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ABSTRACT 

Low-velocity impact is a major concern in the design of structures made of advanced 

laminated composites, because it can cause extensive delaminations inside composites that 

can severely degrade the load-carrying capability. It is necessary to develop the impact 

monitoring techniques providing on-line diagnostics of smart composite structures susceptible 

to impacts. In this paper, we report on the simultaneous monitoring of impact locations and 

damage states. Up to now, the impact problems of composite laminate were classified into 

two main directions. One was the impact identification and the other was the detection of 

impact damages such as delaminations. This study focuses on the integrated approach for 

both two objects by PZT sensors. We discuss the procedures of impact location detection in 

which the generated acoustic signals are detected using PZT by the improved neural network 

paradigms. Simultaneously, the sensor output is processed with the Wavelet Transform (WT) 

to monitor the Acoustic Emission (AE) waves by the occurrence of damages and the result is 

compared with that of the undamaged case. 

INTRODUCTION 

Due to recent advances in sensor technology, a new concept of damage diagnostics for 

monitoring the integrity of in-service structures has been proposed. This concept is generally 

known as a health monitoring of smart structures. The health monitoring system must 

estimate structural health by using all of the information provided by the various sensor 

measurements. The impact monitoring process especially involves in the tracking of impact. 

The event and location of an impact load can be identified by the propagating acoustic waves. 

Simultaneously with the impact identification, the diagnostics of impact damages can be 

carried out to determine whether the incipient damage is initiated or not from the information 

of the AE waves. 

Recently, Chang et al. [1] proposed the techniques for the reconstruction of force history 

and the determination of impact location by minimizing the difference between modeled 

response and actual response from built-in piezoceramic sensors. The response comparator 
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using an optimization algorithm was applied to compare the responses. However, these 

techniques are in many cases a time consuming process. Moreover, the response of real 

complex structures cannot be the same as the modeled response, because the result of this 

analytical method can be more influenced by boundary conditions, noises, and vibrating 

conditions of structures. An alternate approach to identify the impact location of a composite 

structure is to use a neural network [2]. These approaches used several kinds of information 

as the input data such as the differential signal arrival times of propagating acoustic waves 

and the integrated real and imaginary parts of the FFT of four strain signals. In this study, 

neural network paradigms are used for an inverse problem solver. This method may be easily 

applied when a specific equation or algorithm is not applicable, but when adequate 

knowledge or data exists to derive a knowledge-based solution. 

The Active sensing diagnosis (ASD) was proposed to detect impact damage in in-service 

composite structures using piezoceramic sensors and actuators to generate and receive 

diagnostic waves by Chang [3]. The passive sensing diagnosis (PSD) without actuators may 

be simpler and more lightweight than the ASD system. Recently, the PSD method using the 

time-frequency analysis has been issued. The WT method can provide the time-frequency 

localization from sensor signals. The WT itself is a more intuitive decomposition of the data 

since it provides simultaneous time-frequency localization at multiple resolutions. Being a 

more flexible method of time-frequency decomposition, wavelets can describe signal 

characteristics in a much more precise manner and result in more accurate feature extraction. 

Several researches show that the WT can be a powerful tool for condition monitoring and 

fault diagnosis by using its ability to "zoom in" on short lived high frequency phenomena for 

the analysis of transients [4-5]. Though the WT has been applied to the diagnostics of 

transient vibration signals of machinery, this has been rarely used for damage diagnostic 

application to composite laminates. 

This paper mainly focuses on the integrated approach for both two objects by PZT sensor 

system. This paper proposed the simultaneous impact monitoring techniques to identify the 

impact location and to detect the impact damage using the propagation property of acoustic 

waves and the AE waves. This paper proposed that the PSD method using the WT could be 

applied to monitor the AE signals due to damage initiation of composite laminates during the 

low velocity impact. The fundamental researches have been carried out to identify the impact 

location of composite laminates and the laminates with a circular hole. Then, we investigated 

the time-frequency characterization of the AE signals in the case of matrix cracks and 

delaminations respectively. 

FUNDAMENTAL APPROACHES 

The fundamental researches have been carried out to identify the impact location of 

composite laminates. Moreover, the time-frequency characteristics of impact damages have 

been investigated by the WT. The propagating acoustic waves due to impacts have a complex 

non-linear property on the wave velocities of composite laminates. The neural network using 

the Levenberg-Marquardt (LM) algorithm with the generalization methods was used for the 

identification of the impact location using the arrival time differences of acoustic waves. It 

was found that the AE waves generated by impact damages are undistinguishable from each 

damage mode and the amount of damage by the conventional analysis methods in time or 

frequency domain. The Fourier transform decomposes a signal into its various frequency 



components. Because it uses the sinusoidal basis functions that are localized in frequency 

only, it loses the transient feature of the signal. Therefore, it is necessary to implement the 

time-frequency analysis for diagnostics of a transient signal such as that induced by damage. 

The WT can be a powerful tool for condition monitoring and fault diagnosis by using its 

ability to "zoom in" on short-lived high frequency phenomena for the analysis of transients. 

The WT can decompose the AE waves in time and wavelet scale domain and catch the 

differences of these waves. It makes possible to distinguish the damage modes and size by the 

decomposed wavelet details. The experimental setups are shown in Figure 1. 

Impact Identification by Neural Networks 

The acoustic wave velocity is dependent on the material property, the wave frequency and 

Figure1. The experimental setups for the low-velocity impact test. 
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Figure 2. The results of the detection of impact locations of 

[0/45/-45/90]4S laminates with a circular hole. 



the type of waves. In the case of composite laminates, the acoustic wave velocity varies with 

the direction of propagation because the wave propagates faster along fiber rather than matrix. 

Neural networks can be applied to make a nonlinear modeling for the differential arrival time 

of acoustic waves at a certain location of impacts. One inherent advantage in using neural 

networks is that their performance is independent of a particular system's complexities; the 

physics of boundary conditions and the velocity of acoustic waves, etc. It was discovered that 

the backpropagation Multi-Layer Perceptron (MLP) was adequate for the impact location 

detection. In this paper, the LM algorithm for nonlinear least squares was incorporated into 

the backpropagation algorithm for training the MLP. The algorithm was tested on many 

function approximation problems, and was compared with a conjugate gradient algorithm and 

a variable learning rate algorithm. In general, on networks that contain up to a few hundred 

weights the LM algorithm will have the fastest convergence. Another problem that occurs 

during the neural network training is called overfitting. The error on the training set is driven 

to a very small value, but when new data is presented to the network the error is large. The 

network has memorized the training examples but it has not learned to generalize to new 

situations. We used two methods for improving generalization: regularization and early 

stopping methods. This predicted the location of impact under the error of 6.25 mm in radial 

direction on a 330 mm×330 mm [0/45/-45/90]4S Graphite/Epoxy laminates with a circular hole, 

as shown in Figure 2. The influence of boundary condition on the accuracy of impact location 

was also studied. 

Impact Damage Characterization 

This research provides the real-time in-service damage monitoring techniques using the 

time-frequency analysis of PZT sensor signals. PZT sensors were utilized to monitor the 

impact events. These can be used as wide-band transducers of low-frequency vibrations and 

high-frequency acoustic emission waves. We chose PZT sensors suitable for detecting the 

frequency range from 20 kHz to 360 kHz that is known as the general frequency range of the 

Figure 3. The evolution of matrix cracks and free-edge delaminations

in tension of [±452/02/902]S beam. 
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AE during the initiation of damage such as delaminations in composites laminates. These 

techniques present the simultaneous monitoring of damage at the time of impact events. 

Time-frequency analysis can be implemented by the STFT and the WT. The STFT cannot be 

a local spectral density because of the continuing nature of harmonic waves. Moreover, it is 

impossible to achieve high resolution in time and frequency simultaneously. 

The WT decomposes a signal into a set of basis functions that are localized in both time 

and frequency. Each wavelet function , ( )a b tΨ  is a stretched or narrowed version of a 

prototype wavelet ( )tΨ , 
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That is, we measure the similarity between the signal ( )x t  and the shifts, scales of an 

elementary function. Because the wavelet basis function is localized in both time and 

frequency, it can act as multi-scale band-pass filters when convoluted with the signal data. 

From the Discrete Wavelet Transform (DWT), a signal can be represented by its 

approximations and details. The approximations are the low frequency components of the 

signal decomposed by the high-scaled wavelet basis function. The details are the high 

frequency components of the signal decomposed by the low-scaled wavelet basis function. By 

Figure 4.  The comparison of details D1
1M
~ D3

1M
 of PZT signals of 

matrix cracks and free-edge delaminations by DWT. 



selecting different dyadic scales, a signal can be broken into many lower-resolution 

components, referred as the wavelet decomposition tree. The high frequency AE waves of 

PZT signals can be decomposed into several details ' jD '. 

The characteristics of the PZT signals due to matrix cracks and the evolution of free-edge 

delamination were analyzed by the WT. Tension tests were performed to investigate the AE 

waves due to matrix cracks and free-edge delaminations using [±452/02/902]S Gr/Ep 
specimens. The stress-strain curve and the picture of damage modes are shown in Figure 3. 

The differences of transient characteristics of the AE waves due to matrix cracks and 

delaminations can be identified by the time-frequency analysis. The WT can be used to 

characterize damage modes by measuring the transient decomposed signals of a certain scale 

level of wavelets. The results are shown in Figure 4. The details are indicated by D1
1M
 of 

which the subscript represents the level of decomposition and the superscript represents the 

sampling frequency. The details D1
1M
, D2

1M
 and D3

1M
 represent approximately 300~400 kHz, 

140~240 kHz, 80~100 kHz signal range respectively from the calculation of approximate 

frequencies. Therefore, these details can represent the characteristic frequencies of AE signals. 

As the selection of wavelet functions, these details can show detailed characteristics that 

could not be represented by the harmonic function based analysis. Figure 3 shows that the AE 

signals due to matrix cracks are dominantly composed of the detail D1
1M
. However, the AE 

signals due to delaminations are mainly composed of D2
1M
 and D3

1M
. These trends coincide 

with the frequency characteristics. From these results, delaminations known as the primary 

damage mode of low velocity impact can be detected by observing the details D2
1M
 and D3

1M
. 

SIMULTANEOUS IMPACT MONITORING 

From the results of basic researches, these procedures were implemented to the 
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Figure 5. The results of the detection of impact locations of [04/904]S laminates. 



simultaneous impact monitoring of 330 mm×330 mm [04/904]S Graphite/Epoxy laminates. 

Firstly, the same neural network paradigm was trained using the arrival time differences of 

acoustic waves. The energy of impact was fixed to 0.3 J. In this case, the acoustic wave 

velocity much varies with the direction of propagation than the case of quasi-isotropic 

laminates, because the wave propagates faster along fiber rather than matrix. This non-linear 

property produced much more error of detection than the case of quasi-isotropic laminates. 

Figure 5 shows the results of the identification of impact locations. After training of neural 

network, the drop-weight type impact test was carried out to simulate the low-velocity impact. 

The arrow in Figure 5 represents the test impact position. The impact energy was chosen to 

generate delaminations. First, the laminated plate was subjected to 8.0 J impact. After impact, 

delaminations having the dimension of about 40 mm×20 mm were measured by the C-Scan. 

Second, after 10.8 J impact, the size of delaminations was about 60 mm×25 mm. 

Results of Impact Monitoring 

The trained neural network could identify the impact location. The error of detected 

location was 7.64 mm in radial direction. The much more error was produced in the higher 

energy level of impact. Because the neural networks trained by the fixed 0.3 J impact, the 

much higher energy makes another leading waves slightly different from small energy impact. 

This affected the accuracy of detection. Simultaneously, the PZT signals were analyzed to 

decompose the AE waves along time domain by the WT. Figure 6 shows the wavelet details 

D1
1M
~D3

1M
. This figure shows that the AE signals of impact damages are dominantly 

composed of the detail D1
1M
. We can detect the occurrence of delaminations. Moreover, we 

can estimate the time of damage evolution by the WT. We can estimate the matrix cracks was 

Figure 6. The comparison of details D1
1M
~ D3

1M
 of PZT signals of 8.0 J and

10.8 J impacts by DWT. 



generated at the same time. The higher amplitudes of the details D1
1M
~D3

1M
 were observed in 

the 10.8 J case than the 8.0 J case that makes the smaller size of delaminations. These make it 

possible to monitor the damage state by measuring the interested detail components by 

adjusting the scale level. Because the voltage resolution of Digital Storage Oscilloscope is 

120 mV in the ±4 V, the one-bit noises prevent the PZT signals under 120 mV. The data 

acquisition board having the higher voltage resolution should be used in the future 

experimentation. This would help to have a clear detail signals.  

CONCLUSION 

In this research, we have presented the impact monitoring techniques to detect the location 

of impact, to determine the occurrence of damage and to estimate the qualitative severity of 

damage simultaneously. The neural network using the LM algorithm with the generalization 

methods predicted the location of impact with the accuracy of about 5 mm error in radial 

direction. We also have presented the PSD using the time-frequency analysis like the WT on 

the determination of the occurrence of damage and the estimation of damage. It can be carried 

out simultaneously with the detection of impact locations using the same PZT sensor. We can 

confirm that the WT can be the better monitoring tool for the analysis of the transient signals 

like damage-induced signals. This makes it possible to examine the interested multi-band 

frequency range by adjusting the wavelet functions. These results show the possibilities of 

simultaneous monitoring of impact locations and damages. Future works include the impact 

monitoring of a stiffened composite plate and real-time data acquisition and processing 

programming. 

ACKNOWLEDGES 

This study has been supported by the Ministry of Science and Technology through National 

Research Laboratory programs. The authors gratefully acknowledge the support as the 

National Research Laboratory program. 

REFERENCES 

1. K. Choi and F.K. Chang. 1996.  “Identification of Impact Force and Location Using Distributed 

Sensors,” AIAA Journal, 34 (1), pp. 136-142. 

2. R.T Jones, J.S. Sirkis and E.J. Frebele. 1997. “Detection of Impact Location and Magnitude for 

Isotropic Plates Using Neural Networks,” Journal of Intelligent Material Systems and Structures, 7 (1), 

pp. 90-99. 

3. F.K. Chang. 1995. “Built-in Damage Diagnostics for Composite Structures,“ Proceedings of ICCM-10, 

V, pp. 283-289. 

4. G.A. Harrison, I. Koren, M. Lewis and F.J. Taylor. 1998. “Application of wavelet and Wigner analysis 

to gas turbine vibration signal processing,” Proceedings of SPIE on Wavelet Application, 3391, pp.  

490-501. 

5. J.W. Wang and P.D. McFadden. 1996. “Application of Wavelets to Gearbox Vibration Signals for Fault 

Detection,” Journal of Sound and Vibration, 192, pp. 927-939. 

6. D.U. Sung, J.H. Oh, C.G. Kim and C.S. Hong. 2000. “Impact Monitoring of Smart Composite 

Laminates Using Neural Networks and Wavelet Analysis,” Journal of Intelligent Material Systems and 

Structures, accepted. 


	ABSTRACT
	INTRODUCTION
	FUNDAMENTAL APPROACHES
	Impact Identification by Neural Networks
	Impact Damage Characterization

	SIMULTANEOUS IMPACT MONITORING
	Results of Impact Monitoring

	CONCLUSION
	ACKNOWLEDGES
	REFERENCES

