and λi

is derived as in (3).
Using Lemma 1, we can simplify the SNR-based criterion.
Property 1: The SNR-based criterion in (2) is simplified to

that minimizes κ, where

κ =
∣∣∣∣det

([
s1,1 s1,2

s3,1 s3,2

])
+ det

([
s1,3 s1,4

s3,3 s3,4

])∣∣∣∣ , (6)

det(A) denotes the determinant of matrix A and |·| represents
the magnitude, i.e.,

arg max
W

(
min

i
(λi)

)
= arg min

W
κ. (7)

Proof: arg max
W

(mini(λi)) =

arg max
W

(
c1−

√
c2
1−4(αβ−η)

2

)
= arg max

W
(αβ − η) =

arg max
W

(c2 − c3 − κ) = arg min
W

κ,

where c2 =
∑

i�=j |s1,i|2|s3,j |2 and c3 =

2Re
{ ∑4

i=1

(
s∗1,is3,i(

∑4
j=i+1 s1,js

∗
3,j)

)}
. The second

and fourth equalities are true because c1 and
c2 − c3 are independent of W. In fact, it can
be shown that c1 =

∑4
j=1 hT

j h∗
j and c2 − c3 =(

hT
1 h∗

1 + hT
2 h∗

2

) (
hT

3 h∗
3 + hT

4 h∗
4

) − |hT
1 h∗

3 + hT
2 h∗

4|2 using
the following properties of W: WiWH

i + Wi+1WH
i+1 =

I2 (i = 1, 2), W1WH
3 + W2WH

4 = [ 0 0
0 0 ] ,

∀W ∈ SW, and |s2i−1,2j−1|2 + |s2i−1,2j |2 =
(hT

2i−1Wj + hT
2iWj+2)(hT

2i−1Wj + hT
2iWj+2)H . This

completes the proof.
As shown in (7), the SNR-based criterion is reduced to

a simple criterion evaluating the determinants of two 2 × 2
submatrices of S. Evaluating κ for each W in (6) requires only
33 flops, which is less than 4% of the computations (1,024
flops) needed to obtain {λi} by the eigenvalue decomposition.

We now consider the MMSE-based criterion. Assuming an
MMSE receiver is employed, the MSE can be represented as

E
[‖x̃ − x‖2

]
= σ2 tr

([
SHS + σ2I4

]−1
)

, (8)

4If A is a k×k Alamouti matrix, then AHA = cIk for some constant c.
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Fig. 2. BER performance comparison.

where E[·] and tr(·) denote the expectation and the trace,
respectively, and x̃ is the MMSE output given by x̃ =(
SHS + σ2I4

)−1
SHy. The equivalence between the MMSE

criterion and the SNR-based criterion is shown below.
Property 2: The permutation matrix minimizing the MSE

in (8) is identical to that which minimizes κ, i.e.,

arg min
W

E
[‖x̃ − x‖2

]
= arg min

W
κ.

Proof: Using the inversion lemma for partitioned matri-
ces, the MSE in (8) can be rewritten as

σ2 tr
([

SHS + σ2I4

]−1
)

= σ2 tr

([[
αI2 U
UH βI2

]
+ σ2I4

]−1
)

= σ2 tr

([
(α + σ2)I2 − 1

(β + σ2)
UUH

]−1
)

+ σ2 tr

([
(β + σ2)I2 − 1

(α + σ2)
UHU

]−1
)

=
2σ2(α + β + 2σ2)

(α + σ2)(β + σ2) − η

=
2c1σ

2 + 4σ4

σ4 + c1σ2 + αβ − η
.

Since c1 and σ are independent of W, the MMSE cost
function can be written as

arg min
W

E
[‖x̃ − x‖2

]
= arg max

W
(αβ − η) .

This completes the proof (see the proof of Property 1).

III. SIMULATION RESULTS

Computer simulations were conducted to confirm the prop-
erties derived in the previous section by showing the BER

performances of DSTTD systems that employ the SNR- and
MMSE-based shuffling criteria are identical to that employ-
ing the simplified criterion. In the simulation, quadrature

phase-shift keying (QPSK) is used without channel coding,
and information symbols are grouped into frames consisting
of 10, 000 symbols. For each frame, a spatially correlated,
flat fading channel matrix H is generated using H =
R1/2

R HwR1/2
T [6], in which we set RR = I2 and RT =

toeplitz[1, 0.9, 0.81, 0.729]T . Hw is a 4×4 matrix con-
sisting of independent, identically distributed complex Gaus-
sian random variables with a mean of 0 and a variance of 1.
Channel H is fixed during a frame, but it varies independently
over frames. Two types of receivers are considered: an MMSE-
based successive interference cancelling (SIC) receiver [7] and
a maximum-likelihood (ML) receiver [8]. It is assumed that
H is perfectly known at the receiver. The BER values are
obtained from 50, 000 independent frames. Fig. 2 shows the
BER performances of the DSTTD systems. As expected, the
ML receivers outperform the SIC receivers. For both types
of receivers, the SNR- and MMSE-based selection schemes
and those with the simplified criterion yield identical BER
performances.

IV. CONCLUSION

It is shown that both the SNR- and MMSE-based criteria
for antenna shuffling in DSTTD systems can be reduced to
a simple criterion evaluating the determinants of two 2 × 2
matrices. The simplified criterion can dramatically reduce
the computational complexity for antenna shuffling without
sacrificing BER performance.
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