
Information Sciences 177 (2007) 657–679

www.elsevier.com/locate/ins
A robotic service framework supporting automated
integration of ubiquitous sensors and devices

Young-Guk Ha a,*, Joo-Chan Sohn b, Young-Jo Cho b, Hyunsoo Yoon a

a Computer Science Division, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu,

Daejeon 305-701, Republic of Korea
b Intelligent Robot Research Division, Electronics and Telecommunications Research Institute, 161 Gajeong-dong,

Yuseong-gu, Daejeon 305-700, Republic of Korea

Received 6 July 2005; received in revised form 23 May 2006; accepted 5 July 2006
Abstract

In recent years, due to the emergence of ubiquitous computing technology, a new class of networked robots called ubiq-
uitous robots has been introduced. The Ubiquitous Robotic Companion (URC) is our conceptual vision of ubiquitous
service robots that provides its user with the services the user needs, anytime and anywhere, in the ubiquitous computing
environments. There are requirements to be met for the vision of URC. One of the essential requirements is that the
robotic systems must support ubiquity of services. This means that a robot service must always be available even though
there are changes in the service environment. More specifically, a robotic system needs to be interoperable with sensors and
devices in its current service environments automatically, rather than statically pre-programmed for its environment. In
this paper, the design and implementation of an infrastructure for URC called Ubiquitous Robotic Service Framework
(URSF) is presented. URSF enables automated integration of networked robots in a ubiquitous computing environment
by the use of Semantic Web Services Technologies.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Ubiquitous robotics; Ubiquitous computing; Networked robotics; Service robotics; Service planning; Semantic Web services
1. Introduction

Because of recent innovations in communication network technology, there has been great interest in
researching Internet-based networked robotic systems [31]. Most of these systems are focused on a human-
supervised tele-operation or monitoring of networked robotic devices (for example, mobile robots, unmanned
vehicles, vision sensors, and the like) in the Internet environment. Several attempts have been made to develop
such Internet-based networked robotic systems using the World Wide Web and distributed object technologies
such as Common Object Request Broker Architecture (CORBA) and Java. Leveraging the advantages of
Internet technology, such systems allow users from all over the world to visit museums, tend gardens, navigate
0020-0255/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.ins.2006.07.003

* Corresponding author. Tel.: +82 42 860 6375; fax: +82 42 860 6790.
E-mail address: ygha@etri.re.kr (Y.-G. Ha).

mailto:ygha@etri.re.kr

658 Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679
undersea or float in blimps 24 hours a day. They have great potential for industry, education, entertainment
and security by making valuable robotic hardware accessible to a broad audience.

In recent years, motivated by the emergence of ubiquitous computing [32] technology as the next generation
computing paradigm, a new class of networked robots called ubiquitous robots has been introduced [7,8].
They are actually networked robots integrated into ubiquitous computing environments (including ubiquitous
sensors and devices). They can even be implemented as a form of ubiquitous computing environment them-
selves as demonstrated in the robotic room [15]. The Ubiquitous Robotic Companion (URC) [14] is our con-
ceptual vision for bringing these ubiquitous robots to users and providing them with the services they need
anytime, anywhere in the ubiquitous computing environments. There are requirements to be met for the vision
of URC. One of the essential requirements is that the robotic systems must support ubiquity of services. This
means that a robot service must be always available even though there are changes in the service environment.

However, the current networked robotics approach is mainly focused on a behavior-oriented tele-operation
of remote robotic devices with Web applications or distributed objects programmed for specific environments
as shown in Fig. 1(a). Surely, this helps people to overcome temporal and spatial limitations for providing
services to some extent. Nevertheless, to provide ubiquitous services, robotic systems need to be automatically
interoperable with ubiquitous sensors and devices in the current service environments rather than being stat-
ically pre-programmed for the environments. For example, they should be automatically interoperable with
consumer electronics, embedded actuators, wireless sensors and other similar devices.

In this paper, the design and implementation of infrastructure for URC called the Ubiquitous Robotic Ser-
vice Framework (URSF) is presented. It enables automated integration of networked robots in ubiquitous
computing environments in a service-oriented way. The URSF utilizes Semantic Web Services [9], which
are a state of the art Web technology, and an Artificial Intelligence (AI) planning methodology. These tech-
nologies are used to provide automated interoperation between various networked robots and ubiquitous
computing devices in the service environment. As shown in Fig. 1(b), Web services [41] for robots, networked
sensors and devices are implemented as a unified interface method for accessing them. Then, knowledge about
such Web services is described in Web Ontology Language for Services (OWL-S) [29], the semantic description
Fig. 1. Traditional networked robot system and the URSF approach. (a) Traditional networked robotic system for specific environments
E1. (b) Automatic interoperability with changed service environments based on knowledge about sensors and devices in the environments.

Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679 659
language for Web services. At this point, this knowledge is registered to environmental Knowledge Bases (KB)
so that a robotic agent can automatically find the required knowledge and compose a feasible service execution
plan for the current environments. Finally, the agent provides the service by automatically interacting with
robots, sensors and devices through the use of the Simple Object Access Protocol (SOAP) [40], which is a
Web service execution protocol, according to the service plan.

This paper is organized as follows. Section 2 briefly introduces existing networked robotics approaches and
the Semantic Web Services technologies as the fundamental background for the paper. Section 3 describes the
detailed design of the URSF and its interoperability with standard service frameworks. Section 4 explains the
prototype implementation, experiments and performance evaluation of the URSF in our networked home test
bed. Finally, Section 5 discusses conclusions, known limitations and future work.

2. Background

2.1. Networked robotics technologies

A ‘‘networked robot’’ [31] is a robotic device connected to a communications network such as the Internet
or Local Area Network (LAN). The network could be wired or wireless and based on any of a variety of pro-
tocols such as Hypertext Transfer Protocol (HTTP), Transmission Control Protocol (TCP), User Datagram
Protocol (UDP) or IEEE 802.11 wireless LAN. Many new applications are now being developed ranging from
automation to exploration. There are two subclasses of networked robots: tele-operated, where human super-
visors send commands and receive feedback via the network; and autonomous, where robots and sensors
exchange data via the network to perform a task. In such systems, the sensor network extends the effective
sensing range of the robots, allowing them to communicate with each other over long distances to coordinate
their activity.

The existing approach to networked robotics is mainly focused on a behavior-oriented tele-operation with
Web applications or distributed objects programmed for known operational environments such as known
objects, sensors and actuators. Typical Web-based networked robotic systems use HTTP combined with Com-
mon Gateway Interface (CGI) or Java applets to control remote sensors and actuators. Some examples of
these are the University of Southern California’s tele-excavation system, Mercury [3]; Carnegie Mellon Uni-
versity’s indoor mobile robot, Xavier [17]; Ecole Polytechnique Fédérale de Lausanne’s maze robot, KhepOn-
TheWeb [16]; and Roger Williams University’s PumaPaint [19]. Another approach to networked robotic
systems is based on distributed object technology such as CORBA and Java Remote Method Invocation
(RMI). Some examples are the Network Robot Service Platform (NRSP) [20] and the Distributed Architec-
ture for Internet Robot (DAIR) [4].

In recent years, a new kind of networked robotics project has been undertaken in the Japanese National
Institute of Advanced Industrial Science and Technology (AIST) incorporating the concept of ubiquitous
computing. The goal of the project is to develop a knowledge distributed robot system [6], based on a Radio
Frequency Identification (RFID) technology, which can automatically integrate objects in service environ-
ments. In the knowledge distributed robot system, every object in service environments has a RFID tag which
stores the address of a Web page containing the object information encoded in eXtensible Markup Language
(XML). A robot can read addresses for object information Web pages from RFID tags and automatically
handle the environmental objects by obtaining required information about the objects from the Web pages.
However, this project is only focused on physical integration of the environment, that is, identification and
physical handling of objects in service environments. So, the object information in the knowledge distributed
robot system mainly includes physical feature data of the objects such as object’s name, size, position, weight,
and so on. In addition, there is no consideration about context-dependent services.

2.2. Semantic Web services

The Web, once a repository of text and images, is evolving into a provider of services: information-provid-
ing services, such as Internet information providers and portals; and world-altering services, such as airline
reservation services and e-commerce applications. Web-accessible programs and databases implement these

Fig. 2. Top level of OWL-S service ontology.

660 Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679
services through the use of CGI, Java, ActiveX or the Web services [40,41] technology. To have computer pro-
grams or agents implement reliable and automated interoperation of such services, the need to make the ser-
vice computer interpretable is fundamental. That is, to create a Semantic Web [1] of services whose semantics,
such as properties, capabilities and interfaces, are encoded in an unambiguous, machine-understandable form
that are based on Resource Description Framework (RDF) [37] or Web Ontology Language (OWL) [35]. The
Semantic Web Services technology is developed to meet this need by describing Web services with OWL ontol-
ogy, namely OWL-S [29], which provides AI-inspired markups (classes and properties) for specifying a richer-
level of service semantics. As shown in Fig. 2, OWL-S markups are grouped into three essential parts for
describing the service profile, the service model and the service grounding.

The OWL-S service ontology can be encoded with XML and the following example shows the top level of
OWL-S service ontology in XML. Note that in this paper, most of the example data is encoded with XML.
And the semantics of each vocabulary used in the examples is based on the formal semantics of RDF [37,38],
RDF Schema (RDFS) [38,39], OWL [35,36] and OWL-S (service, profile, process and grounding ontology)
[11,29] as it is prefixed by a namespace.

<service:Service rdf:ID=‘‘ServiceName’’>
<service:presents rdf:resource=‘‘ServiceProfile’’/>
<service:describedBy rdf:resource=‘‘ServiceModel’’/>
<service:supports rdf:resource=‘‘ServiceGrounding’’/>

</service:Service>
2.2.1. Service profile

The service profile tells ‘‘what the service does,’’ that is, it gives the type of information needed by a service
requester agent to determine whether the service meets its needs. In addition to representing the capabilities of
a service, the service profile can be used to express the needs of the service requester agent so that a match-
maker has a convenient dual-purpose representation upon which to base its operations. The OWL-S profile
ontology provides useful markups to describe a service profile: Profile, has_process, serviceName, textDescrip-
tion, serviceCategory, hasInput, hasOutput, hasPrecondition, hasEffect, and so on.

The following example shows a profile of an airline reservation service named ‘‘Profile_Airline_Reserva-
tionService,’’ which is described with the markups for specifying Input, Output, Precondition and Effects
(IOPE) of the service.

<profile:Profile rdf:ID=‘‘Profile_Airline_ReservationService’’>
<profile:serviceName>Airline_ReservationService</profile:serviceName>
<profile:hasInput rdf:resource=‘‘#DepartureAirport_Input’’/>
<profile:hasInput rdf:resource=‘‘#ArrivalAirport_Input’’/>
<profile:hasInput rdf:resource=‘‘#OutboundDate_Input’’/>
<profile:hasOutput rdf:resource=‘‘#ReservationID_Output’’/>
<profile:hasPrecondition rdf:resource=‘‘#SeatExists_Precondition’’/>

Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679 661
<profile:hasEffect rdf:resource=‘‘#HaveSeat_Effect’’/>
</profile:Profile>
2.2.2. Service model

The service model tells ‘‘how the service works,’’ that is, it describes what happens when a service is carried out.
This description may often be used by a service requester agent in the following ways: to perform a more in-depth
analysis of whether the service meets its needs; to compose service descriptions from multiple services to achieve a
specific goal; to coordinate the activities of the different participants during the course of the service enactment;
and to monitor the execution of the service. The OWL-S process ontology provides the following markups to
model services as processes (atomic or composite processes): ProcessModel, hasProcess, AtomicProcess, Com-
positeProcess, composedOf, components, Sequence, Choice, Split, Split-Join, Repeat-Until, and so on.

The next example shows ‘‘Airline_Reservation_ProcessModel,’’ a composite process model for the above
airline reservation service, which is described as a sequence of three component processes ‘‘Get-
DesiredFlightDetails,’’ ‘‘SelectAvailableFlight’’ and ‘‘BookFlight.’’

<process:ProcessModel rdf:ID=‘‘Airline_Reservation_ProcessModel’’>
<process:hasProcess>

<process:CompositeProcess rdf:ID=‘‘Airline_Reservation_Process’’>
<process:composedOf>

<process:Sequence>
<process:components rdf:parseType=‘‘Collection’’>

<process:AtomicProcess rdf:about=‘‘#GetDesiredFlightDetails’’/>
<process:AtomicProcess rdf:about=‘‘#SelectAvailableFlight’’/>
<process:CompositeProcess rdf:about=‘‘#BookFlight’’/>

</process:components>
</process:Sequence>

</process:composedOf>
</process:CompositeProcess>

</process:hasProcess>
</process:ProcessModel>
2.2.3. Service grounding

The service grounding specifies the details of how an agent can access a service. Typically, a service ground-
ing will specify concrete service operations, message formats for inputs/outputs and other interface-specific
details such as port types used in contacting the service. In addition, the service grounding must specify,
for each abstract type specified in the service model, an unambiguous way of exchanging data elements of that
type with the service. The OWL-S grounding ontology provides the following markups to ground OWL-S
atomic processes with concrete Web services implementations whose interfaces are described in the Web Ser-
vices Description Language (WSDL) [42]: WsdlAtomicProcessGrounding, owlsProcess, wsdlOperation, port-
Type, operation, wsdlInputMessage, wsdlInputs, WsdlInputMessageMap, owlsParameter, wsdlMessagePart,
WsdlOperationRef, and so on.

The next example shows part of a service grounding for the OWL-S atomic process ‘‘GetDesiredFlightDe-
tails’’ in the previous example. The example describes that the process itself is mapped into a Web service oper-
ation ‘‘GetDesiredFlightDetails_operation’’ and its input ‘‘DepartureAirport_Input’’ is mapped into an input
message ‘‘departureAirport’’ of the concrete Web service http://www.bravoair.com/services/BravoAir
ReservationService.

<grounding:WsdlGrounding rdf:ID=‘‘Grounding_GetDesiredFlightDetails’’>
. . .

<grounding:wsdlDocument>
http://www.bravoair.com/services/BravoAirReservationService?wsdl

</grounding:wsdlDocument>

http://www.bravoair.com/services/BravoAirReservationService
http://www.bravoair.com/services/BravoAirReservationService
http://www.bravoair.com/services/BravoAirReservationService

662 Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679
<grounding:wsdlOperation>
<grounding:WsdlOperationRef>

<grounding:operation>GetDesiredFlightDetails_operation</grounding:operation>
</grounding:WsdlOperationRef>

</grounding:wsdlOperation>

<grounding:WsdlInputMessageMap>
<grounding:owlsParameter rdf:resource=‘‘#DepartureAirport_Input’’/>
<grounding:wsdlMessagePart>departureAirport</grounding:wsdlMessagePart>

</grounding:WsdlInputMessageMap>
. . .

</grounding:WsdlGrounding>

3. Design of the URSF

3.1. The architecture of the URSF

As shown in Fig. 3, the architecture of URSF consists of three major components, a Robotic Agent (RA),
Device Web Services (DWS) and an Environmental Knowledge Repository (EKR). The RA, as a service
requester agent, plays the main role in the automated integration procedure of the URSF. Each DWS is a
concrete implementation of Web services for ubiquitous devices in service environments and the EKR is used
for registration and discovery of knowledge about the service environments including OWL-S descriptions for
each DWS. The EKR also includes OWL ontology of general concepts necessary to describe the knowledge.
The following subsections will explain details of each URSF component based on its activities.

3.1.1. Robotic agent (RA)

The RA consists of a service application, a URSF Application Programming Interface (API), a plan com-
position module, a knowledge discovery module, a plan execution module, an OWL reasoner and a protocol
stack for Web services execution including SOAP, XML and HTTP.

To request a robot for a service, a user can input a command with a user interface for the service applica-
tion. Then, the service command is encoded with vocabularies in OWL-S profile ontology and the concept
ontology stored in the EKR so that the knowledge discovery module and the plan composition module can
understand the user’s service request. For instance, suppose that a user inputs a command ‘‘Come here’’ with
the user interface, which tells a robot to move to the location where the user is currently positioned. It is
encoded into the following OWL-S service profile to explicitly represent semantics of the user’s request.
The profile has ‘‘UserLocation_Input’’ an instance of ‘‘UserLocation’’ concept as an input and ‘‘AtLo-
Fig. 3. Detailed architecture of URSF.

Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679 663
cation_Effect’’ an instance of ‘‘AtLocation’’ concept as an effect. Note that a concept class prefixed by ‘‘con-
cepts’’ namespace is defined in the concept ontology.

<!- -Instance declarations for the concept classes- ->
<concepts:UserLocation rdf:ID=‘‘UserLocation_Input’’/>
<concepts:AtLocation rdf:ID=‘‘AtLocation_Effect’’/>

<profile:Profile rdf:ID=‘‘Profile_ServiceRequest’’>
<profile:hasInput rdf:resource=‘‘#UserLocation_Input’’/>
<profile:hasEffect rdf:resource=‘‘#AtLocation_Effect’’/>

</profile:Profile>

To search KB’s in the EKR for required knowledge in order to compose a service plan, the RA creates dis-
covery queries encoded in RDF Data Query Language (RDQL) [10] by inferring the semantics of the request
profile with the OWL reasoner. For instance, the RA can recognize that it needs to know the user’s location as
an input value for the service by inferring from the above request profile. The user’s location is one of the
essential service contexts as well. So, the knowledge discovery module of the RA needs to discover a user loca-
tion provider service using the following RDQL query, which tells the EKR to find a service described by a
process model having a process that outputs an instance of ‘‘UserLocation’’ concept.

SELECT ?service
WHERE (?service, service:describedBy, ?processModel)
(?processModel, process:hasProcess, ?process)
(?process, process:hasOutput, ?output)
(?output, rdf:type, concepts:UserLocation)
As the result of querying, the knowledge discovery module can receive OWL-S knowledge about a user
location provider service that has an instance of ‘‘UserLocation’’ concept as its output. By invoking the dis-
covered service based on its service grounding, the RA can gather the required context data. Then by execut-
ing the semantic service discovery algorithm (refer to Section 3.2 for details) with the request profile, the
knowledge discovery module can obtain required knowledge for planning from the EKR. This includes
OWL-S description about ‘‘MoveToService’’ which is a feasible robot navigation service. As shown in the next
example, the discovered knowledge includes ‘‘MoveToServiceProcessModel,’’ an atomic process model for the
service, which has ‘‘Location_Input’’ an instance of ‘‘Location’’ concept (a super-concept of ‘‘UserLocation’’
of the request profile) as its input, and an instance of ‘‘AtLocation’’ concept as its effect. It also includes
‘‘MoveToServiceGrounding,’’ a grounding for the discovered service, which will be used in the plan execution
module.

<service:Service rdf:ID=‘‘MoveToService’’>
<service:described By rdf:resource=‘‘#MoveToServiceProcessModel’’/>
<service:supports rdf:resource=‘‘#MoveToServiceGrounding’’/>

</service:Service>

<process:ProcessModel rdf:ID=‘‘MoveToServiceProcessModel’’>
<process:hasProcess>

<process:AtomicProcess rdf:ID=‘‘MoveToServiceProcess’’>
<process:hasInput rdf:resource=‘‘#Location_Input’’/>
<process:hasEffect rdf:resource=‘‘#AtLocation_Effect’’/>

</process:AtomicProcess>
</process:hasProcess>

</process:AtomicProcess>

<grounding:WsdlGrounding rdf:ID=‘‘MoveToServiceGrounding’’>

664 Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679
. . . : Details of the grounding are omitted.

</grounding:WsdlGrounding>

After the gathering of context data and the discovery of all the required knowledge, the RA starts to gen-
erate a service plan using an AI-based planning methodology (refer to Section 3.3 for details). The following
example in XML shows a service plan generated by the plan composition module using the context data and
the discovered service knowledge. The plan is simply composed of a single robot control service that navigates
the robot to the user’s current location ‘‘LivingRoom.’’ However it is not an executable plan. The plan exe-
cution module translates the service plan into an executable format using a service grounding for each service
and finally executes the executable plan through the Web service protocol stack (refer to Section 3.4 for
details).

<plan>
<service name=‘‘MoveToServiceProcess’’>

<input name=‘‘Location_Input’’ value=‘‘LivingRoom’’/>
</service>

</plan>
3.1.2. Device Web service (DWS)

As briefly introduced in the beginning of this section, the DWS is actually a concrete implementation of
Web services for ubiquitous devices including mobile robots, sensors, actuators, digital appliances, and so
on (i.e. implementation of a robot navigation service and user location sensing service). Each DWS has a
device control object and a WSDL description to represent how to bind to the control object with SOAP
Remote Procedure Call (RPC) [40]. The control object can be associated with either one device or multiple
devices that work cooperatively. For instance, a mobile robot or a group of RFID readers to sense where
the user is currently could be used (refer to Section 4 for details). And the DWS also includes a Web service
protocol stack to communicate with the RA.
3.1.3. Environmental Knowledge Repository (EKR)

The EKR is a permanent storage of OWL-S knowledge necessary to compose a feasible service plan for
specific service environments. The EKR contains two kinds of knowledge bases: a domain KB and a device
KB. The domain KB stores OWL-S descriptions of composite process models including control flows of com-
ponent processes. Each description represents a common service model for a certain domain called the domain
service model. A typical example of the domain service model was given as ‘‘Airline_Reservation_Process-
Model’’ in Section 2.2. The domain KB also stores the OWL ontology of general concepts to describe the
IOPE of services: for instance, the ‘‘AtLocation’’, ‘‘UserLocation’’ and ‘‘LivingRoom’’ concepts in the previ-
ous and forthcoming examples. The device KB stores OWL-S descriptions of atomic services with correspond-
ing groundings. Each description represents a DWS for specific service environments. An example of DWS
knowledge is given as ‘‘MoveToService’’ in the above robotic agent subsection. More running examples of
the service knowledge bases will be presented in Section 4.

In addition to the knowledge bases, the EKR includes the discovery service object to handle RDQL queries
from the knowledge discovery module of the RA. The EKR also includes a Web service protocol stack
because it works as a Web service itself. That is, the RA can access the EKR with SOAP (the unified interface
protocol in our framework).

Fig. 4 summarizes the automated integration procedure of URSF, which is divided into the context data
gathering and the service composition, and the activity of each component during the procedure (for reference,
the dashed arrows in the figure mean SOAP RPC messaging). As illustrated in the figure, the automated inte-
gration procedure starts with passing the service request profile to the plan composition module by calling the
URSF API. Especially, the service composition is broken down into three phases: knowledge discovery phase,
service plan composition phase and plan execution phase. The following sections will explain each service
composition phase in more detail using specific data examples.

Fig. 4. Automated integration procedure of URSF.

Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679 665
3.2. Knowledge discovery phase

As mentioned above, knowledge about domain service models and device Web services are described with
OWL-S so that the RA can automatically discover the required knowledge to compose a service plan for a
user request. Knowledge about device Web services, which is described with OWL-S atomic processes [29]
and corresponding service groundings, is used to generate the space of feasible actions in specific service envi-
ronments during the plan composition phase. At this point, knowledge about domain service models, which is
described with OWL-S composite processes [29], is used to constrain how the service plans are to be composed
independently of specific service environments.

As shown in Fig. 4, the knowledge discovery is actually performed by sending discovery queries to the EKR
and receiving responses through SOAP. In the course of query messaging, the knowledge about a domain ser-
vice model is found from the domain KB and then the knowledge about required device Web services is found
from the device KB. In the knowledge discovery module, we implement the semantic service discovery algo-
rithm to compose a feasible plan for the requested service. Prior to explaining the details of the semantic ser-
vice discovery algorithm, we will introduce the existing service discovery approach and discuss its limitation in
ubiquitous service environments.

666 Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679
3.2.1. Existing service discovery approach

Currently existing service discovery technologies use interface-based, attribute-based or unique-identifier-
based query matching algorithms at a syntactic level (i.e. matching the name of services and the type of argu-
ments). For instance, Sun Microsystem’s Jini [25], a service is described with a Java interface definition and
registered to a service lookup server. Then a Jini client can discover a service from the lookup server by syn-
tactically matching with the interface description of the service. Microsoft’s Universal Plug and Play (UPnP)
[33] uses a syntactic service attribute matching, based on service descriptions in XML. And most of the exist-
ing service discovery technologies such as Service Location Protocol (SLP) [27], Salutation [30] and DEAP-
space [13] also use a similar syntactic level matching algorithm.

However, the existing service discovery approaches based on syntactic matching are inefficient for ubiquitous
computing environments where the variety and heterogeneity of service implementations and their interfaces
exist. For instance, we can have the same service implement different interfaces (i.e. arguments with different
names or types), which could result in the failure of a syntactic match if the service query does not match with
any interface. Suppose that the EKR have knowledge of a robot navigation service that has a ‘‘Location’’ as its
input argument and makes the robot move to the given location. If a robotic agent tries to discover a robot nav-
igation service that has a ‘‘UserLocation’’ as its input argument using a syntactic level matching algorithm, it will
fail because there is no exact match for the requested input argument. So, we need a more expressive method to
describe services and to discover services in a semantic manner for ubiquitous service environments.

3.2.2. Semantic service discovery algorithm
The semantic service discovery algorithm of URSF can overcome the limitations of the existing service dis-

covery approach by matching with a semantically compatible (replaceable) service for every device Web ser-
vice that is not discovered by exact query matching. For instance, the previously mentioned problem of
syntactic service discovery can be resolved by matching with a service that has an input argument which is
equivalent to or a super-class of ‘‘UserLocation’’ by reasoning about the concept ontology.

As formerly explained, knowledge about domain service models and device Web services are described with
OWL-S composite and atomic processes, which have OWL individuals [35] as their IOPE property [29] values.
For instance, an atomic process ‘‘MoveToServiceProcess’’ in the example of Section 3.1 has an OWL individ-
ual ‘‘Location_Input’’ (an instance of ‘‘Location’’ concept) as a value of its ‘‘hasInput’’ property. Therefore,
we defined some semantic relations between OWL individuals and OWL-S processes based on a predicate
logic to describe the algorithm formally: that is, p(s,o), where p is a predicate, s is a subject of p, and o is
an object of p. An OWL and OWL-S statement can be translated into a predicate logic representation by map-
ping a property into p, a domain value of the property into s, and a range value of the property into o. To help
understand the formal definitions, predicate logic representations for a part of the concept ontology and two
atomic processes, ‘‘MoveToServiceProcess’’ in Section 3.1 and ‘‘MoveToLocation’’ in the ‘‘RaiseIndoor-
BrightnessProcessModel’’ example of Section 4.2, are given as follows:

//Predicate logic representation of the concept ontology.

rdfs:subClassOf(UserLocation, Location)
. . .

//Predicate logic representation of ‘‘MoveToServiceProcess.’’

process:hasInput(MoveToServiceProcess, Location_Input)
process:hasEffect(MoveToServiceProcess, AtLocation_Effect)

. . .
//Predicate logic representation of ‘‘MoveToLocation.’’

process:hasInput(MoveToLocation, UserLocation_Input)
process:hasEffect(MoveToLocation, AtLocation_Effect)

. . .
Definition 1 (Individual subsumption relation (x � y)). An OWL individual x of class a subsumes an OWL
Individual y of class b iff rdfs:subClassOf(b,a) _ owl:equivalentClass(a,b) holds.

Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679 667
For instance, an individual subsumption relation ‘‘Location_Input � UserLocation_Input’’ holds for the above
predicate logic representations because ‘‘Location_Input’’ is an instance of class ‘‘Location’’ and ‘‘UserLoca-
tion_Input’’ is an instance of class ‘‘UserLocation’’ defined as a subclass of ‘‘Location’’ on the concept ontology.

Definition 2 (Individual subsumption relation on a property (x � y/p)). An OWL individual x subsumes an
OWL individual y on an OWL property p iff for each a 2 {vjp(x,v)}, there exists distinct b 2 {ujp(y,u)} s.t.
a � b.

For instance, an individual subsumption relation on a property ‘‘MoveToServiceProcess �MoveToLo-
cation/process:hasInput’’ holds for the above predicate logic representations because ‘‘MoveToServicePro-
cess’’ has ‘‘Location_Input’’ and ‘‘MoveToLocation’’ has ‘‘UserLocation_Input’’ for the value of each
‘‘hasInput’’ property, and ‘‘Location_Input � UserLocation_Input’’ holds. This means that ‘‘MoveToSer-
viceProcess’’ accepts more general inputs than ‘‘MoveToLocation.’’

In addition, ‘‘MoveToLocation �MoveToServiceProcess/process:hasEffect’’ also holds and vice versa for
the above predicate logic representations because ‘‘MoveToLocation’’ and ‘‘MoveToServiceProcess’’ both
have an instance of the same class ‘‘AtLocation’’ for the value of each ‘‘hasEffect’’ property. This means that
‘‘MoveToLocation’’ produces the same effects as ‘‘MoveToServiceProcess.’’

Definition 3 (Process compatibility relation (x � y)). An OWL-S process x is compatible with an OWL-S pro-
cess y iff (x � y/process:hasInput) ^ (x � y/process:hasPrecondition) ^ (y � x/process:hasOutput) ^ (y � x/
process:hasEffect).

For instance, a process compatibility relation ‘‘MoveToServiceProcess �MoveToLocation’’ holds for the
above predicate logic representations because ‘‘MoveToServiceProcess �MoveToLocation/process:hasInput’’
and ‘‘MoveToLocation �MoveToServiceProcess/process:hasEffect’’ hold. This means that ‘‘MoveToService-
Process’’ can be used instead of ‘‘MoveToLocation’’ but not vice versa because ‘‘MoveToServiceProcess’’
accepts more general inputs than and produces the same effects as ‘‘MoveToLocation.’’

Definition 4 (Process equivalence relation (x � y)). An OWL-S process or profile x is equivalent to an OWL-S
process or profile y iff x and y have the same set of IOPE property values.

The semantic service discovery algorithm is given below. As shown in the pseudo codes, the input of the
algorithm is a service request profile R, and the outputs of the algorithm are a discovered domain service
model M and a set of discovered device Web services D.
Procedure Semantic_Service_Discovery (R, M, D)
Input: a service request profile R;
Outputs: a domain service model M, a set of device Web services D;

{
D ;;
Discover a domain service model M from the domain KB s.t. composite process of M � R;
If (the discovery fails) exit with Discovery_Error;

Call DWS_Discovery(M, D);
} // End of procedure Semantic_Service_Discovery

Procedure DWS_Discovery(M, D)
Input: a domain service model M;
Output: a set of device Web services D;

{
For each component process P in M {

If (P is a composite process) call DWS_Discovery(P, D);

Discover a device service S from the device KB s.t. atomic process of S � P;
If (the discovery successes) add S to D;
Else {

668 Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679
Discover a device service S from the device KB s.t. atomic process of S � P;
If (the discovery successes) {

Add S to D;
Replace P in the service model M with atomic process of S;

} Else, exit with Discovery_Error;
}

}
} // End of procedure DWS_Discovery

To begin with, the semantic service discovery algorithm discovers a domain service model M that is equiv-
alent to the service request profile R in accordance with the process equivalence relation (Definition 4). On
success of the discovery, the algorithm proceeds to discover a device Web service that has an equivalent atomic
process to each component atomic process of the domain service model M in accordance with the process
equivalence relation (Definition 4). When a match is found, the algorithm adds the matched service to the
set of device Web services D. On a failure, the algorithm tries to discover a device Web service that has seman-
tically compatible atomic process for the failure in accordance with the process compatibility relation (Defi-
nition 3). If the discovery succeeds, the algorithm adds the discovered device Web service to the set of device
Web services D and extends the domain service model M by replacing the corresponding component process
with the atomic process of the discovered device Web service.

3.3. Plan composition phase

In the plan composition phase, a feasible service plan for the user request is automatically composed using
Hierarchical Task Network (HTN) planning [2]. HTN planning is an AI planning methodology used to
resolve planning problems by a task decomposition process in which the planner decomposes tasks into smal-
ler subtasks until primitive tasks, which can be performed directly, are found. The entire task decomposition
process is based on planning operators and methods called a planning domain. Such task decomposition con-
cepts and modularity of HTN planning is very similar to the concept of composite and atomic processes in
OWL-S. In addition, HTN planning supports expressive domain and precondition representation to solve
the complex planning problems efficiently. To perform HTN planning, it is required to translate OWL-S
knowledge found in the discovery phase into the HTN planning domain. That is, translate a domain service
model M into the planning methods and a set of device Web services D into the planning operators (note that
M and D are outputs from the service discovery algorithm in the previous section).

We programmed such translation algorithms into the plan composition module of the RA. Because we used
the University of Maryland’s domain-independent HTN planning system, SHOP2 (Simple Hierarchical
Ordered Planner) [12] for the implementation, generating a planning domain in terms of SHOP2 domain is
required. Inheriting a generic HTN domain, each SHOP2 operator describes what needs to be done to accom-
plish some primitive task and each SHOP2 method tells how to decompose some compound task into partially
ordered subtasks. A SHOP2 operator is an expression of the form (:operator (!p v) (Pre) (Del) (Add)), where p

is a primitive task with a list of input parameters v, Pre represents the operator’s preconditions, Del represents
the operator’s delete list that includes a list of things that will become false after an operator’s execution, and
Add represents the operator’s add list that includes a list of things that will become true after the operator’s
execution. Knowledge about a device Web service, described with an OWL-S atomic process A, is translated
into a SHOP2 planning operator by replacing p with A, v with a set of inputs of A, Pre with conjunction of all
the preconditions of A, and Add with conjunction of all the effects of A. For instance, the following SHOP2
operator is generated from ‘‘MoveToServiceProcess’’ in the example of Section 3.1 by replacing p with
‘‘MoveToServiceProcess,’’ v with ‘‘?Location_Input,’’ and Add with ‘‘AtLocation_Effect.’’ Note that Pre

and Del are null because ‘‘MoveToServiceProcess’’ has no preconditions.

(:operator (!MoveToServiceProcess ?Location_Input)

() () ; No precondition and delete list

(AtLocation_Effect)) ; Add list

Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679 669
A SHOP2 method is an expression of the form (:method (c v) (Pre1) (T1) (Pre2) (T2) . . .), where c is a compound
task with a list of input parameters v, each Prei is a precondition expression, and each Ti is a partially ordered set
of subtasks with input parameters for Prei. Knowledge about a domain service model, described with an OWL-S
composite process C with component processes P16i6n, is translated into a set of SHOP2 planning methods
according to the control construct of C. For example, the specific form (:method (c v) (Pre) (T)) is used to express
a method for a composite process with a ‘‘Sequence’’ control construct, where c is replaced with C, v with a set of
inputs of C, Pre with conjunction of all the preconditions of C, and T with an ordered list of (P1 . . . Pn). For
instance, in the second experiment in Section 4.3, ‘‘RaiseIndoorBrightnessProcessModel’’ is discovered as a
domain service model, and ‘‘MoveToServiceProcess’’ and ‘‘TurnOnLightServiceProcess’’ are discovered as
device Web services. So, the following SHOP2 method is generated during the plan composition phase of the
second experiment by replacing c with ‘‘RaiseIndoorBrightnessProcess,’’ v with ‘‘?Location_Input,’’ and T with
‘‘(MoveToServiceProcess ?Location_Input) (TurnOnLightServiceProcess),’’ an ordered list of discovered device
Web services. Note that Pre is null because ‘‘MoveToServiceProcess’’ has no preconditions.

(:method (RaiseIndoorBrightnessProcess ?Location_Input)

() ; No precondition

((MoveToServiceProcess ?Location_Input)
(TurnOnLightServiceProcess))) ; List of subtasks
Consequently, the SHOP2 planner generates a total ordered set of atomic processes for device Web services
based on the planning operators and methods. The next example shows an input planning problem and output
service plan of the SHOP2 planner for the second experiment in Section 4.3 where a user is in the kitchen and
commands the robot to ‘‘Make it brighter.’’ Note that the user’s current location ‘‘Kitchen’’ is obtained during
the context data gathering procedure and used to formulate the planning problem combined with the domain
service model.

Planning problem:
(RaiseIndoorBrightnessProcess Kitchen)

Generated plan:
((MoveToServiceProcess Kitchen) (TurnOnLightServiceProcess))
Before the plan execution phase, the output of the SHOP2 planner is encoded with XML for the future
interoperability with other service agents or applications. Examples of XML-encoded service plans are given
in the end of Section 3.1 and the experiments of Section 4.3. For more references to SHOP2, see [12,18].

3.4. Plan execution phase

The result of the plan composition phase is a sequence of primitive tasks encoded in XML, that is, a
sequence of OWL-S atomic processes of discovered services without any access information. To be executed,
a service plan must be translated into an executable format such as a process of concrete Web services oper-
ations and messages defined in WSDL descriptions. In our implementation, Business Process Execution Lan-
guage for Web Services (BPEL4WS) [22] is used to create the executable Web service processes at the plan
execution phase. During the creation of the executable process, service groundings for discovered device
Web services are used to generate a BPEL4WS process from the output of the plan composition phase.
The following example shows a part of a BPEL4WS process generated during the second experiment in Sec-
tion 4.3. It includes a sequence of two ‘‘invoke’’ statements of concrete Web services operations and messages:
the first one is for the ‘‘moveTo’’ operation of the Web service ‘‘NavigationService’’ with an input message
‘‘MoveTo_Input’’ and the second one is for the ‘‘turnOnLight’’ operation of the Web service ‘‘LightControl-
Service.’’ Note that such information about concrete Web services comes from the relevant service groundings.

<process xmlns: ws1=‘‘http://robot.etri.re.kr:8080/axis/NavigationService’’
xmlns:ws2=‘‘http://robot.etri.re.kr:8080/axis/LightControlService’’>

http://robot.etri.re.kr:8080/axis/NavigationService
http://robot.etri.re.kr:8080/axis/LightControlService

670 Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679
. . .
<sequence>

. . .
<invoke portType=‘‘ws1:NavigationService’’

operation=‘‘moveTo’’
inputVariable=‘‘ws1:MoveTo_Input’’ . . ./>

<invoke portType=‘‘ws2: LightControlService’’
operation=‘‘turnOnLight’’ . . ./>

. . .
</sequence>

</process>

Fig. 5 illustrates a data flow diagram for generating an executable BPEL4WS process from discovered
OWL-S knowledge about a domain service model and device Web services during the service composition pro-
cedure. For reference, shaded rectangles in the diagram represent major processes of the plan composition and
execution phases, and rounded rectangles in the diagram represent data (inputs and outputs) for each process.
Note that at this time, we do not consider contingency planning and execution monitoring features of the
framework during the service composition procedure. However, it is important to implement robust service
systems and this will be one of our research and development issues for the next project.

3.5. URSF and existing service frameworks

This section will introduce how URSF applications can interoperate with networked devices and sensors
deployed using other service frameworks. Currently, there exist many standard service frameworks for heter-
ogeneous devices and sensors. Among these standards, Open Service Gateway Initiative (OSGi) and Open
Geographic Information System (OpenGIS) are most effective and commonly accepted technologies. The
OSGi Service Platform [28] provides a Java-based service-hosting environment for residential gateways as well
as a set of common APIs to develop dynamically downloadable service bundles. It also provides several basic
services such as configuration management, user management, device management and HTTP service. The
OpenGIS SensorWeb [26] specifies interoperability interfaces and metadata encodings that enable integration
of heterogeneous Web-connected sensors into information infrastructures based on XML and Web Services
technologies. The SensorWeb specifications provide Sensor Model Language (SensorML), Sensor Observa-
tion Service (SOS) and Sensor Planning Service (SPS) over the OpenGIS Web Service (OWS) Framework.

Fig. 6 illustrates how URSF service applications can interoperate with devices and sensors deployed using
OSGi Service Platform and OpenGIS SensorWeb. Note that OWL-S knowledge descriptions for all the
Fig. 5. Data flow diagram for generating a BPEL4WS process.

Fig. 6. Interoperation between URSF and standard service frameworks.

Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679 671
deployed devices and sensors need to be registered to the EKR of URSF in advance. Especially, OWL-S
knowledge descriptions for OpenGIS sensors can be generated from their SensorML descriptions. As illus-
trated in the figure, a kind of gateway module can be used for the interoperation. The URSF service applica-
tion can access OSGi devices and sensors using the OSGi Gateway Servlets implemented on top of each device
and sensor service bundle. An OSGi Gateway Servlet receives SOAP RPC request messages for devices and
sensors through the HTTP Service. It also parses the request messages into appropriate API calls of its cor-
responding device or sensor service bundle. The URSF service application can also access OpenGIS sensors
using the SensorWeb Gateway Services implemented on top of the Sensor Observation Service and the Sensor
Planning Service. A SensorWeb Gateway Service receives SOAP RPC request messages from URSF, trans-
lates the request messages into Sensor Observation Service messages for requested sensors and invokes the
Sensor Observation Service with the translated request messages.

4. Experiments

4.1. Experimental system

We implemented a URSF prototype system and made experiments in our networked home test bed, which
has a bedroom, kitchen and living room as shown in Fig. 7. The experimental environments include an
Fig. 7. Ground plan of the networked home test bed.

672 Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679
Evolution Robotics’ Scorpion robot with Vision-based Simultaneous Localization and Mapping (vSLAM)
navigation [23]. The robot is equipped with an Infrared (IR) remote controller. The environments also include
IR-controlled devices such as a TV set and lighting switches, a Power Line Communication (PLC) controller
and PLC-controlled devices such as an air conditioner and a motorized window blind. In addition, there are
three RFID readers in each place of the test bed to sense the location of the user who carries a RFID tag. The
URSF prototype implementation consists of a DWS host, an EKR server, a laptop PC for a RA mounted on
the ERSP Scorpion robot and another laptop PC for a user interface to the RA. They are connected to each
other via a wired or wireless LAN as in Fig. 8.

We use the Java2 Software Development Kit (SDK) as the development platform for the URSF
prototype system. We also use HP’s Jena Semantic Web framework [24] to implement OWL ontology rea-
soning functionality, IBM’s BPEL4WS for Java (BPWS4J) platform to implement BPEL4WS processing
functionality and the Java Server Page (JSP) to implement a Web-based user interface of the RA. And
the Apache Axis Web services toolkit [34] is used to implement device Web services and SOAP communi-
cations between the URSF components. Table 1 lists concrete device Web services which are implemented
Fig. 8. Configuration of the experimental environments.

Table 1
List of concrete device Web services implementations

Web service operation Description Where available Controlled devices Installed system

getUserLocation Returns which RFID reader senses
given user ID in its radio boundary

Everyplace RFID readers DWS host

raiseWindowBlind Raises window blind with PLC controller Living room PLC controller DWS host
pullDownWindowBlind Pulls down window blind with PLC controller Living room PLC controller DWS host
turnOnAirConditioner Turns on air conditioner with PLC controller Living room PLC controller DWS host
turnOffAirConditioner Turns off air conditioner with PLC controller Living room PLC controller DWS host
turnOnLight Turns on lighting with IR remote controller Kitchen IR remote controller PC on the robot
turnOffLight Turns off lighting with IR remote controller Kitchen IR remote controller PC on the robot
turnOnTV Turns on TV set with IR remote controller Living room IR remote controller PC on the robot
turnOffTV Turns off TV set with IR remote controller Living room IR remote controller PC on the robot
moveTo Moves robot to the specific point

of the given place
Everyplace Scorpion robot PC on the robot

Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679 673
for the Scorpion mobile robot, RFID readers, PLC controller and IR remote controller mounted on the
robot under the test bed.
4.2. Knowledge bases

The experimental domain KB contains OWL-S descriptions of domain service models for a mobile con-
sumer robot and the concept ontology for home service environments. The following example knowledge
shows a domain service model to control indoor brightness and a portion of the concept ontology, which
are actually used in the experiments.

<!- - Instance declarations for the concept classes - ->
<concepts:UserLocation rdf:ID=‘‘UserLocation_Input’’/>
<concepts:AtLocation rdf:ID=‘‘AtLocation_Effect’’/>
<concepts:BecomeBrighter rdf:ID=‘‘BecomeBrighter_Effect’’/>

<!- - Common service model to control indoor brightness - ->

<process:ProcessModel rdf:ID=‘‘RaiseIndoorBrightnessProcessModel’’>
<process:hasProcess>

<process:CompositeProcess rdf:ID=‘‘RaiseIndoorBrightnessProcess’’>
<process:composedOf>

<process:Sequence>
<process:components rdf:parseType=‘‘Collection’’>

<process:AtomicProcess rdf:ID=‘‘MoveToLocation’’>
<process:hasInput rdf:resource=‘‘#UserLocation_Input’’/>
<process:hasEffect rdf:resource=‘‘#AtLocation_Effect’’/>

</process:AtomicProcess>
<process:AtomicProcess rdf:ID=‘‘RaiseBrightness’’>

<process:hasEffect rdf:resource=‘‘#BecomeBrighter_Effect’’/>
</process:AtomicProcess>

</process:components>
</process:Sequence>

</process:composedOf>
<process:hasInput rdf:resource=‘‘#UserLocation_Input’’/>
<process:hasEffect rdf:resource=‘‘#BecomeBrighter_Effect’’/>

</process:CompositeProcess>
</process:hasProcess>

</process:ProcessModel>

<!- - Concept ontology:semantic hierarchy for general concepts - ->
. . .

<owl:Class rdf:ID=‘‘BecomeBrighter’’>
<rdfs:subClassOf rdf:resource=‘‘& process;UnConditionalEffect’’/>

</owl:Class>

<owl:Class rdf:ID=‘‘LightOn’’>
<rdfs:subClassOf rdf:resource=‘‘#BecomeBrighter’’/>

</owl:Class>

<owl:Class rdf:ID=‘‘BlindRaised’’>
<rdfs:subClassOf rdf:resource=‘‘#BecomeBrighter’’/>

</owl:Class>
. . .

674 Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679
As shown in the example, ‘‘RaiseIndoorBrightnessProcessModel’’ is composed of a sequence of two atomic
processes, ‘‘MoveToLocation’’ and ‘‘RaiseBrightness.’’ The first one is to navigate the robot to the user’s loca-
tion given as input and the second one is to raise the brightness of the location. In more detail, the ‘‘Raise-
Brightness’’ process has an instance of the ‘‘BecomeBrighter’’ concept as its effect, which is a super-concept
of ‘‘LightOn’’ and ‘‘BlindRaised’’ as defined in the concept ontology.

The experimental device KB contains OWL-S knowledge about the concrete device Web services listed in
Table 1. As shown in Fig. 8, we construct two device KB’s in the EKR server: one for device Web services
available in the living room and the other for device Web services available in the kitchen. When the EKR
server receives a service discovery query, it decides which device KB is to be used according to the context
data sent along with the query. For instance, if a service discovery query with context data ‘‘Cur-
rent_user_location = Kitchen’’ is received, the EKR uses the device KB for the kitchen to process the query.
Note that knowledge about device Web services available everyplace in the test bed is stored in both of the
device KB’s. The following example shows knowledge about ‘‘turnOnLight’’ service listed in Table 1, which
turns on the IR-controlled lighting device with the IR remote controller equipped on the Scorpion robot.

<!- - Instance declarations for the concept classes - ->
<concepts:LightOn rdf:ID=‘‘LightOn_Effect’’/>

<!- - OWL-S description for turnOnLight device Web service - ->
<service:Service rdf:ID=‘‘TurnOnLightService’’>

<service:describedBy rdf:resource=‘‘#TurnOnLightServiceProcessModel’’/>
<service:supports rdf:resource=‘‘#TurnOnLightServiceGrounding’’/>

</service:Service>

<process:ProcessModel rdf:ID=‘‘TurnOnLightServiceProcessModel’’>
<process:hasProcess>

<process:AtomicProcess rdf:ID=‘‘TurnOnLightServiceProcess’’>
<process:hasEffect rdf:resource=‘‘LightOn_Effect’’/>

</process:AtomicProcess>
</process:hasProcess>

</process:ProcessModel>

<grounding:WsdlGrounding rdf:ID=‘‘TurnOnLightServiceGrounding’’>
<grounding:hasAtomicProcessGrounding>

<grounding:WsdlAtomicProcessGrounding>
<grounding:wsdlDocument>

http://robot.etri.re.kr:8080/axis/LightControlService?wsdl
</grounding:wsdlDocument>
<grounding:wsdlOperation>

<grounding:WsdlOperationRef>
<grounding:portType>LightControlService</grounding:portType>
<grounding:operation>turnOnLight</grounding:operation>

</grounding:WsdlOperationRef>
</grounding:wsdlOperation>

</grounding:WsdlAtomicProcessGrounding>
</grounding:hasAtomicProcessGrounding>

</grounding:WsdlGrounding>

As described in the above example, the knowledge consists of ‘‘TurnOnLightServiceProcessModel’’ and
‘‘TurnOnLightServiceGrounding.’’ The atomic process of the process model has an instance of the ‘‘LightOn’’
concept as its effect, which is a sub-concept of the ‘‘BecomeBrighter’’ concept. The service grounding provides
information about accessing the ‘‘turnOnLight’’ service operation implemented in ‘‘http://robot.etri.
re.kr:8080/axis/LightControlService.’’

http://robot.etri.re.kr:8080/axis/LightControlService?
http://robot.etri.re.kr:8080/axis/LightControlService
http://robot.etri.re.kr:8080/axis/LightControlService

Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679 675
4.3. Experimental results

In the experiments, we will show how a robotic agent built on URSF can automatically integrate ubiqui-
tous sensors and devices in our networked home test bed. In the beginning of the experiment, the user is sitting
on a sofa in the living room carrying his RFID tag and the robot is in the kitchen of the test bed. For the first
experiment, the user commands the robot to ‘‘Make it brighter’’ with the Web-based user interface of the RA
as in Fig. 9. As shown in the figure, the user interface is intuitive and easy enough to use. It has several buttons
for some essential commands and an additional text area for the input of ad hoc commands in forms of an
OWL-S service profile. Once submitted, the user’s command is encoded into the following OWL-S service
request profile that has ‘‘BecomeBrighter_Effect’’ an instance of ‘‘BecomeBrighter’’ concept as its effect.

<concepts:BecomeBrighter rdf:ID=‘‘BecomeBrighter_Effect’’/>

<profile:Profile rdf:ID=‘‘Profile_ServiceRequest’’>
<profile:hasEffect rdf:resource=‘‘BecomeBrighter_Effect’’/>

</profile:Profile>

As explained above, to perform the requested service, the RA must know the current location of the user as
one of the essential contexts for services. So, the RA sends the EKR server a discovery query for a service that
has an instance of ‘‘UserLocation’’ concept as its output. As the result of querying, the RA receives OWL-S
knowledge about the ‘‘getUserLocation’’ service implemented in the DWS host and executes it based on the
service grounding. In this experiment, the ‘‘getUserLocation’’ service responds to RA with ‘‘LivingRoom’’ as
the current location of the user by scanning the RFID readers installed in each place of the test bed. Each
RFID reader used in the experiments simply detects and reports the presence of a RFID tag carried by a user
in its detection range. Note that actual detection range of each RFID reader is adjustable and wide enough to
cover the whole region of each place of the test bed (up to about 9 m).

After knowing the current location of the user by gathering context data, the RA discovers a domain ser-
vice model that has an instance of the ‘‘BecomeBrighter’’ concept as its effect. As the result of discovery, the
RA receives OWL-S knowledge about the indoor brightness control service model, ‘‘RaiseIndoorBrightness,’’
Fig. 9. Screenshot of the Web-based user interface.

676 Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679
given in Section 4.2, and continues to discover device Web services with it. During the device Web service dis-
covery, the RA discovers feasible device Web services by sending the EKR server extended queries using the
semantic service discovery algorithm in Section 3.2. For example, the RA tries to find a device Web service
that has an instance of the ‘‘BecomeBrighter’’ concept as its effect by sending an exact matching query. When
it fails, the RA retries to find a device Web service that has an instance of ‘‘LightOn’’ or ‘‘BlindRaised’’
concept as its effect, which are sub-concepts of the ‘‘BecomeBrighter’’ concept. In addition, the RA sends
the EKR server the service context ‘‘Current_user_location = LivingRoom’’ with each query for choosing
an appropriate device KB. As a result, ‘‘MoveToService,’’ the OWL-S knowledge about ‘‘moveTo’’ service
and ‘‘RaiseWindowBlindService,’’ the OWL-S knowledge about ‘‘raiseWindowBlind’’ service, are discovered.
And the following plan is generated after performing the plan composition phase with the knowledge.

<plan type=‘‘Sequence’’>
<service name=‘‘MoveToService’’>

<input name=‘‘Location_Input’’ value=‘‘LivingRoom’’/>
</service>
<service name=‘‘RaiseWindowBlindService’’/>

</plan>

Finally, the plan was translated into the BPEL4WS process and successfully executed during the plan exe-
cution phase as shown in the upper left and right photos of Fig. 10. The second experiment is the same as the
first one, but the user’s current location changed to kitchen. That is, from the robot’s point of view, the service
environments changed. By knowing the change of user’s current location through the context data gathering,
the RA discovers the appropriate device Web service ‘‘TurnOnLightService’’ that has an instance of the
‘‘LightOn’’ concept, a sub-concept of ‘‘BecomeBrighter,’’ as its effect and automatically composes the follow-
ing service plan for the user in the kitchen.

<plan type=‘‘Sequence’’>
<service name=‘‘MoveToService’’>

<input name=‘‘Location_Input’’ value=‘‘Kitchen’’/>
</service>
<service name=‘‘TurnOnLightService’’/>

</plan>
Fig. 10. Snapshots of the experiments.

Table 2
Performance of URSF under the experimental environments

Average time for context
data gathering

Average time for
knowledge discovery

Average time for
plan composition

Average time for
plan execution

Average latency
of URSF

126 ms 312 ms 502 ms 759 ms 1691 ms

Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679 677
As a result of the second plan execution, the Scorpion robot successfully moved to the kitchen and turned
on the lighting with the IR remote controller on it, instead of raising the window blind in the living room, as
shown in the lower left and right photos of Fig. 10.

4.4. Performance evaluation

This section will describe performance evaluation results for the URSF prototype system. The performance
of the URSF prototype can be assessed by calculating average latency from multiple service executions during
the above experiments. The average latency of URSF refers to the average time elapsed during the automated
integration procedure illustrated in Fig. 4. It provides an effective and straightforward method to evaluate the
performance. The average latency of URSF (Lave) is calculated by the following formula where N is the total
number of service executions, Tri is the time of starting to gather context data for service execution i (more
exactly, the time that an OWL-S request profile starts to be generated) and Tpi is the time of completing plan
execution phase for service execution i (more exactly, the time that a BPEL4WS process generation is
completed).
Lave ¼
P

16i6NðTpi � TriÞ
N

Table 2 summarizes the performance evaluation results when the total number of experimental service exe-
cutions is 20 (N = 20). It describes average times elapsed to perform context data gathering and each service
composition phase as well as the average latency of URSF. For reference, computer systems and communi-
cation network environments used for the performance evaluation are given as follows:

• DWS host: Pentium 4 2.8 GHz/1 GB RAM/Windows XP.
• EKR server: Dual Xeon 2.8 GHz/3 GB RAM/Windows Server.
• RA laptop: Pentium 4 2.0 GHz/512 MB RAM/Windows XP.
• User interface laptop: Pentium 4 2.0 GHz/512 MB RAM/Windows XP.
• Network environments: 100 Mbps LAN and wireless LAN access points.

As shown in the table, the average latency of the URSF prototype system looks acceptable even though
there were no considerations for scalability and real-time support of the prototype system. This is because
the evaluation is performed under limited experimental environments which have only a small number of
devices and sensors as well as predetermined domain service models. That is, small-sized experimental knowl-
edge bases are used for the performance evaluation. In addition, all the components are connected through
fast local communication networks. The evaluation results do not give us a basis to assess the performance
of a practical URSF system. For this reason, we are planning to use large scale knowledge bases, wide area
communication networks and effective metrics to evaluate practical performance more precisely. This work
will be done along with the development of the next version of URSF focused on scalability and real-time
supports.
5. Conclusions

In this paper, the URSF architecture is proposed and its working prototype system is demonstrated in our
networked home test bed. URSF enables automated integration of networked service robots into ubiquitous

678 Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679
computing environments including wireless sensors and actuators to provide ubiquity of robotic services.
URSF utilizes the use of semantic Web services technology and an AI-based planning methodology to support
automated interoperation between robotic agents, wireless sensors and service devices connected to each other
in the ubiquitous networking environments. That is, Web services for robots, sensors and devices are imple-
mented as the unified interface method for accessing them. Then, knowledge about the Web services is
described in OWL-S, the semantic Web services description language, and is registered to the environmental
knowledge bases so that a robotic agent can automatically discover the required knowledge, compose a fea-
sible service plan and execute the service plan for the service environments.

Currently, there are some limitations in the proposed framework. One is about supporting scalability.
URSF agents discover required knowledge from centralized environmental knowledge bases, which are
assumed to be well-known and always available to them. However, real ubiquitous computing environments
will be mostly based on ad hoc networks that are completely distributed and dynamic in nature. And they will
surely consist of a huge number of mobile devices and sensors. This means that the centralized discovery
approach is likely to suffer from a serious scalability problem in actual ubiquitous computing environments.
Another limitation is its real-time support. URSF does not provide any Quality of Service (QoS) mechanism
at a framework level. It is because real-time support for Web services does not matter in LAN environments
even though there is no concern of QoS. So, URSF cannot ensure real-time invocation of Web services over
Wide Area Network (WAN) environments which often suffer from unpredictable communication delays (i.e.
communication between the URSF components dispersed through the public Internet).

Our future research direction will be primarily focused on overcoming the current limitations of the frame-
work. It will include how to effectively distribute the knowledge to robots, ad hoc sensors and devices in the
service environments, and how to discover and plan with the distributed knowledge. It will also include how to
cooperate and share knowledge between multiple robotic agents under the same or relevant service environ-
ments. In addition, we will incorporate a QoS mechanism into the URSF architecture to support real-time
services. Another important future research focus is security and privacy issues in URSF. Security and privacy
issues arise owing to the use of the Web technologies and Internet protocols, which are open standards such as
HTTP, SOAP and XML, as the communication method between the URSF components. We are planning to
approach these issues basically from the Role-based Access Control (RBAC) and XML digital signature tech-
nologies [43] using the Public Key Infrastructure (PKI). We are also considering using an ad hoc cluster-based
security approach [5,21] for dynamic ad hoc service environments.

And finally, we expect that the proposed framework will contribute to the development of intelligent soft-
ware agents not only for robotic services but for a variety of service domains in the upcoming ubiquitous com-
puting era.

Acknowledgement

This work is financially supported by URC technology development program of Korea Ministry of Infor-
mation and Communication (MIC).

References

[1] T. Berners-Lee et al., The semantic Web, Scientific American (2001). Available from: <http://www.scientificamerican.com/
article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21&catID=2>.

[2] K. Erol, D. Nau, J. Hendler, UMCP: a sound and complete planning procedure for HTN planning, in: Proceedings of the 2nd
International Conference on AI Planning Systems, Chicago, 1994, pp. 249–254.

[3] K. Goldberg et al., The Mercury project: a feasibility study for Internet robotics, IEEE Robotics and Automation Magazine 7 (1)
(2000) 35–40.

[4] X. Hou, J. Su, A distributed architecture for Internet robot, in: Proceedings of the IEEE International Conference on Robotics and
Automation, New Orleans, 2004, pp. 3357–3362.

[5] S. Jin et al., Cluster-based trust evaluation scheme in an ad hoc network, ETRI Journal 27 (4) (2005) 465–468.
[6] B.K. Kim et al., Web services and ubiquitous control platform for the knowledge distributed robot system, in: Proceedings of the

IEEE/RSJ Conference on Intelligent Robots and Systems, Sendai, Japan, 2004. Available from: <http://staff.aist.go.jp/bk.kim/
Publication/IC/IROS2004.pdf>.

http://www.scientificamerican.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21&catID=2
http://www.scientificamerican.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21&catID=2
http://staff.aist.go.jp/bk.kim/Publication/IC/IROS2004.pdf
http://staff.aist.go.jp/bk.kim/Publication/IC/IROS2004.pdf

Y.-G. Ha et al. / Information Sciences 177 (2007) 657–679 679
[7] J.H. Kim, Y.D. Kim, K.H. Lee, The third generation of robotics: ubiquitous robot, in: Proceedings of the 2nd International
Conference on Autonomous Robots and Agents, New Zealand, 2004. Available from: <http://www-ist.massey.ac.nz/conferences/
icara2004/files/Papers/Paper01_ICARA2004_001_007.pdf>.

[8] K. Kiyoshi, Ubiquitous intelligent robotics, ATR UptoDate, 2003. Available from: <http://results.atr.jp/uptodate/ATR_2003sum/
kogure.html>.

[9] S.A. McIlraith, T.C. Son, H. Zeng, The semantic Web services, IEEE Intelligent Systems 16 (2) (2001) 46–53.
[10] L. Miller, A. Seaborne, A. Reggiori, Three implementations of SquishQL, a simple RDF query language, LNCS 2342 (2002) 423–435.
[11] S. Narayanan, S. McIlraith, Simulation, verification and automated composition of Web services, in: Proceedings of the International

World Wide Web Conference, Honolulu, 2002, pp.77–88.
[12] D.S. Nau et al., SHOP2: an HTN planning system, Journal of Artificial Intelligence Research 20 (2003) 379–404.
[13] M. Nidd, Service discovery in DEAPspace, IEEE Personal Communications 8 (4) (2001) 39–45.
[14] S.R. Oh, IT-based intelligent service robot, in: Proceedings of the 1st NSF PI Workshop on Robotics and Computer Vision, Las

Vegas, 2003. Available from <http://www.vcl.uh.edu/~rcv03/materials/slides/SangRok.ppt>.
[15] T. Sato, T. Harada, T. Mori, Environment-type robot system ‘robotic room’ featured by behavior media, behavior contents and

behavior adaptation, IEEE/ASME Transactions on Mechatronics 9 (3) (2004) 529–534.
[16] P. Saucy, F. Mondada, Open access to a mobile robot on the Internet, IEEE Robotics and Automation Magazine 7 (1) (2000) 41–47.
[17] R. Simmons, Xavier: an autonomous mobile robot on the Web, in: Proceedings of the IEEE/RSJ Conference on Intelligent Robots

and Systems, Victoria BC, 1998. Available from: <http://www.ri.cmu.edu/pub_files/pub1/simmons_reid_1999_1/simmons_reid_
1999_1.pdf>.

[18] E. Sirin et al., HTN planning for Web Service composition using SHOP2, Web Semantics 1 (4) (2004). Available from: <http://
www.mindswap.org/papers/SHOP-JWS.pdf>.

[19] M.R. Stein, Interactive Internet artistry, IEEE Robotics and Automation Magazine 7 (1) (2000) 28–32.
[20] D. Wang, X. Ma, X. Dai, Web-based robotic control system with flexible framework, in: Proceedings of the IEEE International

Conference on Robotics and Automation, New Orleans, 2004, pp. 3351–3356.
[21] G. Wang, G. Cho, Compromise-resistant pairwise key establishments for mobile ad hoc networks, ETRI Journal 28 (3) (2006) 375–

378.
[22] Business Process Execution Language for Web Services Version 1.1. Available from: <http://www-128.ibm.com/developerworks/

library/specification/ws-bpel/>.
[23] ERSP 3.0: Robotic Development Platform. Available from: <http://www.evolution.com/products/ersp/>.
[24] Jena – A Semantic Web Framework for Java. Available from: <http://jena.sourceforge.net/>.
[25] Jini Network Technology. Available from: <http://www.jini.org/>.
[26] OpenGIS SensorWeb. Available from: <http://www.opengeospatial.org/functional/?page=swe>.
[27] OpenSLP Project Homepage. Available from: <http://www.openslp.org/>.
[28] OSGi Technology. Available from: <http://www.osgi.org/osgi_technology/index.asp?section=2>.
[29] OWL-S: Semantic Markup for Web Services. Available from: <http://www.daml.org/services/owl-s/1.0/owl-s.html>.
[30] Salutation Consortium Homepage. Available from: <http://www.salutation.org/>.
[31] Technical Committee on Networked Robots. Available from: <http://www.informatik.uni-freiburg. de/~burgard/tc/>.
[32] Ubiquitous Computing Homepage. Available from: <http://www.ubiq.com/hypertext/weiser/UbiHome.html>.
[33] UPnP Forum Homepage. Available from: <http://www.upnp.org/>.
[34] Web Services–Axis. Available from: <http://ws.apache.org/axis/>.
[35] W3C Recommendation: OWL Web Ontology Language Guide. Available from: <http://www.w3c.org/TR/owl-guide/>.
[36] W3C Recommendation: OWL Web Ontology Language Semantics and Abstract Syntax. Available from: <http://www.w3c.org/TR/

owl-absyn/>.
[37] W3C Recommendation: RDF Primer. Available from: <http://www.w3c.org/TR/rdf-primer/>.
[38] W3C Recommendation: RDF Semantics. Available from: <http://www.w3c.org/TR/rdf-mt/>.
[39] W3C Recommendation: RDF Vocabulary Description Language. Available from: <http://www.w3c.org/TR/rdf-schema/>.
[40] W3C Recommendation: SOAP Version 1.2 Primer. Available from: <http://www.w3c.org/TR/soap12-part0/>.
[41] W3C Recommendation: Web Services Architecture. Available from: <http://www.w3c.org/TR/ws-arch/>.
[42] W3C Recommendation: Web Services Description Language (WSDL) Version 2.0 Primer. Available from: <http://www.w3.org/TR/

wsdl20-primer/>.
[43] XML Signature Working Group. Available from: <http://www.w3.org/Signature/>.

http://www-ist.massey.ac.nz/conferences/icara2004/files/Papers/Paper01_ICARA2004_001_007.pdf
http://www-ist.massey.ac.nz/conferences/icara2004/files/Papers/Paper01_ICARA2004_001_007.pdf
http://results.atr.jp/uptodate/ATR_2003sum/kogure.html
http://results.atr.jp/uptodate/ATR_2003sum/kogure.html
http://www.vcl.uh.edu/~rcv03/materials/slides/SangRok.ppt
http://www.ri.cmu.edu/pub_files/pub1/simmons_reid_1999_1/simmons_reid_1999_1.pdf
http://www.ri.cmu.edu/pub_files/pub1/simmons_reid_1999_1/simmons_reid_1999_1.pdf
http://www.mindswap.org/papers/SHOP-JWS.pdf
http://www.mindswap.org/papers/SHOP-JWS.pdf
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www.evolution.com/products/ersp/
http://jena.sourceforge.net/
http://www.jini.org/
http://www.opengeospatial.org/functional/?page=swe
http://www.openslp.org/
http://www.osgi.org/osgi_technology/index.asp?section=2
http://www.daml.org/services/owl-s/1.0/owl-s.html
http://www.salutation.org/
http://www.informatik.uni-freiburg.de/~burgard/tc/
http://www.ubiq.com/hypertext/weiser/UbiHome.html
http://www.upnp.org/
http://ws.apache.org/axis/
http://www.w3c.org/TR/owl-guide/
http://www.w3c.org/TR/owl-absyn/
http://www.w3c.org/TR/owl-absyn/
http://www.w3c.org/TR/rdf-primer/
http://www.w3c.org/TR/rdf-mt/
http://www.w3c.org/TR/rdf-schema/
http://www.w3c.org/TR/soap12-part0/
http://www.w3c.org/TR/ws-arch/
http://www.w3.org/TR/wsdl20-primer/
http://www.w3.org/TR/wsdl20-primer/
http://www.w3.org/Signature/

	A robotic service framework supporting automated integration of ubiquitous sensors and devices
	Introduction
	Background
	Networked robotics technologies
	Semantic Web services
	Service profile
	Service model
	Service grounding

	Design of the URSF
	The architecture of the URSF
	Robotic agent (RA)
	Device Web service (DWS)
	Environmental Knowledge Repository (EKR)

	Knowledge discovery phase
	Existing service discovery approach
	Semantic service discovery algorithm

	Plan composition phase
	Plan execution phase
	URSF and existing service frameworks

	Experiments
	Experimental system
	Knowledge bases
	Experimental results
	Performance evaluation

	Conclusions
	Acknowledgement
	References

