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Abstract 
 

In this work, we propose a 3D space handwriting 
recognition system by combining 2D space handwriting 
models and 3D space ligature models based on that the 
most different parts between 2D space handwriting 
characters and 3D space handwriting characters are the 
shapes of ligatures. We design the ligature model not 
dependent on each character but dependent on the 
incoming and the outgoing vector. Therefore with a few 
ligature models, various ligature shapes are modeled. 
Using 2D space handwriting models, we could use many 
models for various writing styles without training. 

Keywords: ligature model, 3D space handwriting, 
online handwriting recognition 

1. Introduction 
Recognition of characters written in 3D space is 

recognizing gesture-like characters written in the air 
with the device that gives a trajectory of hand movement. 
The input device has accelerators and gyroscopes which 
are used in estimating the trajectory.  

Compared to 2D space handwriting characters i.e. 
handwriting characters with pen and tablet, 3D space 
handwriting characters need no writing surface. 
Therefore users can write more freely in the air, and the 
device can be designed in small size and with little 
weight since it needs only small pen-type sensing device. 
Therefore, a 3D handwriting input can be a promising 
input method for the portable devices.  

A 3D space handwriting character, however, shows 
different feature in the shape of the trajectory – it has no 
pen-up/pen-down concept. The natural shape of 3D 
space handwriting character is the trajectory in the form 
of a connected stroke. You can see the shape difference 
between the 2D space handwriting character and the 3D 
space handwriting character in Figure 1.  

In order to recognize 3D space handwriting 
characters, Oh et al. and Cho et al. defined thirteen 
recognition targets[1][2]. The target trajectory was, so 
called, graffiti which is in the form of a uni-stroke, and 
has a similar shape to a corresponding character. By 
restricting the targets, the recognition problem was 
simplified. This policy, however, forced users to use pre-

defined shape of character while it showed high 
recognition performance. Moreover when a user writes 
multiple stroke character such as ‘4’, the user has to 
write a new shape which is predefined in a uni-stroke 
and which he/she has never seen.  

In this paper, we propose a connected stroke 
character recognition system in order to recognize 3D 
space handwriting characters. Based on that most of the 
shape differences between 2D space handwriting 
characters and 3D space handwriting characters are in 
the shapes of ligatures which are the connecting 
trajectories between strokes, we efficiently develop the 
recognition system by combining existing 2D space 
handwriting models and the ligature models of 3D space 
handwriting characters.  

The rest of this paper is organized as following. We 
describe a ligature model in chapter 2, and the 
combination of 2D space handwriting models and 3D 
space ligature models in chapter 3. In chapter 4, we 
show the entire map of the proposed system. In chapter 5, 
we show the extension of the system for Hangul 
recognition. In chapter 6, we evaluate the performance 
of our system with experiments on digit and Hangul. 
Finally in chapter 7, we conclude the work, and discuss 
the future work. 

 

 
Figure 1. 2D space handwriting and 3D space 

handwriting 

2. Ligature Model 
2.1. Need of Ligature Model 

A ligature is a trajectory drawn in moving from a 
previous stroke to a next stroke. A ligature is the most 
different part between the 2D space handwriting and the 
3D space handwriting. As we see in Figure 1, in the 2D 
space handwriting, the ligature is usually drawn with a 
pen-up, and therefore it is relatively easy to find the 
ligature part from the entire trajectory of the character. 
Since the device cannot track the movement of pen when 
the pen is up, a ligature is assumed to be straight line 



  
 
connecting the end point of the previous stroke and the 
start point of the next stroke. This assumption ignores 
the detail shape of ligature. On the other hand, in the 3D 
space handwriting, it is not easy to find the ligature 
because there is no pen-up/pen-down concept. The shape 
of the ligature is cursive since the device gives the 
trajectory information including strokes and ligatures. 

The shapes of 3D space handwriting trajectories 
except for ligatures are similar to those of 2D space 
handwriting trajectories. Therefore by modeling the 
ligatures of 3D space handwriting, we can efficiently 
adapt 2D space handwriting models to 3D space 
handwriting characters. 

2.2. Characteristics of Ligature Shape 
The shape of ligature has two characteristics. 
First, the shape of ligature depends not upon each 

character shape but upon the incoming vector and the 
outgoing vector of the ligature. As you see in Figure 2, 
the ligature of the first consonant ‘ㄷ’ of Hangul – the 
Korean alphabet – has the similar ligature shape of 
vowel ‘ㅜ’. Although characters are different, the 
incoming vector and the outgoing vector of ligature are 
almost same, and this makes similar ligature shapes.  

Second, as you see in Figure 3, a ligature is 
composed of two strokes which are nearly straight. We 
can assume that there is a boundary which divides a 
ligature into two strokes, and the boundary is displayed 
in Figure 3 as one point. From now on, we will call this 
point as a segmentation point. The shape of first stroke 
of ligature, that is, stroke from the start point of ligature 
to the segmentation point, depends more on the 
incoming vector than outgoing vector, and the shape of 
the second stroke depends more on the outgoing vector. 

 
Figure 2. Ligature shape according to incoming 

vector and outgoing vector 
 

 
Figure 3. Ligature is composed of two nearly linear 

strokes 

2.3. Baseline Model – Bayesian Network Based 
Stroke Model 

The basic idea of ligature model is based on the 
stroke model in Bayesian network framework [3]. In this 
model, a stroke is assumed to be a set of points, and the 
stroke model is represented by point distributions 

approximated by Gaussian distribution, and their 
relationship which is represented in Bayesian networks. 
Since it explicitly models points, strokes, and their 
relationship, it shows higher performance than other 
handwriting recognition algorithms such as Hidden 
Markov Models and Neural Networks [3].  

 

      
                (a)                                      (b) 

      
                (c)                                      (d) 
Figure 4. Modeling of stroke end points 
 

       
Figure 5. A model of a middle point. l is the stroke 

length.  
 
Figure 4 (a) shows various stroke samples of a stroke, 

and their end points are displayed with points. Figure 4 
(b) shows the scatter plot of positions of end points, and 
Figure 4 (c) shows Gaussian distributions approximating 
the scatter plot. The point distribution is displayed with 
one node as random variable in the Bayesian network 
structure.  

The middle point of a stroke can be represented in 
the same way. The distribution of middle point, however, 
depends on positions of two end points. This relationship 
can be represented with an arc in Bayesian network 
structure as you see in Figure 5. 

For representing dependency, it is impossible to find 
all distribution tables corresponding to each value of the 
position since the position of point has continuous 
values. However by adopting conditional Gaussian 
distribution [4], we can solve this problem. In 
conditional Gaussian distribution, we assume that the 
mean of the distribution is linear combination of a 
constant and the values of dependent variable, but the 
covariance does not depend on other values. For 
example, the matching probability of the middle point in 
Figure 5 given that two end points are observed is as 
following. 

Let O be the instance of IP, O1 instance of EP1, O2 
instance of EP2, and W coefficient matrix 
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As above, we get the point distribution by finding a 

coefficient matrix W and a covariance matrix Σ . 
A stroke model is defined as joint distribution of 

point distributions. In Figure 5, matching probability of 
the stroke is as follows. 
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2.4. Structure of Ligature Model 
Based on the characteristics of ligature shape, we 

form the Bayesian network structure of the ligature as 
Figure 6 (a). Figure 6 (b) shows points corresponding 
nodes in the structure in vowel ‘ㅗ’.  A ligature model 
composed of 9 point distributions and the 
incoming/outgoing vector distributions. The first stroke 
which is from start point EP1 to segmentation point SegP 
and the second stroke from SegP to EP2 have symmetric 
structure. The distributions of the middle points IPs in 
each stroke depend on their end points. The distributions 
of all middle points in the first stroke and the 
segmentation point depend on the starting point EP1 and 
the incoming vector IVec, and this represents the fact 
that the shape of first stroke depends on the incoming 
vector. The distributions of middle points in the second 
stroke and the segmentation point depend on the end 
point EP2 and the outgoing vector OVec, and this reflects 
that the shape of the second stroke depends on the 
outgoing vector. 

The segmentation point is different from the middle 
points of a stroke in that the segmentation point is not 
positioned in middle of strokes, but positioned where it 
can divide the ligature into two nearly straight strokes. 
The distribution of segmentation point is determined by 
two end points of the ligature and the incoming/outgoing 
vectors. 

 
EP: end point 
IP: middle point 
IVec: incoming vector 
OVec: outgoing vector 

(a) Bayesian network representation 

 
(b) corresponding points in vowel ‘ ㅗ' 
 

Figure 6. Structure of ligature model 

3. Combination of 2D Space Handwriting 
Model and 3D Space Ligature Model 

As you see in Figure 1, the shape of the 3D space 
handwriting trajectory except for the ligature part has the 
similar shape to the 2D handwriting trajectory. Since 
there is already much data collected for 2D space 
handwriting characters and there exist robust 
handwriting models for a large variation and various 
writing styles, we can reduce time and efforts for 
constructing 3D space handwriting models by adding 3D 
space ligature models to existing 2D space handwriting 
models.  

We use a Bayesian network based character model as 
a 2D space handwriting model. This model is robust 
against writing variation since it explicitly models the 
relationship between strokes. Since it represents 
likelihood as a probability and our ligature model also 
gives a probability, it is easy to combine two models. 

In order to add a ligature model to a 2D space 
handwriting model, it is necessary to define an incoming 
vector and an outgoing vector since there are many 
candidates for these vectors. By evaluating the 
correlation coefficient of each candidate and points in 
the ligature, we choose vectors which are most related to 
ligature shape. From experiments, we chose the vector 
from the middle point of previous stroke to the starting 
point of the ligature as the incoming vector and the 
vector from the end point of the ligature to the middle 
point of the next stroke as the outgoing vector.  

In order to find the best position where the 3D 
ligature model is added, the system finds all possible 
segmentation results. However, by restricting the 
number of segmentation boundaries, we can overcome 
the time complexity. 

4. System Implementation 
The flow of the proposed system can be summarized 

by Figure 7. First, ligatures are extracted from connected 
input data, and with this data, ligature models are trained. 
3D space handwriting models are formed by adding 
ligature models to 2D space handwriting models. In the 
recognition step, the matching probabilities between 
input trace and all the models the recognizer has are 
evaluated, and return the label of model which shows the 
maximum probability as the recognition result. 



  
 

 
Figure 7. System flow 
 

 
Figure 8. Ligature extraction 

4.1. Ligature Extraction 
Ligatures are extracted from input trajectories. This 

step is data collection for ligature models. Ligature 
extraction is performed with algorithm, not with hand, 
by finding the parts which are most likely to be ligatures 
by using Bayesian network based 2D space handwriting 
recognizer. 

We can see the procedure in Figure 8. When a 
connected trajectory is inputted, the ligature extractor 
finds all possible segmentation results. The number of 
strokes in each segmentation result is the number of 
strokes of the 2D handwriting model that corresponds to 
the label of the input trajectory. For each segmentation 
result, the ligature extractor finds the stroke that 
corresponds to the ligature in the model, and makes the 
stroke straight. Making straight line is ignoring the detail 
shape of the ligature and making the input trajectory 
adapted to the 2D space handwriting model. For all 
trajectories which are adapted to the 2D handwriting, the 
ligature extractor finds the most probable segmentation 

result which has the maximum matching probability with 
the corresponding model. From the resulting trajectory, 
the original shape of the linearized part is the most 
probable ligature.  

4.2. Ligature Model Evaluation 
A matching probability of ligature model is a joint 

probability of point matching probabilities.  Among all 
the points of the ligature, the coordinate value of the 
segmentation point is not unique whereas the other 
points such as middle points and end points are fixed 
when the end points of ligature and the segmentation 
point are determined. Therefore, we assign the position 
of the segmentation point to the point which makes a 
maximum stroke matching probability. Given that the 
incoming/outgoing vectors and the end points of the 
ligature are observed, a matching probability between 
ligature model and ligature instance is as follows. 
      

                                                                             (3) 
 
 
 
 
 
Here, Pa(X) means parents of random variable X. 

4.3. Training Ligature 
In order to find the parameters of a ligature model, 

we should find those of point model. As we mentioned 
earlier, the parameters of point model is the coefficient 
matrix W and the covariance matrix Σ . These 
parameters are calculated by maximum likelihood 
estimation. Although the positions of all the points 
should be given in order to use maximum likelihood 
estimation, the position of segmentation point is not 
determined, and it is difficult to find the segmentation 
point of all input data by an algorithm. By estimating 
parameters similar to EM (Expectation and 
Maximization) method, this kind of problem can be 
solved. 

5. System Extension for Hangul 
Recognition 

5.1. Need of Character Segmentator 
Since the number of Hangul characters (Korean 

characters) is over ten thousand, making handwriting 
models for each character needs much data to collect and 
needs many model to evaluate. Hangul is, however, 
composed of graphemes – first consonant, a vowel, and 
last consonant – from the forming rule. By recognizing 
graphemes and combining the recognition result, we can 
reduce the number of parameters of models. The state of 
the art of the 2D space online Hangul recognizer adopts 
this grapheme recognizing policy [3] [5]. 
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A Hangul character in the form of connected stroke 
is segmented into first consonant, a vowel, last 
consonant, and between-grapheme ligatures as you see 
in Figure 9. Each component recognizer is formed with 
3D space handwriting models which are explained in 
chapter 4. The main problem of Hangul recognition is 
how to segment input connected stroke into graphemes 
and between-grapheme ligature. Finding all possible 
segmentation results costs extremely high. Therefore we 
need a character segmentator which gives relatively 
small number of segmentation results, and guarantees a 
correct segmentation should exist in the candidates. 

 
Figure 9. Hangul recognition system 

5.2. HMM-Based Character Segmentator 
We use the recognition result from HMM-based 

recognizer for character-to-grapheme segmentation. A 
HMM-based recognizer uses direction code as feature. 
In order to improve Hangul recognition performance we 
adopted BongNet [5] which explains how graphemes 
can be combined to one Hangul character. For finding 
the segmentation result, the recognition label is not used, 
but only grapheme boundaries of recognition result were 
used. 

The model structure of a HMM is automatically 
formed. Since one stroke in handwriting character is 
nearly straight, it can be one state in a HMM. We 
assigned one stroke in the Bayesian network model to 
one state in the HMM, and one ligature to two states in 
the HMM as we assumed that ligature is composed of 
two strokes. Figure 10 shows correspondence between 
consonant ‘ㅅ’ and its HMM structure.  

The HMMs of Hangul components are trained 
separately. The data of each component are collected by 
manual segmentation from the Hangul characters 

 
Figure 10. A HMM structure according to strokes of 

character 

6. Experiments 
Experiments are performed with digit and Hangul. 

6.1. Digit Recognition 
Digit data have 2,100 examples from 14 users. The 

recognition rate is calculated from the 3-fold cross test. 
For comparison, the recognition rate of the proposed 
system and the 2D space handwriting recognizer which 
does not have any 3D space ligature model are evaluated. 

The recognition result is summarized in Figure 11 
and Table 1. The proposed system showed 24% of error 
reduction rate, and total recognition was 93.27%. As our 
expectation, digits that has ligature such as ‘4’, ‘5’, and 
‘6’ showed high error reduction rate. However, there 
was small reduction of recognition rate in ‘3’ and ‘9’. As 
you see in Figure 12, the proposed system correctly 
recognize characters even if they have large variance. 
Errors in digit recognition were caused mainly by two 
problems. The first one is the ambiguity between ‘0’ and 
‘6’, and between ‘1’ and ‘9’. This is an avoidable 
problem and we can also find this problem in the 2D 
space handwriting recognition. This ambiguous 
trajectory is even hard for human to recognize. Second 
one is the ambiguity from the absence of pen-up/pen-
down (Figure 13). According to where the ligature is 
assigned, the recognition result can be different. 
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Figure 11. Digit recognition result. 
 
Table 1. Error reduction rate by ligature modeling 

  Error reduction rate (%)
Total 24.5% 

Digit '4' 43.9% 
Digit '5' 76.0% 
Digit '7' 43.3% 

 

 
Figure 12. Examples of correct recognition 
 

 
Figure 13. Errors from absence of pen state 

6.2. Hangul Recognition 
Hangul data have 3,600 examples from 9 users, and 

the data were divided into train data and test data with 
2:1. Experiments are performed in two categories 
according to recognition target size. The Recognition 



  
 
target of the first experiment is 900 best frequently used 
characters, and that of the second experiment is 2,350 
characters in Hangul ‘Wansung-hyung’ set which covers 
most of Hangul characters in daily use. 

The result showed that the proposed system reduces 
45% of errors compared to the 2D space handwriting 
recognition. Recognition rate was 79% and 64% for 900 
characters and 2,350 characters respectively. In Figure 
14, we see that even for a complex character, proposed 
system correctly finds grapheme boundaries and 
ligatures. Errors are mainly from two problems. First one 
is error in the segmentation. If the character segmentator 
does not give correct grapheme boundaries, Bayesian 
handwriting model cannot recognize the character. 
These errors are about a half of total errors. Second one 
is the error from the ambiguity by the absence of pen-
up/pen-down. As you see in Figure 15, the left-most 
trajectory can be any one of the middle trajectory or the 
right-most trajectory, corresponding to where the 
ligature is assigned. This kind of errors will not be fixed 
only by modeling since the trajectory is hard for human 
to recognize. In order to reduce this ambiguity, a context 
such as a language model is required. Figure 16, shows 
10 best recognition rate when the targets are 900 
characters, and we see that  the number of errors from 
ambiguity decreases as the number of candidates 
increase, but still 8% is not correctly recognized – most 
of this errors are from segmentation errors. 

 
Figure 14. Examples of correct recognition 
 

 
Figure 15. Errors from absence of pen state 
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Figure 16. 10 best recognition rate. The number of 

recognition targets is 900. 

7. Conclusion 
In this work, we proposed the 3D space handwriting 

recognition system by combining 2D space handwriting 
models and 3D space ligature models based on that the 
most different part between the 2D space handwriting 
and the 3D space handwriting is the shape of ligature.  

We designed ligature models not dependent on each 
character shape but dependent on the incoming and the 
outgoing vector. Therefore with a few ligature models, 
various ligature shapes are modeled. Using 2D space 
handwriting models, we could use many models for 
various writing styles without training. 

The Results showed that the proposed system highly 
reduces error compared to the 2D space handwriting 
recognizer. However, it has limitation for practical uses, 
since there are many hard examples to the extent that 
even human cannot recognize it. However, the area 
where 3D space handwriting is applied is not likely to be 
a word processor, but to be a short command input. In 
this situation, since the number of targets is small, a 
strong language model can be applied. Therefore we can 
achieve high recognition rate. 

For Hangul recognition, a half of errors are from the 
segmentation. Therefore, by reducing this kind of errors, 
we will see a large improvement. Since HMM use only 
local information, we can expect improvement by using 
duration modeling.  
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