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Evolutionary Generative Process for an Artificial
Creature’s Personality
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Abstract—In this paper, an artificial creature is designed to
have its own genome in which a specific personality is encoded.
The genome is composed of 14 chromosomes each of which con-
sists of three kinds of genes such as fundamental genes, internal-
state-related genes, and behavior-related genes. To represent var-
ious types of personality, a large number of genes are needed. In
this case, if gene values are assigned manually for the individual
genome, it becomes increasingly difficult and time-consuming to
generate a desired personality reliably and consistently. Consider-
ing this problem, this paper proposes an evolutionary process that
generates a genome encoding a specific personality of an artificial
creature. The process evolves a population of genomes such that
it customizes the genome, which meets a simplified set of person-
ality traits desired by the user. The evaluation procedure for each
genome of the population is carried out in a virtual environment us-
ing a tailored perception scenario and a dedicated fitness function.
An artificial creature, Rity, is developed in the virtual 3-D world
created in a PC to demonstrate the effectiveness of the proposed
process.

Index Terms—Artificial chromosome, artificial creature, ar-
tificial creature’s personality, artificial genome, evolutionary
algorithm.

I. INTRODUCTION

MUCH research in artificial life has been carried out to
create artificial creatures, either simulated creatures or

creature-like robots, with the aim of providing humans with en-
tertaining interactions in real time. The creature-like robots have
been developed as pet-type or humanoid robots [1]–[3]. Based
on the design concept of sociable agents focusing on interact-
ing with people [4], a robotic head [5] and a service robot with
affective social intelligence [6] were developed. These robots
are limited by their hardware in their realization in real world.
On the other hand, the simulated creatures do not have such
a limitation as they are created in the virtual 3-D world in a
computer. The simulated ones include interactive creatures [7],
autonomous agents [8], virtual creatures [9], synthetic charac-
ters [10], software robots (Sobots) [11], and 3-D avatars [12],
etc. They have been developed by using numerous approaches
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such as the behavioral action selection system [7], motivation-
driven learning [13], the use of emotion or internal states to
construct believable agents [14]–[16], and emotion defined in
3-D mental space [17].

These software agents have great potential for use in the en-
tertainment industry. With a simplified model and evolutionary
mechanism, they have been used as game characters in video
gaming [18]–[26]. This application requires the software agents
to be as simple as possible such that they can activate a proper
behavior pattern during interaction with a user in real time.
The software agents can be also used in the robot industry. A
Sobot is one of the key components in building a ubiquitous
robot, which incorporates Sobot, embedded robot, and mobile
robot [27]–[29]. Sobot can move easily within the network and
connect to other systems without time or geographical limita-
tions. It has all the elements of being a robot, including self-
adaptation, context-awareness intelligence, and seamless inter-
action, but only virtually. Thus, it can be used as a brain of a
mobile robot and a continuous interface between physical world
and the virtual world for greater convenience and flexibility in
user interactions.

Considering the user interactions, the personality of the agents
needs to be taken into consideration, as the personality is cru-
cial in building a believable emotional agent. Having a diverse
personality is important because, “Personality is the engine of
behavior” [30]. It can be encoded as an inherited trait, which
decides the behavior based on an internal state in response to
the stimulus. It is characterized by the Big Five personality
dimensions [31], [32]. This allows for the creation of diverse
personalities for the agent, e.g., allowing it to express highly
agreeable and at the other end of the scale, highly antagonistic
characteristics. In spite of the importance of innate personality
in deciding the behavior, the concretization of diverse person-
ality has not been investigated to any great extent in previous
research ventures, compared to that of artificial intelligence that
is accumulated through experience and knowledge as posterior
information during its lifetime by means of learning or interac-
tion with human.

This paper presents computer-coded genomes as genetic rep-
resentation of an agent to encode a specific personality. The
genome is composed of multiple artificial chromosomes each
of which consists of many genes that contribute to the repre-
sentation of various types of personality. It provides primary
advantages for the process of artificial reproduction, the ability
to evolve, and the reusability among agents [34], [35]. However,
the large number of genes allows for a highly complex system. If
gene values are assigned manually for the individual genome, it
becomes increasingly difficult and time-consuming to generate
a desired personality reliably and consistently.

1094-6977/$25.00 © 2009 IEEE
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To overcome this problem, an evolutionary generative pro-
cess for an artificial creature’s personality (EGPP) is proposed.
EGPP is a software system to generate a genome as its output for
a specific personality, which is characterized by the manner of
responses such as internal state changes and their concomitant
behaviors to stimuli. It includes implementations of the artifi-
cial creature and its genetic representation, virtual environment,
perception scenario, and evolutionary algorithm. Initialization
of the genome population is performed by setting some pa-
rameters in the GUI. Evaluation procedure for each individual
genome is carried out by implanting it into an agent and apply-
ing a series of stimuli to the agent and then measuring its fitness.
The fitness is defined as a function of the difference between
user-assigned preference values through GUI and the agent’s
responses to the stimuli, measured by the possession ratio of
internal state and the frequency of behavior group. An artificial
creature, Rity, is developed in the virtual 3-D world created in a
PC to demonstrate the effectiveness of the proposed process.

This paper is organized as follows. Section II introduces an ar-
tificial creature, Rity, an internal control architecture, a genome,
and a personality model. The genome is composed of a set of
chromosomes consisting of the fundamental genes, the internal-
state-related genes, and the behavior-related genes. Section III
presents the proposed EGPP along with an evolutionary algo-
rithm, a perception scenario, a fitness function, and a mutation
operator. Experiments are carried out to demonstrate the per-
formance and effectiveness of EGPP in Section IV. Concluding
remarks follow in Section V.

II. ARTIFICIAL CREATURE

This section presents an internal control architecture, genetic
representation, and personality model of an artificial creature,
Rity, which resides in a 3-D virtual world created in a PC. The
internal control architecture processes incoming sensor infor-
mation and then eventually generates a proper behavior. The
connection weights in between perception and internal state
modules, and in between internal state and behavior modules
are encoded in the genome, composed of a set of chromosomes,
to represent the personality trait, which can be the inherited
one [15], [16].

A. Internal Control Architecture

An artificial creature can be created as an agent that behaves
autonomously, driven by its internal states, such as motivation,
homeostasis, and emotion, responds to incoming sensor infor-
mation, and interacts with humans or its environment in real
time. This can be done by internal control architecture, which in
this paper, is composed of seven core modules such as sensor,
perception, attention, internal state, behavior selection, reflexive
behavior, and motor modules, by imitating real creatures. Fig. 1
illustrates both the internal control architecture and a screenshot
showing an artificial creature, Rity, in a virtual 3-D environment.
Rity is a 3-D virtual pet with 12 DOF, which is developed in
Visual C++ 6.0 and OpenGL, and works well on Pentium III
machines or above.

Fig. 1. Artificial creature, Rity. (a) Internal control architecture. (b) Screenshot
of Rity in a 3-D virtual world.

Each module in the internal architecture is briefly described
in the following. The sensor module consists of various virtual
or real sensors such as touch, infrared, ultrasonic, vision, gyro
sensors, etc., to sense the virtual or physical environment. The
sensed data are forwarded to the perception module where they
are classified as percepts (stimuli). At the same time, the atten-
tion module is triggered to select one attentional stimulus from
the incoming stimuli. It should keep the attention of the stimu-
lus until another bigger stimulus is received such that it prevents
Rity from cycling through different stimuli and performing im-
proper behaviors. Attention selection among stimuli is decided
from

a = Max[pri(s1), pri(s2), . . . , pri(sy )]

where a is the attentional stimulus, pri(·) is the prespecified pri-
ority for a given stimulus, ST = [s1 , s2 , . . . , sy ] is the stimulus
vector, and y is the total number of stimuli.

Rity can find objects, avatars’ faces, or users’ faces using
virtual or real sensors such that it can interact with objects
and avatars in a virtual environment or humans in the physical
world using information through a mouse, a camera, or a mi-
crophone, with 47 perceptions. For example, single click and
double click on Rity are perceived as “patted” and “hit,” respec-
tively, by Rity. Dragging Rity slowly and softly is perceived as
“soothed,” and dragging it quickly and wildly as “shocked.” As
Table I shows, these perceptions are classified in seven percep-
tion groups A = {Apo,Aob , Abt , Aph , Aso , Aof , Aba}, where
Apo is the perception group related to posture, Aob obstacle,
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TABLE I
LIST OF PERCEPTIONS AND THEIR GROUPS

Abt brightness/temperature, Aph pat/hit, Aso sound, Aof ob-
ject/face, and Aba battery.

The internal state module consists of three units to deal with
agent’s internal states such as motivation, homeostasis, and emo-
tion. The motivation unit represents an agent’s desire to do
something, which influences behavior selection. Homeostasis
unit deals with an agent’s hormone state. It also gives an effect
to the agent on deciding a behavior. The emotion unit is to ex-
press an agent’s behavior properly, representing an excited state
of its mind [36]. The internal state module receives a stimulus
information from a perception module, calculates each value of
internal states as its response, and sends the calculated values
to the behavior selection module to select a proper behavior.
Motivation states are represented by the following vector:

M(t) = [m1(t),m2(t), . . . , mp(t)]T (1)

where p is the number of motivation states. Each motivation
state is updated by

mk (t + 1) = mk (t) + {λk (mk − mk (t)) + ST · · ·WM
k (t)}

k = 1, 2, . . . , p (2)

where S is the stimulus vector, WM
k is the weight matrix con-

necting S to the kth motivation state, mk is the constant to which
the motivation state converges without any stimuli, and λk is the
discount factor between 0 and 1. Similarly, the following update
equations are defined for the homeostasis unit using its state
vector H(t) and weight matrix WH

k , and also the emotion unit
using its state vector E(t) and weight matrix WE

k , respectively

hk (t + 1) = hk (t) + {λk (hk − hk (t)) + ST · · ·WH
k (t)}

k = p + 1, . . . , p + q (3)

ek (t + 1) = ek (t) + {λk (ek − ek (t)) + ST · · ·WE
k (t)}

k = p + q + 1, . . . , p + q + r (4)

where H(t) = [hp+1(t), hp+2(t), . . . , hp+q (t)]T and E(t) =
[ep+q+1(t), ep+q+2(t), . . . , ep+q+r (t)]T .

The number of internal states generally depends on an agent’s
internal architecture. In Rity, the motivation unit is composed
of six states (p = 6): curiosity, intimacy, monotony, avoidance,
greed, and the desire to control. The homeostasis unit includes
three states (q = 3): fatigue, hunger, and drowsiness. Five states

TABLE II
LIST OF INTERNAL-STATE-RELATED BEHAVIOR GROUPS

(r = 5) such as happiness, sadness, anger, fear, and neutral are
employed for emotion unit.

The behavior selection module is used to choose a proper
behavior based on an agent’s internal state. According to the
internal state, various reasonable behaviors can be selected
probabilistically by introducing a voting mechanism, where
each behavior has its own voting value [2], [38]. Table II
shows a set of behavior groups BT

c = [β1 , β2 , . . . , βc ], where
c = p + q + r = 14 in this paper. It is classified on the basis
of how much each behavior group is closely related to internal
state. Each group has various correlated behaviors, which has
the advantage of good consistency with the corresponding in-
ternal state. The procedure of behavior selection is described in
the following.

1) Determine the temporary voting vector, Vtemp using M
and H. The temporary voting vector is defined as follows:

VT
temp =

(
MT DM + HT DH

)
= [vt1 , vt2 , . . . , vtz ] (5)

where a superscript T represents a transpose of a vector, z
represents the number of behaviors provided for Rity, and vti ,
i = 1, . . . , z, is the temporary voting value. As there are six
motivation states and three homeostasis states for Rity, 6 × z
matrix DM and 3 × z matrix DH are the behavioral weight
matrices connecting motivation and homeostasis to behaviors,
respectively.

2) Calculate voting vector V by applying attention and emo-
tion masks to Vtemp . Two masking matrices for attention and
emotion prevent the agent from doing unreasonable behaviors.
Behaviors, related to the current attention, are allowed for the
candidates for selection, by suppressing the rest using an at-
tention mask [15], [16]. An attention masking matrix QA (a) is
obtained by the attentional percept a, which has its own masking
value. The matrix is defined as a diagonal matrix with diago-
nal entries qA

1 (a), . . . , qA
z (a), where qA

i (·), i = 1, . . . , z, is the
masking value, which can be either 0 or 1. Similarly, an emo-
tion masking matrix QE (e), where e is the dominant emotion,
is defined. From these two masking matrices and the temporary
voting vector, the behavior selector obtains the following final
voting vector:

VT = VT
tempQ

A (a)QE (e) = [v1 , v2 , . . . , vz ] (6)

where vi , i = 1, 2, . . . , z, is the ith behavior’s voting value.
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3) Calculate the behavior selection probability p(bk ) of be-
havior bk , k = 1, 2, . . . , z, which is calculated from the voting
values as follows:

p(bk ) =
vk

z∑
i=1

(vi)
.

4) Select a behavior among various behaviors by the previous
selection probability.

The probability proportional selection mechanism generates
a reasonable and natural behavior. However, even if a behav-
ior is selected by considering the internal state, there still exist
some limits in providing the agent with natural behaviors. The
reflexive behavior module, which imitates an animal’s instinct,
deals with urgent situations such that it makes up for the weak
point in behavior selection module. For instance, as soon as
an obstacle like a wall or a cliff is found, it makes the agent
react to this situation immediately. Since it uses sensory infor-
mation directly, its decision-making speed is much faster than
that of the behavior selection module. In addition to behaviors,
Rity has five facial expressions for happiness, sadness, anger,
fear, and neutral state, one of which is expressed for the domi-
nant emotional state. Finally, motor module incorporates virtual
actuators to execute the selected behavior in the virtual 3-D
environment.

Note that Rity’s behaviors are preanimated and properly acti-
vated according to its perception and internal state. Rity shows
a selected behavior for a predefined period of time in between
0.1 and 6.0 s to ensure sufficient time for behavior animation,
and after finishing the behavior, it selects the next behavior.
However, if a reflexive behavior is activated because of sud-
den environmental change, the execution of current behavior
is interrupted. Since the behavior is selected for each percep-
tion and internal state based on the probability proportional
selection mechanism, Rity’s expressed behaviors are not con-
tinuous. This problem can be solved by introducing behav-
ior assemblage that combines related behaviors in sequence
[37].

B. Genetic Representation

This section presents a genetic representation of an artifi-
cial creature. The genetic encoding allows the pleiotypic and
polygenic nature of the genotype such that a single gene in-
fluences multiple behaviors and also a single behavior is in-
fluenced by multiple genes in behavior selection. The artificial
creature is made up of a genome, a set of chromosomes, Ck ,
k = 1, . . . , c, which has the capability of passing its traits to
its offspring [35]. Each chromosome Ck is composed of three
gene vectors: the fundamental gene vector (F-gene vector) xF

k ,
the internal-state-related gene vector (I-gene vector) xI

k , and the
behavior-related gene vector (B-gene vector) xB

k , and is defined
as

Ck =




xF
k

xI
k

xB
k


 , k = 1, 2, . . . , c

with

xF
k =




xF
1k

...

xF
wk


 , xI

k =




xI
1k

...

xI
yk


 , xB

k =




xB
1k

...

xB
zk




where w, y, and z are the sizes of the F-, I-, and B-gene vectors,
respectively.

Each agent has its own fundamental characteristics such as
change rate in internal states. For example, an agent is easily
motivated if it has larger values of constant mk and discount
factor λk in (2). These fundamental characteristics are encoded
in F-genes. In this paper, constants and discounting factors in
(2)–(4) are encoded as F-genes. Note that F-genes have no direct
connection with perception and behavior selection modules. I-
genes include genetic codes representing the weights of WM

k (t)
in (2), WH

k (t) in (3), and WE
k (t) in (4). These genes shape the

relationship between perception and internal state. B-genes in-
clude genetic codes representing the weights of DM and DH in
(5), and QE in (6), by which internal state and output behaviors
are related. An artificial genome,G, composed of a chromoso-
mal set, is defined as

G = [C1 | C2 | . . . | Cc ]

where c is the number of chromosomes in the genome.
Rity is implemented by w = 2, y = 47, z = 77, and c =

6 + 3 + 5 = 14. y- and z-values correspond to the ability of
perceiving 47 different types of percepts and of outputting 77
different behaviors as responses, respectively. The genome is
composed of 14 chromosomes, where the first six C1–C6 are
related to motivation: curiosity (C1), intimacy (C2), monotony
(C3), avoidance (C4), greed (C5), and desire to control (C6),
the next three C7–C9 are to homeostasis: fatigue (C7), drowsi-
ness (C8), and hunger (C9), and the last five C10–C14 are
to emotion: happiness (C10), sadness (C11), anger (C12), fear
(C13), and neutral (C14). As each chromosome is represented
by 2 F-genes, 47 I-genes, and 77 B-genes, Rity has ν = 1764
genes in total.

Fig. 2 shows a genetic encoding, which includes all the related
weights along with fundamental parameters. In the figure, the
first part (F-genes) is composed of the fundamental parameters,
the second part (I-genes) is composed of the weight matrices
WM

k , WH
k , and WE

k in order between perception and inter-
nal states and the last part (B-genes) consists of the weight
matrices DM , DH , and QE in order between internal states
and behaviors. The genes in Fig. 2 are originally represented
by real numbers: F-genes range from 0.0 to 1.0, I-genes from
−0.5 to 0.5, and B-genes from 0.0 to 1.0. F- and B-genes are
normalized to brightness values from 0 to 255, which are ex-
pressed as black-and-white rectangles. The intenser the color is,
the higher its value is. In addition to the positive normalization,
I-genes may have negative values that are also normalized and
shown as red–white rectangles in the same manner. The 2-D ge-
netic representation has the advantage of representing essential
characteristics of three types of genes intuitively, reproducing
the evolutionary characteristics of living creatures, and enabling
users to easily insert or delete other types of chromosomes and
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Fig. 2. Artificial genome of Rity. All genes are represented by real numbers
and normalized to brightness values in this figure. The intenser the color is, the
higher its value is. In addition, I-genes may have negative values which are also
normalized and shown as red–white rectangles in the same manner.

genes related to an artificial creature’s personality and other
information.

C. Personality Model

To represent the personality, Big Five personality dimen-
sions [31], [32] and MBTI [33] can be used. In this paper, Big
Five personality dimensions are employed to classify agent’s
personality traits. They are classified as follows: extroverted (as
opposed to introverted), agreeable (as opposed to antagonistic),
conscientious (as opposed to negligent), openness (as opposed
to closeness), and neuroticism (as opposed to emotional sta-
bility). For example, agreeable personality assumes strength in
curiosity, intimacy, and happiness, and weakness in greed, desire
to control, avoidance, anger, and fear. In contrast, antagonistic
personality assumes weakness in curiosity, intimacy, and happi-
ness, and strength in greed, desire to control, avoidance, anger,
and fear.

Considering the personality traits, in this paper 14 internal
states and their related behavior groups are provided. The pref-
erence values on each internal state and each behavior group for
representing a certain personality model are assigned in between
0 and 1, respectively, by the user. Table III shows the assigned
preference values for agreeable and the antagonistic personality
models, where ψI

k and ψB
k are the values for kth internal state

and behavior group, respectively. Note that they can be easily set
by using slider bars in a GUI of the developed software system,
as shown in Fig. 3.

III. EVOLUTIONARY GENERATIVE PROCESS FOR A

PERSONALITY

This section presents an evolutionary generative process to
generate a genome in which a specific personality is encoded.
The process includes the implementations of the artificial crea-
ture, virtual environment, perception scenario, and evolutionary
algorithm. The evolutionary algorithm is applied to a population

TABLE III
PREFERENCE VALUES FOR THE AGREEABLE AND ANTAGONISTIC

PERSONALITIES

Fig. 3. GUI window for setting the preference values of each internal state. If
one clicks either ‘I-Mask’ or ‘B-Mask’ button, the gene masking is processed.

of genomes Gt
i i = 1, 2, . . . , n, in the form of a 2-D matrix

P (t) = {Gt
1 ,G

t
2 , . . . ,G

t
n} at generation t, where n is the size

of the population. Gt
i is defined as

Gt
i = [Ct

i1 |Ct
i2 | . . . |Ct

ic ] =




xF t
i

xI t
i

xBt
i




=




xF t
i1 xF t

i2 . . . xF t
ic

∣∣∣∣
∣∣∣∣

∣∣∣∣
xI t

i1 xI t
i2 . . . xI t

ic
∣∣∣∣

∣∣∣∣
∣∣∣∣xBt

i1 xBt
i2 . . . xBt

ic


 .

The procedure of the evolutionary algorithm is illustrated in
Fig. 4. The main parts of the procedure are described in the
following.
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Fig. 4. Procedure of evolutionary algorithm for an artificial creature’s
personality.

A. Initialization Process

A population of genomes is randomly initialized in the follow-
ing ranges: I-genes [−0.5, 0.5], B-genes [0.0, 1.0], and constant
values of F-genes for 3rd and 14th chromosomes (representing
“monotony” and “neutral” states) [0.0, 1.0]. The rest of the con-
stant values are set as 0. It means Rity’s internal states shall be
monotony in motivation and neutral in emotion when all states
converge to initialized constant values. The discount factor in
F-genes for kth chromosome is set as 1/(ψI

k + 1), where 1 in
the denominator is added to avoid the division by zero. These
F-genes are retained as the initial values during the evolution.

B. Gene Masking

Considering the big number of genes to be optimized, gene
masking process (Fig. 3) is introduced, which is to isolate un-
necessary genes such that improper internal states and behaviors
can be inhibited. It consists of I-gene masking (I-masking) and
the B-gene masking (B-masking). The masking process can
be done by matrix operation. The matrix is a diagonal one of
which element value is one of three masking values, +1, 0, or
−1, which represent positive, zero, and negative masking, re-
spectively. Positive masking makes the corresponding gene to
positive value. Similarly, negative masking makes it to negative
value. For example, as the perception of “shaken” or “head hit”
would decrease the “intimacy” state, negative masking is used
to the corresponding I-genes. Similarly, B-masking is required
such that the agent can select a more appropriate behavior given
a specified internal state and perception. Elements of the B-
masking diagonal matrix take values either 0 or 1. Zero mask-
ing prevents the behavior from being selected, while positive
masking retains the corresponding gene values. For example,
“curiosity” state would not promote the behavior groups related
to “fear” or “anger.”

C. Perception Scenario

The perception scenario is a series of randomly generated
events for a given time duration. It is sequentially applied to
the agent and its internal states and behaviors are observed as
internal and external responses, respectively. The responses are
used to evaluate its genome for a specific personality by utilizing
a fitness function at every generation. Each step in perception
generation for the scenario is characterized by an event. To the
user, the event represents a stimulus applied to the agent, and
to the agent, it is a perception as a perceived information. The
manner in which the stimuli are applied is customizable and
characterized by the following quadruple [39]:

(A, P, ts , Ts) (7)

where A = {A1 , A2 , . . . , Ag} is the set of all perception groups,
each group includes correlated perceptions to an event, and
g is the number of perception groups (g = 7 in Table I).
P = {p1 , p2 , . . . , pg} is the set of generation probabilities for
the groups. A perception in the selected group is randomly gen-
erated as an event, which occurs at discrete time for a random
time period ts ∈ [tmin , tmax], where the minimum of tmin is the
sampling time, ∆T . Ts is the duration length of the scenario.

Based on this formalization, the perception scenario is defined
as a permutation of perceivable information of an agent for
Ts . Note that care should be taken to ensure that illogically
sequenced perceptions do not result. For example, a perception
corresponding to the situation where an obstacle exists, is needed
prior to the perception, R©sudden disappearancē of the obstacle.

D. Fitness Function

Considering the diverse range of personality, a well-designed
fitness function is needed to evaluate genomes for a specific per-
sonality desired by user. The procedure of evaluation for each
genome in the population has the following three steps: 1) a
genome is imported into the agent; 2) a series of stimuli in a
perception scenario is applied to the agent in a virtual environ-
ment; and 3) a fitness is calculated by evaluating its internal
states and behaviors. Note that during the evolutionary process
experiments, a genome is imported into the core engine of the
agent to evaluate its personality (phenotype) without showing
its 3-D graphics. According to the imported genome, it gener-
ates internal states and concomitant behaviors in response to
stimuli. The fitness function can be designed by using the dif-
ference between the user assigned preference and the following
two evaluation functions: one is to evaluate internal states and
the other is to evaluate behaviors [see (10)].

1) Evaluation Function for Internal States: The internal
state evaluation function is defined as the possession ratio of
each internal state in response to a sequence of perceptions in a
perception scenario during perception scenario time period Ts .
The possession ratio of the kth internal state for Ts , ΦI

pk (Ts,G),
is defined as

ΦI
k (Ts,G) =

(∑T s/∆T
j=1 αk (j ∆T,G)

)
ΦI (Ts,G)

(8)
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where ΦI (Ts,G) is the sum of possession values of all internal
states defined by

ΦI (Ts,G) =
c∑

k=1

T s/∆T∑
j=1

αk (j ∆T,G) (8a)

αk (j ∆T,G), k = 1, 2, . . . , c, is the activation values of the kth
internal states at time t for genome G, c is a number of internal
states and ∆T is the sampling time.

2) Evaluation Function for Behaviors: The behavior evalu-
ation function examines the frequency of each behavior group in
a set, BT

c = [β1 , β2 , . . . , βc ] in Table II for perception scenario
time period Ts . The frequency of the kth behavior group for Ts

is defined as

ΦB
k (Ts,G) =

fB
k (Ts,G)

ΦB
(9)

where the dataset consists of ΦB =
∑c

k=1 fB
k (Ts,G) observa-

tions, with the behavior group βk appearing fB
k (Ts,G) times

for k = 1, 2, . . . , c.
Using (8) and (9), the following fitness function is defined to

minimize the differences between the user assigned preference
values and the evaluated possession ratio of each internal state
and the frequency of each behavior group

Φ(Ts,G) = N − Φ̃(Ts,G) (10)

with

Φ̃(Ts,G)

=

[
c∑

k=1

|ψ̃I
k − ΦI

k (Ts,G)| +
c∑

k=1

|ψ̃B
k − ΦB

k (Ts,G)|
]

(10a)

where the normalized preference values, ψ̃I
k and ψ̃B

k , defined as

ψ̃I
k =

ψI
k∑c

l=1 ψI
l

, ψ̃B
k =

ψB
k∑c

l=1 ψB
l

. (10b)

In (10a), ΦI
k (Ts,G), is the possession ratios of the kth internal

state in (8), ΦB
k (Ts,G) is the frequency of the kth behavior

group in Bc in (9), and N is a constant number to make a
maximization problem.

It should be noted that user can easily set the relevant prefer-
ence values ψI

k and ψB
k in Table III through the GUI (Fig. 3) for

agent’s personality by his/her preference, where each preference
value is assigned in between 0 and 1. Since the user-assigned
preference represents a desired personality, EGPP finds the
I-genes and B-genes which meet the preference by utilizing
the user-assigned preference values in the fitness function.

E. Mutation Operator

Since there are many genes to be optimized, it is difficult and
takes a longer period of time to obtain the optimized genome

by using mutation of normal distribution. To promote the per-
formance, directed mutation is adopted, where the mean value
is shifted according to the difference between the desired and
evaluated values of the possession ratio of internal states. Note
that a normal distribution in this mutation operator preserves the
probabilistic search. For the pth I-gene of kth chromosome in
ith individual, the mutation operator is defined as follows:

xI
ikp = xI

ikp + N(µI
k , σI

k )

µI
k = γ(ψ̃I

k − ΦI
k (Ts,G))

σI
k =

κ
√

Φ̃(Ts,G)

ν
(11)

where Φ̃(Ts,G) is the difference term in fitness function, de-
fined in (10a), γ and κ are the scaling factors for the mean and
standard deviation of normal distribution, respectively, and ν is
the number of genes. Similarly, the mutation operator for the
B-genes can be defined with the difference between the desired
and evaluated frequencies of the corresponding behavior group.

IV. EXPERIMENTS

The agreeable and antagonistic personality models for Rity
were chosen to demonstrate the feasibility of the EGPP. By
comparing the performance for the two contrasting personal-
ities, the evaluation can be easily made concerning its ability
to provide a consistent (the ability to exhibit reliably expec-
tant behaviors) and uniquely distinct personality. Two percep-
tion scenarios to evaluate and verify genomes, respectively,
were generated with the voting values {ṽ1 , ṽ2 , . . . , ṽ7} =
{0.5, 0.5, 0.5, 0.7, 0.5, 0.7, 0.5} for seven perception groups,
Apo,Aob , Abt , Aph , Aso , Aof , and Aba , in Table I. The percep-
tion scenario time period Ts was 500s. The selection prob-
ability for each perception group in (7) was calculated by
p̃i = ṽi/

∑7
j=1 (ṽj ), i = 1, . . . , 7, and one perception in the se-

lected group was randomly generated. The time duration for the
selected perception was also randomly selected in between 0.1
and 10 s. The parameter setting of EGPP was applied equally
in both cases of agreeable and antagonistic personalities. Pref-
erence values were given as those in Table III. The population
size was 50 and the number of generations was fixed at 3000.
N = 1.5 was used in (10), γ = 0.05 and κ = 1 were used in
(11) and mutation rate was set to 0.05. It took about 12 h to
generate a genome encoding a desired personality by Pentium
4, 2 GHz processor.

A. Generation of Genomes by EGPP

Experiments were carried out for agreeable and antagonistic
personalities of Rity with three differently generated genomes:
1) one manually set by heuristics; 2) another generated ran-
domly for the initial population; and 3) the other generated by
EGPP. Figs. 5 and 6 show the comparison results among the
three genomes for agreeable and antagonistic personalities, re-
spectively. In the figures, (a) and (b) show each possession ratio
of motivation and emotion internal states, respectively, (c) and
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Fig. 5. Comparison of possession ratio and frequency of behavior of generated
genomes for agreeable personality. (a) Possession ratio of motivation state.
(b) Possession ratio of emotion state. (c) Frequency of motivation behavior.
(d) Frequency of emotion behavior. Bars in the graph represent: (1) normalized
preference values, defined by user; (2) genome, manually set by heuristics; (3)
genome, generated randomly; and (4) genome, generated by EGPP with random
initialization.

Fig. 6. Comparison of generated genomes for antagonistic personality.
(a) Possession ratio of motivation state. (b) Possession ratio of emotion state.
(c) Frequency of motivation behavior. (d) Frequency of emotion behavior. Bars
in the graph represent: (1) normalized preference values, defined by user; (2)
genome, manually set by heuristics; (3) genome, generated randomly; and (4)
genome, generated by EGPP with random initialization.
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Fig. 7. Evolution process by EGPP. (a) Agreeable genome. (b) Antagonistic
genome.

(d) show the frequency of each behavior group corresponding
to the motivation and emotion states, respectively, and the first
one in each item of the histogram is a reference value that is
the normalized user-assigned preference value. Responses of
homeostasis were similarly obtained.

It can be observed from the figures that the genomes manu-
ally set by heuristics, were not able to properly produce desired
personalities. As expected, the randomly generated genomes
showed the worst performance among the three. On the other
hand, the genomes generated by EGPP exhibited reliably expec-
tant internal states and behaviors representing a distinct person-
ality. Note that EGPP, despite the random initialization, could
generate the genomes showing similar traits as desired by the
user-assigned preference values for both of the agreeable and
antagonistic personality examples. The slight discrepancy be-
tween the obtained traits and the desired ones was due to the
limited number of generations, the genetic operator, the proba-
bilistic decision policy of resulting behaviors, etc.

Fig. 7 shows the evolution process of generating each genome
for the agreeable and antagonistic personalities by EGPP, where
a darker line is for the average fitness and the other line is for

the best one. In the figure, a steady improvement in fitness along
generation can be seen.

B. Verification of Evolved Genomes

Evolved genomes by EGPP were verified through the follow-
ing procedure. Obtained agreeable genome A and antagonistic
genome B were implanted into two artificial creatures, Rity A
and Rity B, respectively. The perception scenario for verifica-
tion, which was different from the one used for evolution in
the previous section, was applied to them and observed their
resulted internal states and behaviors.

1) Verification on Internal State Responses: Figs. 8 and 9
show the experimental results on internal state responses when
the verification scenario was applied to agreeable Rity A and
antagonistic Rity B, respectively. Fig. 8(a) shows that the states
of curiosity and intimacy have wider distribution than those
of avoidance, greed, and desire to control in motivation for
the perception scenario time period of 500 s. Fig. 8(b) shows
that happiness state has the widest distribution among emotion
states. Fig. 8(c) shows histograms of possession ratios calculated
for each internal state by evaluation function (8). The horizontal
axis represents the index of 14 internal states, where the vertical
axis represents the possession ratios of internal states. The 1st,
2nd, and 10th internal states have high possession ratios, which
indicate strong states of curiosity and intimacy in motivation and
of happiness in emotion, while the 4th, 5th, 6th, 12th, and 13th
internal states have low possession ratios, which indicate weak
states of avoidance, greed, and desire to control in motivation,
and of anger and fear in emotion.

In contrast, Fig. 9(a) shows that states of avoidance, greed,
and desire to control have wider distribution than those of cu-
riosity and intimacy in motivation for the same verification sce-
nario. Fig. 9(b) shows that the states of sadness, anger, and fear
have wider distribution than the happiness state in emotion. In
Fig. 9(c), the 4th, 5th, 6th, 11th, 12th, and 13th internal states
have high possession ratios, which mean strong states of avoid-
ance, greed and desire to control in motivation, and of sorrow,
anger, and fear in emotion, while the 1st, 2nd, 10th, and 14th
internal states have low possession ratios, which indicate weak
states of curiosity, and intimacy in motivation, and of happiness
and neutral in emotion.

2) Verification on Behavior Responses: Figs. 10 and 11
show external output responses of agreeable Rity A and antag-
onistic Rity B, respectively, for the same verification scenario
used for Figs. 8 and 9. Figs. 10(a) and 11(a) show the frequency
of behavior groups. Fig. 10(a) shows that the frequencies of
behaviors belonging to the groups such as “1—curiosity,” “2—
intimacy,” and “10—happiness” are high. In contrast, Fig. 11(a)
shows that the frequencies of behaviors belonging to the groups
such as “4—avoidance,” “5—greed,” “12—anger,” and “13—
fear” are high. The indexes of five facial expressions, neutral,
happiness, sorrow, anger, and fear are set to 0, 1, 2, 3, and 4, in
Figs. 10(b) and 11(b). In Fig. 10(b), there are much more facial
expressions of happiness than other kinds of facial expressions.
In contrast, in Fig. 11(b), there are more facial expressions of
sorrow and anger than that of happiness.
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Fig. 8. Internal state responses of agreeable Rity A to the verification scenario.
(a) Motivation response. (b) Emotion response. (c) Possession ratio histograms
calculated for each internal state.

Fig. 9. Internal state responses of antagonistic Rity B to the verification sce-
nario. (a) Motivation response. (b) Emotion response. (c) Possession ratio his-
tograms calculated for each internal state.
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Fig. 10. External behavior responses of agreeable Rity A to the verification
scenario. (a) The frequency of behavior groups, which corresponds to the number
of occurred time during the scenario. (b) Facial expression response (The indexes
of five facial expressions, neutral, happiness, sorrow, anger, and fear are set to
0, 1, 2, 3, and 4, respectively.).

Fig. 11. External behavior responses of antagonistic Rity B to the verification
scenario. (a) The frequency of behavior groups, which corresponds to the number
of occurred time during the scenario. (b) Facial expression response (The indexes
of five facial expressions, neutral, happiness, sorrow, anger, and fear are set to
0, 1, 2, 3, and 4, respectively.).

For both agreeable and antagonistic genomes, plausible ar-
tificial creatures, Ritys were observed for all internal states
and behaviors simultaneously for the prescribed perception
scenario. The obtained genomes defined consistent and dis-
tinct personalities for Ritys. These experimental results verify
the effectiveness of EGPP as an evolutionary gene-generative
mechanism for the personality desired by the user. Video clips
of two Ritys are available at http://rit.kaist.ac.kr/home/ Arti-
ficial_Creatures_in_Virtual_Environment. The EGPP can also
generate genomes for randomly generated personality pref-
erences. Moreover, it can be used for generating genomes
for specific personalities based on evolutionary multiobjective
optimization [40].

V. CONCLUSION

This paper proposed an evolutionary process for generating a
genome of an artificial creature representing a specific person-
ality desired by user. The genome was composed of chromo-
somes in which genes were devised as basic building blocks to
represent a simplified set of personality traits. The evolutionary
process included a population of genomes, an evolutionary algo-
rithm, a dedicated fitness function, a directed mutation operator,
and a perception scenario randomly generated in virtual environ-
ment. A genome encoding the desired personality of an artificial
creature was generated by the proposed evolutionary process. It
was verified by applying another perception scenario for veri-
fication, which was different from the one used for evolution,
to the agent and by observing the internal state and concomi-
tant behavior as responses to a series of stimuli. Through the
verification process, the effectiveness of the proposed process
was demonstrated. Although in this paper two standard person-
ality types such as the agreeable and antagonistic personalities
were employed to test the feasibility of the proposed process, it
can be also used to generate various types of personality each
of which is encoded in a corresponding genome. This research
will contribute not only to improve the capability of artificial
creature for natural interactions with human beings but also to
initiate the study of “The Origin of Artificial Species.”

As a further work, the inherited information contained in the
evolved genome as an innate personality, should be combined
with the posterior information that is accumulated through ex-
perience and by means of learning or interaction with a human.
To make the genome structure generalized, the types of per-
ception, internal states, and behaviors should be classified and
standardized, which also remains as another further work.
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