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Two-Layered Confabulation Architecture for an
Artificial Creature’s Behavior Selection
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Abstract—This paper proposes a novel two-layered confabula-
tion architecture for an artificial creature to select a proper behav-
ior considering the internally generated will and the context of the
external environment consecutively. The architecture is composed
of seven main modules for processing perception, internal state,
context, memory, learning, behavior selection, and actuation. The
two-layered confabulation in a behavior module is processed by a
will-based confabulation and a context-based confabulation con-
secutively by referring to confabulation probabilities in a memory
module. An arbiter in the behavior module chooses a proper behav-
ior among the suggested ones from the two confabulations, which
is to be put into an action. To demonstrate the effectiveness of the
proposed architecture, experiments are carried out for an artifi-
cial creature, implemented in the 3-D virtual environment, which
behaves as per its will considering the context in the environment.

Index Terms—Artificial creature, behavior selection, confabula-
tion architecture, context awareness.

I. INTRODUCTION

MANY service robots and entertainment robots have been
developed to help human beings in simple housework

and share intimate interactions with them. Recently, software
pet-type robots, which imitate an animal’s spontaneity, have also
been developed to be mounted into an actual hardware platform
or an electronic device, i.e., a cell phone or a computer, for
ubiquitous services [1]–[3]. An artificial creature can be used
as an intermediate interface for interactions between a human
and a service robot. It should hold outward appearances and
knowledge including behavior patterns so that it can resemble a
living creature and approach to the user with familiarity.

To generate a proper behavior when it faces a certain situa-
tion, there have been a lot of researches on control architecture.
They mimic a decision mechanism of the real living creature,
which considers its own desire to make a decision for a proper
behavior [4]–[7]. Belief–desire–intention (BDI) architecture is
provided for a rational agent, which consists of belief, desire,
intention, and plan [8]. The architecture proposed in [9] selects
the behavior using the state–action tuple. It creates the state from
the result analyzed by using a percept tree that utilizes exter-
nal sensor information. Cognitive architecture is also designed
based on a multiagent system with three distinctive memory
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systems, namely spatio-temporal short-term memory, procedu-
ral/declarative/episodic long-term memory, and task-oriented
adaptive working memory [10]. It selects an appropriate behav-
ior using a machine consciousness model called self-agent.

Recently, confabulation has been studied, which imitates a hu-
man thought process. Confabulations, where millions of items
of relevant knowledge are applied in parallel in the human brain,
are typically employed in thinking. Confabulation as a thought
mechanism is a process of making a plausible “spurious” mem-
ory from inexperienced facts in the brain using similar reminis-
cences in the past. Through this process, humans can generalize
the past experiences and cope with the indirectly experienced
situations [11]–[13].

In this paper, a behavior selection architecture based on two-
layered confabulation is proposed. The architecture is com-
posed of seven main modules for processing perception, in-
ternal state, context, memory, learning, behavior selection, and
actuation [14]–[16]. This paper focuses on the behavior module
along with the memory module and the learning module, which
is to select a proper behavior. Note that the behavior module
consists of two-layered confabulation submodule and arbiter.
The two-layered confabulation submodule has two sequential
layers in order to consider the internally generated will in an
internal state module and the context of the external environ-
ment in a context module, respectively. The first layer calculates
the cogency of each behavior using current internal states and
confabulation probabilities in the memory module [17]–[19]
and then recommends the most suitable behaviors to the second
layer. The second one similarly calculates the cogency of the
recommended behaviors considering the external context and
referring to confabulation probabilities in the memory module.
Finally, an arbiter in the behavior module chooses a fittest behav-
ior among the recommended ones using cogency values from
the two layers, which is to be put into action.

In the memory module, conditional probabilities between be-
haviors and each of the internal states and contexts are stored
as memory contents, which are used in confabulations. All the
memory contents are provided by an expert as an initializa-
tion process on plausible behaviors of the artificial creature.
As it should continuously adapt to the varying environment or
the user’s preference, the memory contents should be updated
through the learning module. Reinforcement learning as a train-
ing process is provided like a real pet training. The learning
module updates memory contents according to the user-given
reward or penalty signal.

The artificial creature is embodied by having real creature’s
characteristics using behavior sets and internal states. It can rec-
ognize the context of external environment using exteroception,
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Fig. 1. Schematic diagram of a typical architecture.

and its will is produced by mimicking a real creature’s intero-
ception mechanism. The effectiveness of the proposed scheme
is demonstrated by carrying out some experiments with an ar-
tificial creature implemented in the 3-D virtual environment,
which can behave according to its will and context.

This paper is organized as follows. Section II introduces a
typical control architecture of an artificial creature and basic idea
of the confabulation theory. Section III proposes a novel two-
layered confabulation architecture. In Section IV, experimental
results are presented with an artificial creature implemented in
the 3-D virtual environment. The concluding remarks follow in
Section V.

II. PRELIMINARIES

A. Typical Control Architecture for an Artificial Creature

In general, the architecture for an artificial creature mimics
a decision mechanism of the real living creature, which faces a
certain situation and considers its own desire to make a decision
for a proper behavior. Fig. 1 shows a typical control architec-
ture, where a proper behavior is selected in a behavior module
considering its perception and motivation [4]–[7]. By using a
perception module, the artificial creature finds out the situation
of external environment. A motivation module has an influence
on the behavior module for a proper behavior selection. The
resulting behavior gets expressed through the motor module.
Thus, it requires an adequate behavior selecting architecture
between the perception module and the motor module.

To activate a behavior similarly as the real creature does, the
behavior system should reflect the internal state such as motiva-
tion, homeostasis, and emotion. Also, the context of the external
situation should be considered in order to select an appropriate
behavior. If the behavior system is based on the priority be-
tween the context- and internal-state-based behaviors, and the
context-based behaviors have higher priority, then the behavior
considering the external situation (context) constrains the behav-
ior reflecting the internal state. Thus, this kind of priority-based
behavior selector is too deterministic to realize a deliberative be-
havior, which considers both external and internal states at the
same time. Consequently, an architecture incorporating both the
internal state and the external context is needed. In this sense,
confabulation is adopted to imitate a human thought process.

B. Confabulation Theory

Bayesian and cogent confabulation techniques are used to
represent the formal logic for inductive reasoning. These two
methods reason by using the confidence to all conclusions. In
the inductive reasoning, if the probability of a, b, c, and d are
given as a partition of a sample space S and suppose that event E
occurs, then the confidence of event E occurring is represented
by using Bayesian posterior probability p(e | abcd). In a cogent
confabulation, on the other hand, the confidence of conclusion is
represented as cogency p(abcd | e). Cogency can be calculated
using the Bayes’ theorem as follows [11], [12]:

p(abcd | e)4 =
[
p(abcde)

p(ae)

] [
p(abcde)

p(be)

]

×
[
p(abcde)

p(ce)

] [
p(abcde)

p(de)

]

× [p(a | e)p(b | e)p(c | e)p(d | e)] (1)

where the first four probabilities can be approximated as a con-
stant number in any given situations. In general, these assump-
tions are plausible approximations as follows:

[
p(abcde)

p(ae)

] [
p(abcde)

p(be)

]

×
[
p(abcde)

p(ce)

] [
p(abcde)

p(de)

]
≈ K

p(abcd | e)4 ≈ K[p(a | e)p(b | e)p(c | e)p(d | e)] (2)

where K is a constant.
Once the first four probabilities are considered a constant,

having the maximum cogency is equivalent as maximizing the
probability [p(a | e) · p(b | e) · p(c | e) · p(d | e)] [11], [12]. This
process is known as confabulation. In this paper, the confabula-
tion process is applied to artificial creature’s behavior selection.

III. TWO-LAYERED CONFABULATION ARCHITECTURE

The proposed two-layered confabulation architecture selects
a behavior by consecutive confabulations on the internal states
of an artificial creature and the contexts of its environment. Thus,
it is expected to have more natural behaviors. As Fig. 2 shows,
the architecture is composed of the following seven primary
modules.

Perception module perceives the environment with virtual or
real sensors.

Context module defines current situation such as “when,”
“where,” “what,” etc.

Internal state module defines motivation, homeostasis, and
emotion.

Memory module holds confabulation probabilities for all behav-
iors to each of the internal states and contexts as memory
contents.

Learning module learns from interaction with the user by updat-
ing the memory contents according to the user-given reward
or penalty signal.
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Fig. 2. Two-layered confabulation architecture.

Fig. 3. Memory module for confabulation.

Behavior module selects a proper behavior for the perceived
information.

Actuator module executes a behavior and expresses its emotion.

Perception, internal state, and actuation modules are the same
as those in [14]. In this architecture, both internal state (or will)
and context information are used for behavior selection, refer-
ring to the memory module that holds conditional probabilities
between behaviors and each of the internal states and contexts
as memory contents. The memory contents are referred to the
confabulation process to select the most proper behavior con-
sidering both will and context at the moment. With the learn-
ing module, proper behaviors can be learned according to the
changed situation or user’s preference by updating the memory
contents through reinforcement learning.

A. Memory Module

Cogent confabulation is employed to select the most adequate
behavior based on memory contents, where all internal states,
contexts, and behaviors are represented as symbols, and the
knowledge is represented by each symbol’s link in the memory
module (Fig. 3). Many conclusion symbols (behaviors) are con-
sidered at the same time and the best likely symbol is projected
as a conclusion.

The memory module consists of context memory and internal
state memory, as shown in Fig. 3, where “when,” “where,” and

“what” are considered to grasp the context from the environ-
ment, and motivation, homeostasis, and emotion are included
in the internal state. In the figure, an arrow represents the link
between a behavior and the current context and internal state
by conditional probability. For example, the link between “eat-
ing behavior” and “in the kitchen” has the memory information
given by a conditional probability pt(kitchen | eating) at time t.
A higher probability value is memorized for “eating behavior in
the kitchen,” as it is more adequate than “eating behavior in the
bedroom.”

All of the conditional probabilities, as memory contents, are
initially assigned to the memory module by an expert, which
is required as an initialization process. If inappropriate proba-
bilities are given, plausible behaviors may not be expected, and
thus, it requires careful settings and a learning module.

B. Behavior Module

Behavior module is to select a proper behavior and consists
of three submodules: a will-based confabulation submodule,
a context-based confabulation submodule, and an arbiter. The
will-based confabulation submodule calculates the cogency of
each behavior using current internal states, and then, recom-
mends the most suitable behaviors to the context-based confab-
ulation submodule. The context-based confabulation submodule
similarly calculates the cogency of the recommended behaviors
by considering the external context. Finally, the arbiter chooses
the fittest behavior using the cogency values from the previous
two confabulation submodules, i.e., the resulting behavior is
recommended through the confabulation process.

1) Will-Based Confabulation: The set of the current internal
states of an artificial creature, each from the internal state mod-
ule, is given as assumed facts. The conclusion set corresponds
to the artificial creature’s behavior set. Confabulation is used
to select the symbol of the next behavior in the conclusion set
with the assumed facts. The confabulation process requires the
behavior probability of each of the internal states, which is pre-
served in the memory module. The cogency of the will-based
confabulation is computed using Bayes’ rule as follows:

Ewill(b1) = p(w1 | b1) · p(w2 | b1) · · · · · p(wm | b1)

Ewill(b2) = p(w1 | b2) · p(w2 | b2) · · · · · p(wm | b2)

...

Ewill(bl) = p(w1 | bl) · p(w2 | bl) · · · · · p(wm | bl) (3)

where Ewill is defined as a cogency value (expectation) of the
behavior to the current will, bj , j = 1, 2, . . . , l, represents the
jth behavior in the behavior set, p(wi | bj ) is the conditional
probability between the ith will and the jth behavior, and l and
m represent the number of behaviors and the number of internal
states, respectively. Once cogency values between behaviors
and current will are calculated, some of the behaviors with the
highest cogency values are recommended to the next context-
based confabulation submodule. Since most of the animals load
up to four objects into working memory at one time [20], in the
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experiments of this paper, three behaviors were recommended
to the next submodule.

2) Context-Based Confabulation: Assumed facts for the
context-based confabulation are given as the set of current con-
text from the external environment. The recommended behav-
iors from the will-based confabulation submodule form a con-
clusion set. In this paper, when, where, and what (time, place,
and objects) are considered as contexts in a given situation.
Similarly, the confabulation is to select the symbol of the next
behavior in the conclusion set with the assumed facts, and the
cogency can be calculated using Bayes’ rule as follows:

Econtext(br
1) = p(c1 | br

1) · p(c2 | br
1) · · · · · p(cn | br

1)

Econtext(br
2) = p(c1 | br

2) · p(c2 | br
2) · · · · · p(cn | br

2)

...

Econtext(br
k ) = p(c1 | br

k ) · p(c2 | br
k ) · · · · · p(cn | br

k ) (4)

where Econtext is defined as a cogency value (expectation) of
the behavior to the context, ci, i = 1, 2, . . . , n, represents the
ith context where n is the number of considered contexts,
br
j , j = 1, 2, . . . , k, represents the jth recommended behavior

from the will-based confabulation where k is the number of
recommended behaviors. p(ci | br

j ) is the conditional probabil-
ity between the ith context and the jth recommended behavior.
As mentioned before, the calculation is carried out only for the
k recommended behaviors from the will-based confabulation
submodule to compute the adequacy of each behavior, reflect-
ing environmental situations.

3) Arbiter: The arbiter decides the final behavior among k
candidates based on the results of the will-based confabulation
Ewill(bj ) and context-based confabulation Econtext(br

j ), where
j = 1, 2, . . . , k. The behavior is determined by the max-product
operation as follows:

Earbiter(bs) = max
j

[Ewill(br
j )Econtext(br

j )], j = 1, . . . , k

(5)
where bs is the finally selected behavior. The behavior having the
highest value among the recommended behaviors is selected as
the most suitable one. Using this method, the artificial creature
can select a proper behavior fitted to the external situation and
reflecting its internal desires if memory contents are properly
set.

C. Learning Module

The memory-based learning is needed to train an artificial
creature for a desired behavior to a specific context like a real
pet training by tuning the corresponding memory content. In
this paper, reinforcement learning is employed using feedback
signals from a user. The user grants either a reward or a penalty
by patting or hitting the artificial creature to teach a desired
behavior at a given situation. When patting input is given at
a particular situation, confabulation probability gets increased
and vice versa for hitting input. The value of a reward/penalty
should be decreased as the number of training signals increases
due to the adaptation mechanism. In other words, the change of

TABLE I
ASSUMED FACTS OF WILL-BASED CONFABULATION

conditional probability becomes smaller as the creature adopts
the users’ feedback signals over a long period of time. Learning
was achieved by the following equation:

ptemp(ci | bj )=




pt(ci | bj )+{1 − pt(ci | bj )}λ (reward)

pt(ci | bj )−pt(ci | bj )λ (penalty)

pt(ci | bj ) (otherwise)
(6)

where ptemp represents a temporal probability by interaction,
pt(ci | bj ) is the conditional probability between the ith context
and the jth behavior, t is the number of training signals, and
λ ∈ [0, 1] is the learning rate. Reinforcement learning was at-
tained only when several reward/penalty signals were frequently
applied as input. Otherwise, learning might not be achieved eas-
ily. As the sum of all probabilities must be equal to 1, the
following normalization process is needed:

pt+1(ci | bj ) =
ptemp(ci | bj )∑l
i=1 ptemp(ci | bj )

. (7)

By this technique, confabulation probability is adjusted such
that undesired behaviors can be restrained from being activated.
In the following section, experimental results demonstrate the
effectiveness of the proposed architecture.

IV. EXPERIMENTAL RESULTS

A. Experimental Environment

The interactive learning method and the proposed behavior se-
lection architecture were applied to a synthetic character “Rity,”
which was developed using OpenGL in a 3-D virtual space. The
sampling rate of computational model was set to 0.1 s. Rity has
14 DOF, 19 percept symbols, and 40 behaviors. Rity has virtual
sensors such as a timer, vision, auditory, IR, touch sensors for
the perception module, and the context module to be aware of
the situation in its environment. More detailed descriptions on
Rity are presented in [14].

Internal states of Rity were defined based on those of a real
dog such as motivation, homeostasis, and emotion. Parameter
values from (3)–(5) were set as follows: l = 40, m = 11, n =
3, and k = 3. The learning rate λ in (6) was set as 0.1. Note that
three contexts on when, where, and what were considered in the
experiments. The assumed facts for the will-based confabulation
were classified in Table I.



838 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 38, NO. 6, NOVEMBER 2008

TABLE II
ASSUMED FACTS OF CONTEXT-BASED CONFABULATION

Each element of motivation, homeostasis, and emotion has
three states of high, mid, and low. Similarly, the assumed
facts for the context-based confabulation were considered as
in Table II.

In each experiment, all probabilities were initialized by an ex-
pert such as a developer or a user. Then, reinforcement learning
was conducted by an interaction between the user and Rity. As
user hits (mouse double click) or pats (mouse click) Rity, he/she
can give either a reward or a penalty for reinforcement learning.
In other words, the behavior probability gets either increased or
decreased based on the user’s stimulus. Rity is rewarded (pun-
ished) if the selected behavior is appropriate (inappropriate) to
the given context. Since Rity has a virtual vision sensor that
detects an object in the virtual environment, Rity can be aware
of the kinds of detected objects and its place as contexts.

B. Experimental Results

The goal of the experiment is to create an artificial creature,
which behaves as per its will, considering the context in a given
situation. Context awareness enables it to carry out a proper
decision in its environment. In order to evaluate the performance
of the proposed architecture, the following four experiments
were carried out.

1) Scenario of Reinforcement Learning: Eating behavior
would never be carried out around a toilet. If Rity ate food
at a location near the toilet, it was punished. Will was focused
on energy (hunger) and context was focused on toilet and food in
this scenario. The behaviors related to excreting were expected
at the toilet. In Fig. 4, a probability value of p(toilet | eating)
is plotted as the penalty is applied. When many reward/penalty
signals were given as input in a short period of time, reinforce-
ment learning could be attained. Otherwise, learning might not
be achieved. The penalty value reduced as the learning count
increased by (6). The learning process of this behavior was car-
ried out for 4 min. The graph shows that it has a decreasing
tendency according to the user’s penalty. Since the user forbade
eating behavior around the toilet, the probability of eating near
the toilet became lower.

Every result of behavior frequency in Figs. 5–8 was observed
for 15 min. Fig. 5 shows behavior frequency before and af-
ter reinforcement learning in the given context. In each situ-
ation, the frequency of the behaviors sum up to 100%. Only
eating, excreting, and urinating behaviors are plotted in the
graph, and the rest ones are classified as other behaviors. Before

Fig. 4. Probability change when reinforcement learning was applied.

Fig. 5. Behavior frequency before and after reinforcement learning.

learning, Rity often ate food with the toilet in its vicinity. How-
ever, the frequency of eating behavior around the toilet was
reduced after reinforcement learning. Thus, the user can teach
Rity proper behaviors at a certain situation by reinforcement
learning.

From the next experiment onward, behavior frequency after
learning will be described in the subsequent graphs, according
to the proposed two-layered confabulation.

2) Scenario for the Case of Strong Will: The scenario was
that Rity was absolutely sleepy (will), and since the will was
stronger than the context (bed), it would ignore the context
and sleep at anywhere. It means that the behavior, which
is not related to the context, would be selected if Rity has
a strong will. In this experiment, will was focused on fa-
tigue (sleepy) and context was focused on bed. The context
changed between bed and other places as Rity moved around.
The behaviors related to sleeping were expected to be acti-
vated. Fig. 6 shows that the sleeping behavior was generated
at any location when Rity was absolutely sleepy. When it was
only a bit sleepy, sleeping behavior was revealed mostly on
the bed.

3) Two Scenarios for the Case of Strong Contexts: First sce-
nario was that the influence of context (bed) was stronger than
that of will (somewhat sleepy). In this case, it was expected that
the behavior related to the given context (bed) would be chosen,
though it was not much sleepy. Will and context were equally
focused as in the experiment of the previous scenario. But the
changed situation was that Rity was not so sleepy. In this case,
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Fig. 6. Behavior frequency for scenario when Rity was absolutely sleepy and
the context was a bed.

Fig. 7. Behavior frequency for scenario when Rity was not so sleepy and the
context was a bed.

Rity would make a decision according to the dominance of will
and context. In Fig. 7, the graph plots the frequency of the sleep-
ing behaviors when the context was bed and the other places,
respectively. The graph shows that the sleeping and napping be-
haviors were expressed by the effect of a bed in the vicinity even
though Rity was not so sleepy. In other words, the frequency
of the sleeping and napping behaviors was increased only if the
context was the bed. This result came from the dominant context
such as the bed.

Second scenario was that the influence of a context (toy) was
stronger than that of will (desired to play). In this case, it was
expected that the behavior related to the given context (toy)
would be chosen, though it did not have much desire to play
with anything. Thus, if a toy was in its vicinity, Rity would
play with the toy. If no toy was in the surroundings, it would
behave on its own. Fig. 8 shows the frequency of the playing
behaviors. When Rity detected a toy in its neighborhood, it
played mostly with the toy, pushing and kicking. If no toy was
in the surroundings, it played alone, for example, digging the
ground. This result shows that Rity considered the context and
behaved in an adequate way while meeting its internal needs.

A video clip of experiments on the proposed architec-
ture is available at http://rit.kaist.ac.kr/home/Two_Layered_
Confabulation_Architecture.

Fig. 8. Behavior frequency for scenario when Rity somehow desired to play
and the context was a toy.

V. CONCLUSION

This paper proposed a novel two-layered confabulation ar-
chitecture, which considers both internal state and context for
the artificial creature’s behavior selection. In the will-based con-
fabulation, behaviors are selected considering the internal states
such as motivation, homeostasis, and emotions. The selected
behaviors are forwarded to the context-based confabulation to
consider the contexts on “when,” “where,” and “what.” The
arbiter finally decides the most fitting behavior among the sug-
gested behaviors from the two confabulation layers. A learning
mechanism, which modifies the confabulation probabilities in a
memory module using the user’s reward and penalty inputs, was
presented in order to train the artificial creature’s behaviors like
real pet training. The experimental results showed that the arti-
ficial creature could select the most adequate behavior to meet
the context and reflecting its internal desires at the moment.
By employing the proposed architecture, a virtual pet that has
a function of emotional interaction is enough to be used as an
entertainment robot. Moreover, an artificial creature can be used
as an intermediate interface for interactions between a human
and a service robot.
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