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Abstract—Existing range-based localization algorithms are 
superior only when a high accuracy node-to-node measured 
distance exists. This assumption is actually difficult to satisfy 
with current ranging techniques used in tiny sensor nodes. 
Meanwhile, range-free localization algorithms work 
independently of ranging error but can only produce limited 
node accuracy. In this paper we propose a novel localization 
scheme that uses a learning-based distance function to estimate 
distances. The adaptation of distance function to ranging error 
and other network conditions, i.e. network density, number of 
anchor, results in better estimated distances. This leads to more 
accurate positions calculation comparing to existing works, 
especially when ranging error is high. 

I. INTRODUCTION 
Feasibility of many wireless sensor networks (WSN) 

applications and various location-aided network protocols 
depends on the availability of sensor node positions. A sensed 
data with position information is more meaningful for various 
applications, such as smart environment [1], natural habitat 
monitoring [2], and disaster relief. A localization algorithm is 
used to find the position of each sensor node. 

Basically, node position calculation requires the knowledge 
of physical distances between nodes. A distance is measured by 
using sensors such as ultrasound transceiver and received radio 
signal strength indicator, or/and geometrically estimated. Both 
methods are subject to error. Given inaccurate measured and 
estimated distances, one is incapable of calculating node 
positions to a certain desired degree of accuracy.  

The challenges have attracted many studies, reflecting 
broad ranges of approaches in developing the technology 
needed to find node position [3, 4, 5, 6, 7, 8, 9, 10, 12]. Based 
on the mechanism used for distance estimate, these approaches 
are divided into two categories: range-based and range-free. 
The former relies on measured distance to calculate node 
position. It works well based on the assumption of perfect 
ranging. This assumption is actually difficult to satisfy with 
current ranging techniques in sensor networks. On the other 
hand, the latter makes it robust in terms of ranging error by not 
using measured distances. However its estimated position 
accuracy is inadequately low.  

Our paper aims at proposing a better localization algorithm, 
which is supposed to provide higher estimated node position 
accuracy than existing works especially in the condition of 
unreliable ranging. The main theme to achieve the goal is 

effectively using information in estimating node-to-node 
distances. With well estimated distances, position estimates, in 
turn, are better. To do that we firstly propose a parameterized 
distance model, representing node-to-node distances. An 
algorithm is then introduced to learn the coefficients of the 
function. The learning process takes into account the 
conditions of the network so that the learned function is better 
representing the real distances.  

Figure 1 draws the wireless sensor networks to which LDL 
applies. 
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Figure 1.  Wireless Sensor Networks 

This network includes a small number of anchor nodes, 
knowing their own positions a priori by either using GPS or 
being manually configured. The other majority of nodes are 
unknown position nodes, called unknowns. Both anchors and 
unknowns are equipped with a low power measuring device, 
which is used for measuring distances between it and its 
neighbors. A measured distance is subject to error because of 
both intrinsic technological constraints and extrinsic 
environmental conditions. Some unknowns, neighbors of 
anchors, can measure distances to anchors directly, but most of 
them are multi-hops far away from anchors and must estimate 
distances to anchors relying on others’ distances. We assume 
that every node has the same radio range and can measure 
distance within the radio range. This is a practical assumption 
if a sensor node uses RSSI for ranging. 

The paper is structured as follows. Section II introduces 
related works, including available ranging technologies and 
localization algorithms. In Section III, the node-to-node 
distance model is proposed. Section IV introduces the main 
algorithm including the distance learning algorithm. We 
describe simulation setup and evaluation, comparing with both 
range-base and range-free approaches in Section V. Finally, we 
conclude in Section VI. 
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II. RELATED WORKS  

A. Ranging Technology 
In this subsection we classify the ranging technologies in 

terms of the devices which are used for measuring distance. 
Currently, there are three main ranging technologies applicable 
to WSN such as acoustic device with ultrasound or audible 
frequency and radio signal strength. Of three approaches, 
ultrasound is the most stable technique, giving a reasonable and 
small ranging error, in an ideal environment. 0.5-centimeter 
measurement accuracy with 5 meters distance is reported, 
using ultrasound [5]. However, this technique is not able to 
perform well in an environment with obstruction. Moreover, a 
node, equipped with ultrasound transducer, can most accurately 
measure distance only if receiving and transmitting transducer 
are face-to-face with each other, which is usually difficult to 
satisfy in most real applications. Authors in [3] report that 
despite being extensively calibrated, ultrasound devices still 
have an average ranging error from 10% to 20% in a laboratory 
environment. Other technologies using audible frequency or 
received radio signal strength, do not have strict arrange 
requirement, but this hardware is highly variable with low 
ranging accuracy. Distance errors of up to 100% of 
measurement range with radio signal strength and 300% with 
acoustic hardware are also reported in [3].  

B. Localization Algorithms  
1) Range-free algorithms 

Avoiding using measured distance in estimating positions, 
range-free approaches are robust in terms of ranging error. In 
DV-Hop [4], an unknown position node estimates distance to 
an anchor, by multiplying the number of hops between them 
with the average distance of each hop, which is computed by 
anchors. Amorphous system [7], also uses the same 
mechanism as DV-Hop, i.e. multiplying hop count with the 
average hop distance to estimate distance. This algorithm, 
however, uses an offline average hop distance, which is 
estimated using a formula, introduced in [11]. Given the node 
density of a wireless ad-hoc network, one can estimate the 
expected hop distance a priori by using this formula. Other 
proposed schemes such as APIT [8] also work as a range-free 
scheme with some different assumptions from the above 
algorithms and our algorithm. First, although it can work with 
static anchors, this algorithm is designated for systems with 
mobile anchors. In addition this algorithm considers an anchor 
with radio range longer than other nodes. Because of these 
differences in assumption, we exclude it from comparison. 
APIT shares the same inherent disadvantage as previous range-
free approaches in that, without using measured distance, they 
are incapable of providing fine-grain node positions. 

2) Range-based algorithms 
In range-based approaches, distances between nodes are 

measured. This information is then used for estimating node 
positions. In AHLos [5], the distance from a node to an anchor 
is estimated by adding up measured distances on each hop on 
the way from the node to the anchor. Although this algorithm 
reports a low position error in an environment of low ranging 
error, its performance dramatically reduces once the ranging 
error exceeds 10%. Another range-based scheme, Euclidean 

algorithm [11] and Hop-Terrain [12] also work well only with 
perfect ranging.  

MDS algorithm [9] can work with either connectivity only 
(range-free) or measured distance (range-based). The 
advantage of MDS is it performs well even with as small 
number of anchors as 3. However, MDS either range-based or 
range-free has the same disadvantages of aforementioned 
approaches. 

Robust-Quadrilaterals algorithm [10] avoids large position 
estimate error caused by ranging error by not including nodes 
that may have large error in estimate. The result is many nodes 
are not located when ranging error is high or node density is 
low. 

The fundamental difference between our approach and 
existing approaches is that instead of assuming small ranging 
error or avoiding ranging error by not using measured 
distances, our algorithm adapts estimated distances with the 
ranging error and other network characteristics to produce the 
best possible position accuracy. 

III. NODE-TO-NODE DISTANCE MODEL 
In this section, we are introducing a parameterized distance 

model used to represent a node-to-node distance in our 
algorithm.  The followings are definitions related to our model. 

Def 1. Distance-related variable between two nodes in a 
network is any knowledge, taken from the network, which 
stores information about the real distance between the nodes 
and can be used to estimate the distance. 

For example, the hop count of the shortest path between 
any two nodes is a distance-related variable. 

Def 2. A node-to-node distance function of a network is a 
mapping from distance-related variables between any two 
nodes in the network to the real distances between them.  

( ) ( ),Wd X f X W=                             (1) 

where X=(x1,…,xN), the argument of the distance function, 
is the set of N distance-related variables. W is a vector of 
parameters, whose value may be different in different 
networks.  

The followings are the two proposed distance-related 
variables belonging to the distance between node i and node k; 
that we use in this paper: 

Cost in distance of the shortest path (r): sum of distances 
on the shortest path from node i to node k. 

Cost in hop of the shortest path (h): the number of hops on 
the shortest path from node i to node k 

The relationship between a real distance and its distance-
related variable will decide the form of f(X,W). These 
relationships can be seen in Figure 2 and Figure 3, which are 
drawn for a WSN with 100 sensor nodes, randomly deployed 
in an area of 30 30× , 10% of anchors and 10% of ranging 
error. For each pair of a node and an anchor, we computed 
their real distance and collected the corresponding r and h. 
Each point in the two figures shows the relationship of a real 



distance of a node to an anchor and the corresponding r and h. 
Approximately, the relationships between a real distance and 
its r and h are linear. 
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Figure 2.  Real distance and r 
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Figure 3.  Real distance and h 

With this observation, we propose the following distance 
function:  

T
wd WX=                                         2) 

where [ ]  1X r h= . To estimate the parameter W of the 
distance function in each network we use a supervising 
learning technique. The detail algorithm is addressed in the 
next section. 

IV. ALGORITHM 

A. Learning Distance Function 
To learn the distance function by using supervised learning, 

one needs a number of learning samples. In the problem at 
hand, a learning sample is defined as a pair of distance-related 
variables X between two nodes and their real distance d. 
Because a distance between two anchors can be exactly 
calculated using their known coordinates, 2-tuple (X,d) of pairs 
of anchors can be used as samples. Using these samples and a 
learning algorithm such as least square error gradient decent, 
we can estimate the distance function. The role of learning 
process is to reveal the correlation between each distance 
related variable and the real distance then adapts the function 

coefficients so that the variables which are more correlated to 
the real distance have more weight in the function. 

B. Learning-based Distance Localization Algorithm 
Our Learning-based Distance Localization (LDL) algorithm 

is distributed and consists of three steps 

1. Every node finds the shortest paths between it and 
anchors, collecting the distance-related variables 
[ ]r h belonging to these shortest paths and the anchors’ 
coordinates. 

2. Each anchor uses collected information to learn the 
distance function’s coefficients as mentioned in previous 
subsection. Anchors then broadcast the estimated 
function’s coefficients. 

3. Upon receiving the broadcasted distance function 
coefficients, unknowns calculate distances to anchors 
using the received distance function. With these estimated 
distances and anchors’ coordinates, the nodes use multi-
lateration to calculate their positions. 

In Step 1, each node in the network runs the following 
algorithm 

Algorithm: distributed algorithm to find the shortest path 
between nodes and anchors. Each node in the network 
maintains three arrays which store parameters to anchors: hop 
count H and cost in distance R to anchors, and coordinates C of 
anchors. Distance measurements to direct neighbors have been 
gathered in array M e.g. M[i] is the measured distance to 
neighbor i. A is the number of anchors. BROADCAST 
function and RECEIVE function have four arguments (h,r,c,a), 
where h and r are hop count and cost in distance to anchor a, 
and c is coordinates of anchor a 

1. [1.. ] ; [1.. ] ; [1.. ]R A H A C A= ∞ = ∞ = ∞  

2. if isAnchor then  
3.   ( )BROADCAST 0,0, ,myCoordinates myID  

4. end 
5. while 0timeout ==  
6.     if ( )RECEIVE , , ,h r c a  from a neighbor v then  

7.        if [ ]1 Hh a+ < then //update anchor a parameters 

[ ]
[ ] [ ]

8.             1  

9.              

H a h

R a r M v

= +

= +
 

10.           if [ ]C a = ∞  then 

11.              [ ]C a c=  

12.           end 
13.       end  
14.       [ ] [ ] [ ]( )BROADCAST , , ,H a R a C a a  

15.    end 
16. end 



In step 2, anchors may share their collected information and 
estimate a unique set of function coefficients in the whole 
network or they estimate with their collected information only. 
The latter is preferred because it requires less communication 
and computation. In this case, unknowns may receive different 
coefficients from different anchors. The distance function 
coefficients of an unknown are computed as follow∑

=

n

i
i AW

1

, 

where A is the number of anchors, Wi is coefficients received 
from anchor i. Our simulations show that there is no significant 
difference in the performance of the two approaches. 

C. Communication Overhead 
The algorithm requires two broadcast waves. The first wave 

is used to find the shortest paths between nodes and anchors. In 
this step, each node receives and forwards at least one packet 
for each anchor. However, because of the distributed nature of 
the algorithm, a node may receive more than one version of a 
packet originating from an anchor which are forwarded by 
different neighbors of the node. If the packet containing the 
smallest hop count from an anchor comes later than other 
packets from the same anchor, a node will forward more than 
one packet for that anchor. To avoid these redundant 
communications, each node may use a timer for each anchor. 
For a node, an anchor timer is set when the node receives the 
first packet originating from that anchor. The forwarding of the 
anchor’s parameters (step 14) is delayed until the timer expires. 
During this delay the node may receive other packets 
originating from the same anchor and updating the anchor’s 
parameters.  In our simulation we set the delay timer is larger 
than the maximum value of the MAC layer back-off timer. 
With a proper delay timer, the communication overhead of 
each node in the first broadcast wave is reduced to as low as A 
broadcast packets, where A is the number of anchors. The 
communication overhead of the second broadcast wave is also 
A broadcast packets for each node. This wave is used to 
transfer the distance function coefficients computed by anchors 
to unknowns. 

V. EVALUATION 

A. Simulation Setup 
We use ns2 with 802.11 protocol at the MAC layer to 

simulate the new algorithm. The distance measurement is 
corrupted by a normal distribution error with zero mean and 
varied standard deviation. All scenarios include 100 sensor 
nodes randomly deployed in an area of 30×30. All nodes have 
the same radio range R. Anchors are randomly selected. The 
network density is controlled by varying radio range, i.e. a 
smaller radio range is equivalent with a smaller network 
density. 

In the following subsections we evaluate our algorithm, 
comparing it with two typical range-based and range-free 
algorithms i.e. AHLos and DV-Hop. 

B. Average Position Error 
Three different network parameters are considered: ranging 

error, anchor fraction and connectivity degree.  

1) Ranging error 
To evaluate the effect of ranging error, we used 200 

different scenarios with the anchor fraction of 10%, the 
connectivity degree of 14, which means each sensor node has 
14 neighbor nodes on average. Figures 4 shows the mean 
average position error of LDL, AHLos, and DVHop, when the 
standard deviation of ranging error changes from 0 to R.  

An important observation is that LDL shows a significant 
performance improvement, in terms of the accuracy of node 
positions, over both range-based and range-free approaches in 
a broad range of the ranging error. In the absence of ranging 
error, LDL gives 5% and 25% higher accuracy than AHLos 
and DV-Hop, respectively. Different from range-based 
techniques, LDL is less sensitive to ranging error. With 
extremely high ranging error, i.e. 100%, its average position 
accuracy is 60% and 5% better than AHLos and DV-Hop, 
respectively. While range-free approaches inherently can not 
take the advantage of the accuracy of ranging information, 
LDL does. Given a smaller ranging error, LDL can produce 
appropriately higher node position accuracy. 
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Figure 4.  Average position error of three algorithms with different ranging 

error. Anchor fraction and connectivity degree are fixed to 10% and 14, 
repectively. 

In terms of information usage, we can explain this fact as 
follows. When ranging error is low, the amount of information 
about the real distance contained in r is high; the learning 
process adapts the distance function such that weight of r is 
higher than other information. Vice versa, when high ranging 
error causes the correlation between r and the real distance 
decreased, the learning process reduces the weight of r and 
increases the weight of h in the distance function. The fact that 
LDL outperforms in a broad range of ranging error shows that 
flexible use of more than one available information can 
improve the robustness and computational quality. 

2) Anchor fraction and connectivity degree 
Figure 5 and 6 demonstrate the effect of percentage of 

anchors and connectivity degree on estimated position error, 
respectively. 

When the number of anchors decreases, accumulated error 
in data increases because of the longer path from an anchor to a 
destination, resulting in a lower accuracy. When the 
connectivity degree increases the average errors of all 
algorithms reduce. Note that the increase in connectivity 



degree, i.e. a node has a larger number of neighbors, results in 
the higher probability of finding more appropriate values of 
distance-related variables, which represent the real distances 
better. Position estimates, in turn, have higher accuracy. It is 
shown that the better performance of LDL is consistent in all 
conditions. 
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Figure 5.  Average position error of three algorithms with different anchor 

fraction. Connectivity degree and ranging error are fixed to 0.1R and 14, 
respectively. 

10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

connectivity degree

av
er

ag
e 

po
st

io
n 

er
ro

r 
(R

)

AHLos
DV−Hop
LDL

 
Figure 6.  Average position error of three algorithms with different 

connectivity degree. Anchor fraction and ranging error are fixed to 10% and 
0.1R 

C. Distance function adaptation 
In this subsection, we analyze the behavior of LDL 

algorithm in scenarios where sensor nodes are deployed in 
areas with different ranging error. 

We do simulations with 100 nodes randomly deployed in 
an area of 40×20, with the connectivity degree of 10 and 
anchor fraction of 10%. In area A (0≤X≤20; 0≤Y≤20) the 
ranging error is 0.9R, whereas in area B (20≤X≤40; 0≤Y≤20) 
the ranging error is 0.1R. Each node only collects the 
information from 6 closest anchors. 
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Figure 7.  Distance function coefficient belonging to variable r  

Figure 7 and 8 draw the distance function coefficients 
belonging to distance-related variable r and h of each node, 
respectively. The figures show that the distance function is able 
to adapt to the ranging error in each area. In area A where 
ranging error is high the weight of range-based variable r is 
lower than in area B, whereas the weight of range-free variable 
h in A is higher than that in B. This adaptation allows nodes in 
each area to better estimate distances to anchors. This 
characteristic is especially important for large-scale sensor 
networks in which sensor nodes are deployed in a large area 
with different conditions. 
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Figure 8.  Distance function coefficient belonging to variable h 

VI. CONCLUSION 
Given the need of a more robust localization algorithm with 

reasonable node position accuracy in the condition of high 
ranging error, we proposed a novel approach for WSN 
localization to meet that requirement. Using available 
information more efficiently, the LDL algorithm shows that it 
can work better and more robustly than existing ones, i.e. 
producing higher node position accuracy in a wide range of 
working environments. In addition, LDL algorithm is able to 
estimate the appropriate distance function for each area in a 
large scale sensor network which comprises areas with 
different condition. 



For future works, we are interested in implementing LDL 
algorithm in our sensor network system. Also we want to 
extend the node-to-node distance model to include other 
distance-related variables.  
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