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Abstract- In this paper, a new two mode Q-learning us- 
ing both the success and failure experiences of an agent 
is proposed for the fast convergence, which extends Q- 
learning, a well-known scheme used for reinforcement 
learning. In the Q-learning, if the agent enters into the 
"fail" state, it receives a punishment from environment. 
By this punishment, the Q value of the action which 
generated the failure experience is decreased. On the 
other hand, the proposed two mode Q-learning is based 
on both the normal and failure Q values for the selec- 
tion of the action in a state-action space. To determine 
the failure Q value using the previous failure experience 
of the agent, it employs a failure Q value module. To 
demonstrate the effectiveness of the proposed method, it 
is compared with the conventional Q-learning in a goalie 
system to perform goalkeeping in robot soccer. 

1 Introduction 

Reinforcement learning is learning what to do so as to find 
out optimal action in each situation. In the reinforcement 
learning scheme. there is an interaction between the agent 
and the environment [ I ,  21. The agent learns to select the 
optimal action that yields the maximum reward [3, 41. For 
tinding out the optimal action, the agent has to go through 
numerous trials and errors during the learning stage. 

Q-learning is a well-known scheme in reinforcement 
learning 151. It is easy to implement and is not affected by 
the learning policy for Q value convergence [6,7]. Hence, it 
has been used in many application areas 18.9, IO .  I I]. After 
the Q value converges to the optimal value, the agent selects 
only the action with the maximum Q value in a given state. 
For the convergence of the Q value to the optimal value, 
the state-action pairs should he visited by the agent many 
times [ I Z ,  I.?]. To improve the speed of the Q-learning, 
several modifications based on the conventional Q-learning 
have been presented [14_ 15. 161. 

In the Q-learning a failure experience of the agent is a 
situation when the agent enters into the "fail" state. In that 
case, the environment has the fail state in its state-action 
space. When the agent reaches the fail state. i t  receives a 
punishment. i.e. one negative reward from the environment. 
By receiving the negative reward, the Q value of the action 
reaching the fail state is decreased. Generally; the negative 
reward is given to the agent due to its failure experience in 
the Q-learning. 

In this paper, a new two mode Q-learning is proposed for 
improving the performance of the Q-learning using the fail- 

ure experience of the agent more effectively along with the 
success experience. It consists of an action selection mod- 
ule. a normal Q value module and a failure Q value module. 
The action selection module and the normal Q value mod- 
ule are the same as those of the conventional Q-learning. 
In the failure Q value module, the failure Q value is calcu- 
lated based on the failure probability which is determined 
by considering the failure experience of the agent. By us- 
ing hoth normal and failure Q values, the action is selected 
in a state-action space. The effectiveness of the proposed 
two mode Q-learning is compared to that of the conven- 
tional Q-learning in the nondeterministic environment. As 
a nondeterministic environment, a soccer rohot system is 
used to evaluate its performance against the conventional 
Q-learning in training a goalie robot. 

Section I1 proposes a new two mode Q-learning. In sec- 
tion 111, the simulation results showing the comparison he- 
tween the performances ofthe Q-learning and the two mode 
Q-learning are presented. Concluding remarks follow in 
section IV. 

2 Two mode Q-learning 

In Q-learning, an agent learns through its experience in the 
environment. The agent that has faced many failure expe- 
riences acquires some useful knowledpc to be learned from 
it. Due to the useful knowledge from the failure experience. 
the agent will have more possibility of not going into the 
fail state and have more chances of entering into the suc- 
cess state in the next trial. When the environment has sev- 
eral fail states. the agent may reach one of these fail states. 
In this situation, the agent receives punishment from the en- 
vironment and restarts from the initial state for reaching the 
success state. The failure experience of the agent is simply 
reflected into the Q-value of the action hy the punishment. 

In this paper, the performance of the proposed Q- 
learning called two mode Q-learning, is improved by using 
failure experiences of the agent more efficiently along with 
the success experiences. To utilize the failure experience. 
a new failure Q value module is proposed. Both of the Q 
value from the conventional Q-learning and the failure Q 
value from the failure Q value module are used for action 
selection in the proposed scheme. The failure Q value is 
calculated in the failure Q value module based on the failure 
probability, which is obtained from the failure experience. 

The terminologies for the two mode Q-learning are as 
follows: 

State-action trace: The state. s j  of the agent is 
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changed by selecting one action, a, among the several 
possible actions in the current state. As a result of the 
action in the current state, the agent will he located 
in the next state. The sequence of these state-action 
pairs is called state-action trace. 
Step: A unit distinguishing the current state-action 
from the next state-action. 
Trial: There are two types of trial for arriving at the 
final state, as follows: 

I .  Success trial: It occurs when the agent starts 
from an initial state and arrives at the success 
state. 

2. Failure trial: It occurs when the agent leaves the 
initial state but can not reach the success state. 

2.1 Architecture of the two mode Q-learning 

The new algorithm uses both of the normal Q value and the 
failure Q value so that it  is called the two mode Q-learning. 
In the two mode Q-learning, two kinds of Q value are con- 
sidered as follows: 

Normal Q value, QN:  Q value from the conventional 
Q-learning consisting of the action selection module 
and normal Q value module 
Failure Q value, Q E :  Q value from the failure Q value 
module based on the failure experience 

The architecture of the two mode Q-learning consists of 
the action selection module. the normal Q value module and 
the failure Q value module as shown in Figure I .  

Figure 1: Architecture of the proposed two mode Q- 
learning 

Roles of these modules are as follows: 
Failure Q value module: Calculates the failure Q 
value using the failure probability. The failure proha- 
hility depends on the step length of the state-action 
trace of the failure experience, which will he de- 
scribed in detail in section 2.1.2. 

Normal Q value module: Calculates the normal Q 
value 
Action selection module: Selects an action based on 
the Q value, summation of Q,N and QE 

Note that both the action selection module and the nor- 
mal Q value module construct the conventional Q-learning. 

The normal Q value is updated as follows: 

Q(s , .a t )  - Q(st: a t )+u(r ,+l+y~?xQ(st+l .  a')-Q(st, a t ) )  

(1) 
where Q is the action value, (Y is the learning rate, r is the 
reward value and y is the discount rate. 

2.1.1 Action selection 

For the action selection in  the Q-learning, the following 
Boltzmann action selection [ I71 is generally used for cal- 
culating the probability of action ai being selected in  state 
S f :  

where A is an action set in the next state, T is the tempera- 
ture, which starts at high temperature at the initial stage of 
the learning and decreases to restrict the characteristic of ex- 
ploration to a smaller zone as the number of trials increases. 

In the two mode Q-learning, the action selection depends 
on the total value of the normal Q value (QN,,) and the fail- 
ure Q value (QE, , ) .  Thus, the following Boltzmann equa- 
tion is employed: 

QT;, = Qs,, + Q E , ,  

where QN;, is the Q value of action i in  state j obtained by 
the conventional Q-learning, Q E ; ~  is the Q value of action 
i in  state j ohtained from the failure Q value module, and 
QT,; is the total value of these two Q values. QT, ,  decreases 
if the value of Q E , ,  decreases, and hence the probability of 
action a, being selected in  state s3 is lowered. 

2.1.2 Failure Q value Module 

To use the failure experience more effectively in the learn- 
ing process, a failure Q value module is introduced. The 
failure Q value module is to calculate the failure Q value 
by applying the failure probability to the action in the state- 
action trace of the previous failure trial. 

The failure Q value of action ai in a given state sI is 
calculated by taking the numerator form of the Boltzmann 
equation, eQ*:;jl7 = 1 - p F T j :  

Q E ~ ,  = T 171(1 - P F , . , ) ;  (4) 

where T is the temperature value used in (3) .  i is the index 
of the action, and j is the index of the state. And p ~ , ~  is a 
failure probability of the actions included in the failure trial, 
which is obtained from the following equation: 

(5) A' N 
P F , ,  = ~ ( p ~ ~ ~ , , ~ P m ~ = ~ , ( ~ ) ~ ~ ( c ) ) ~  

where N is the index of the failure trial (the state-action 
trace that led the agent to the fail state), i and j are the index 
of the action and state, respectively, included in the failure 

are minimum and maximum trial N. p:inj,+ and pmaZ,; (k )  N 
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probability values. respectively to he assigned by ,the user 
(see equation (7)), and k is the trial number. [ ( e )  is the step 
length of the state-action trace counted from the fail state. 
Failure prohehilities are to he calculated for the actions in- 
cluded in the step length [ (e ) .  where c is the constant value. 
According to the environment, the number of steps that led 
the agent to the fail state are varied. It means that the step 
length l (c )  of state-action trace depends on the environment. 
Hence, l (c )  can he selected as follows: 

c (1 + raiidom(0.1)) if in > 2c 

iniu(c - 1: i n  - 1) 
l ( c ) =  c + l  e l s e i f m > c + l  

otherwise 
( 6 )  

where raiidoiii(0.1) is a random number generation func- 
tion between 0 and I .  and m is the number of steps of the 
state-action tract: leading to the fail state. 

Figure 2 depicts an example of the state-action traces 
leading the agent to the success state ((n-2)th and (n+ 1)th 
trials) and the fail state ( ( 1 1  - 3)th, ( n  - 1)th. and iuh trials) 
and the step lengths of the state-action traces of the failure 
trials that help to calculate the failure probability. 

{ 

Failure trials , Success trials , 
I n,  r-1 I 

1,1~21 ~h l r i r i  ( n i l I t h l r I a l  

Figure 21 State-action traces of failure and success trials 

In the figure. a,,, a,? and a p  are assigned sequentially 
to the actions that take place just before the fail states of the 
(n - 3)th. (12 - 11th. and nth trial, respectively. This figure 
shows the cases of ( ( e )  = 4, l(c) = 2,  and l (c )  = 3 in the 
( n  - 31th. (11 - 11th. and iith trial, respectively. The failure 
probability applied to the actions is calculated as follows: 

PF,, = f ( P 2 i n ,  ; Z P : ~ ~ , ,  (k): l ( C ) )  

m - / ( c )  5 2 5 m 
(7) 

where i and j are the index of the action and state, respec- 
tively, included in the step length l (c) .  and 71% is the number 
of steps of the state-action trace leading the agent to the fail 
state. Since PE==, ,  = 1 can not he defined in (4). we intro- 
duce a new notation 1- as a value just  less than and close 
to I. It should he noted that if the failure probability of the 
action aJl is 1-, the action almost surely leads the agent to 
the fail state. 

In the'nondeterministic environment. the samc action, 
which led the agent to the fail state in the previous trial, 

may not lead the agent to the fail state again. Setting the 
value of )IF, ,  to 1- is a possible way to inhibit the corre- 
sponding action from the progress of the Q-learning in the 
nondeterministic environment. Thus, the failure probability 
of the selected action just before the fail state should be de- 
creased as the trial goes on. For this purpose, the following 
decreasing scheme for p g a z , ,  ( k )  is proposed: 

(8) 

where 11 is a constant between 0 and I .  k is the current trial 
numher. and I;f is the failure trial number. In this paper, 
&,,, is fixed as a constant value irrespective of N. 

Figure 3 shows pc,,,, ( k )  of (8) with respect to the trial 
k for the example depicted in Figure 2 ,  where three failure 
trials exist. As the number of trials increases, the maximum 
failure probability pZar, ,  ( I ; )  of the action (art; i = l1 2.3) 
just before the fail state. decreases according to (8). How- 
ever. if the same action that led the agent to the fail state is 
selected again, its maximum failure probability is set to 1- 
(see the 01 + 2)th trial in Figure 3 (a)) and then i t  decreases 
again as the trial goes on. 

?J ( I ; )  = p, 
Pmaz,., 

Figure 3: Maximum failure probability distribution for ac- 
tionsaJl.aJn a n d a f s  

When the agent reaches the fail state by the action afl in 
the (71  - 3)th trial, the maximum failure probability of the 
action af1 is set to 1- (Figure 3 (a)). As the trial goes on. 
pLaz, ,  decreases by the factor of '11. If in (71 - 1)th trial the 
agent arrives at the fail state by the action a,*, then P $ ~ ~ , ,  
becomes 1- (Figure 3 (b)). In Figure 3 (c), when the agent 
enters into the fail state by aJ3 in the nth trial, phaz,, be- 
comes l-. At that moment the maximum failure probability 
of actions O J ~  and a f ,  becomes 11 and q3, respectively. As 
the trial is proceeded, the p;,,,, value decreases. If the 
agent reaches the fail state in  the (n + 2)th trial by a f l .  
pLar, ,  hecomes 1- again (Figure 3 (a)). 

When the agent reaches the fail state. the failure proba- 
bilities of the actions included in the step length l(c) of the 
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procedure the two mode Q-learning 
begin 

initialize QN, , .  QE,, and QT,, 
k + 0  
while ( k  < MAX-TRIAL) do 
begin 

k - k + l  
start from an initial state 
while (current state is not success state or fail state) do 
begin 

CalculateQT,, ( = & N , ~  + Q E , , )  
select an action by QT,; 
observe reward and next state 
update QN,, 
if (next state is fail state) then 

clear a11 p p , ,  except pC,,,,, ( k )  
calculate step length for p p , ,  
apply new p ~ , ,  to the actions within the step 
length 
calculate PK,.?,, ( k )  

else 
goto next state 
current State + next state 
if (current state is success state) then 

clear all PF,,  except p c a z ; ,  ( k )  
end 

end 
end 

Figure 4: Procedure the two mode Q-learning 

state-action trace are cleared and assigned a new value cal- 
culated by (7). When the agent reaches the success state, all 
the failure probabilities of the state-action pairs are cleared 
to 0 except the p:&*,, ( k )  value of a,?. 

Figure 4 summarizes the algorithm of the proposed two 
mode Q-learning. 

In Q-learning, the agent learns the method of finding the 
optimal action in the state-action space. For finding the op- 
timal action in  a given state, the agent needs a lot of ex- 
periences in exploring the state-action space. In two mode 
Q-learning. the agent may have less failure experience as 
the trial goes on, compared to the past trials because the 
agent makes use of the previous failure experiences in  the 
current trial. As a result of using the past failure experi- 
ences, the agent has more chance of not only having the 
failure experience but having more chances of traversing in 
the meaningful state-aclion space. 

3 Simulation result 

To investigate the performance of the two mode Q-learning 
in the nondeterministic environment, a rohot soccer system 
was selected as a test bed. Figure 5 shows the playground 
and the soccer robot of the NaroSot category in the FIRA 
games. The goalkeeping ahility of the goalie is used for 
comparing the performance between the conventional Q- 

I /  

Figure 5 :  Goalie of the NaroSot 

learning and the two mode Q-learning. To apply them to 
the goalie rohot. 324 (2 x 9 x 2 x 9) states and 7 actions per 
state were defined in the following (see Figure 6): 

States 
i ) Flag of the goal in or not to the opponent goal 

post (2  states) 
ii ) Distance in terms of the y-coordinate between 
the robot and the ball (9 states) 
iii ) Sign of the distance in the y-coordinate between 
the robot and the ball ( 2  states) 
iv ) x-coordinate of the ball position (9 states) 

Actions: Defined as the velocities of the robot, 
1 2 0  cni/s, f10 cmjs ,  fl cmjs ,  0 cnijs (7 ac- 
tions) 

Reward 
i ) Reward I :  In case of blocking the hall, 1’ = 100 

ii ) Reward 2: In case of not blocking the hall, 1’ = 
-100 

It should he noted that to block the hall, the goalie selects 
one of the 7 velocities as its action. 

Figure 6: States for the goalie robot 

The following kinematics of the two wheeled mobile 
robot was used for the goalie robot: 
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where zc and y, are the x and y coordinate values of the 
robot center, 6, is the heading angle of the robot, v is the 
translational velocity of the rohot center, and w is the ro- 
tational velocity with respect to the robot center. The fol- 
lowing control law was used for the velocity control of the 
goalie: 

dx = Go - zc, dy = U 

Controller 
Communication speed 
Weizht 

Figure 8: NaroSot robot 

ATmega I63(ATmel) 
19200 hps 
130 

vr = c + k,0, f k d B e  

'U, = c - k,0, - k d d e  

where Go is the offset (see Figure 5), which is given as the 
positive constant value, zc is the x-coordinate value of the 
rohot center, U is the translational velocity of the robot cen- 
ter. 0, is the angle error, U, and 'U, are the right and left wheel 
velocities of the robot, respectively, and 0, is the time dif- 
ferential value of 0,. 

Considering the frictional force between the hall and the 
playground. the velocity of the hall was modelled as fol- 
lows: 

Ub - c b ,  *- if 2)b 2 20.0 Cm/S f 
Vb - Cb2 - else if ub 2 8.0 cm/s (I I) { f  Ub - c b ,  otherwise 

7Jb = 

where c b , ,  c b z  and c b ,  are constant values, k is the trial 
numher of the simulation, and D is the positive constant 
value. The velocity of the ball, ub is hounded by umin 5 
cb 5 ' c , ~ ~ ~ .  and the angle of the hall, 6b is restricted to 

In the simulation. Go=& urnin = 40nn/s, umaZ = 

c b 2  = 0.0006, c b ,  = 0.0003, and D = 1 were used. Also, 
learning rate, a = 0.1, discount rate, y = 0.9, the mini- 
mum failure probability, p$,,,  = 0.1, the parameter of the 
maximum failure probability, 7 = 0.9, 1- = 0.99. and the 
constant value of step length, c = 4 were used. 

0mm 5 o b  5 @mar. 

70Oll/S, omin = 165'. 6m"r = 195', c b ,  = 0.0012, 

d 2 ~~~1~ lXC l  '! . ~ 

... 
3 IN, 

g (1" ',$ I I z I ?<I - '., 
!\ 

,a,- s,. 

xi, - '-....,, 
I 
1 

"\ MI - 

IO> X X I  l M  mi 5,XI **I 7 0 ,  XI, 
Trial number 

Figure 7: Result of goalkeeping ability of the goalie in the 
simulation 

Fipure 7 shows simulation results, where every points 
represent the average number of the failures of blocking the 

ball for 20 iterations ( I  iteration = 800 trials). In this fig- 
ure. Q and TMQ denote the conventional Q-learning and 
the two mode Q-learning, respectively. During the progress 
of the learning. goalie tests of blocking the hall were exe- 
cuted 1000 times at the end of every I 0 0  trials. The number 
of the failures of blocking the hall was compared between 
the conventional Q-learning and the two mode Q-learning. 

As the trial goes on. the numher of failures of the goalie 
trained hy the two mode Q-learning is less than that of 
the goalie hy the conventional Q-learning. It means that 
the performance of the goalie trained by the two mode Q- 
learning is better than that of the goalie by the conventional 
Q-learning. 

The result of the sirnulation of two mode Q-learning was 
implemented to the real soccer system. Figure 8 shows the 
NaroSot rohot. The specification of the NaroSot robot is 
shown in table I .  

I Size I /  k i 7 1  X h J I  X 5.5011 I 

,, -., 
Maximum velocity 11 120cm/s 
Acceleration I/ 300cnl/.s2 

Tahle I : Specification of the NaroSot robot 

Table 2 shows the specification of the vision system used 
in the real experiment. 

Tahle 2: Specification of the vision system 

The Q values obtained by the simulation result of the two 
mode Q-learning were implemented to the NaroSot system. 
For implementing the Q values to the NaroSot system. the 
information of the robot and the hall was divided into the 
state as shown in figure 6 and the robot selected the action 
which had the maximum Q value in the state. At that mo- 
ment, the position of the robot and the hall were shown in 
Figure 9. 
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“ 1 ,  

Figure 9: Experiment result of implementing the Q value 
obtained by the two mode Q-learning simulation to the 
NaroSot system 

4 Summary and conclusion 

This paper proposed a new two mode Q-learning hy intro- 
ducing a failure Q-value module into the conventional Q- 
learning. The failure Q value module applies the failure 
probability to the actions within a specific step length of the 
failure state-action trace, to calculate their failure Q value. 
Based on both normal Q value and failure Q value, an ac- 
tion is selected in the two mode Q-learning. As a result of 
using the past failure experience, the agent has more possi- 
bility of not having the failure experience again and will use 
the experience to explore in some meaningful fashion the 
state-action space. To investigate the effectiveness of the 
proposed two mode Q-learning in training a soccer agent to 
perform goalkeeping. 
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