
An Integrated Hardware-Software Cosimulation Environment with Automated
Interface Generation

Kyuseok Kim Yongjoo Kim, Youngsoo Shin, and Kiyoung Choi
LG Electronics Research Center

Information Technology Laboratory
Seoul 137-140, Korea

kskim@erc .goldstar. co .kr

Abstract

We present a hardware-software cosimulation environ-
ment f o r heterogeneous systems. To be an eficient sys-
tem veriJication environment for the rapid prototyping of
heterogeneous systems, the environment provides follow-
ing features: interface transparency, smooth transition to
cosynthesis, simulation acceleration, and integrated user
interface and internal representation. Among them, thejrst
two are more important than the others. To support these two
features, we have developed automatic interface generation
schemes. As demonstrating experiments, two heterogeneous
systems performing same function with different target ar-
chitectures were cosimulated and prototyped successfully in
our environment. The experimental results show that our
environment can be a useful heterogeneous system spec$-
cationherijktion environment f o r rapid prototyping.

1. Introduction

Cosimulation refers to the simulation of heterogeneous
systems whose hardware and software components are inter-
acting. Traditionally, the task has been performed only after
the prototype hardware became available and with the help
of in-circuit emulators and/or other techniques [141. With
hardware-software codesign, it is essential to verify fimc-
tionality even before hardware is built. In contrast to the
conventional(or homogeneous) simulation of digital hard-
ware, cosimulation should care for the interactions among
hardware and software components. To model the inter-
actions during cosimulation in exact and efficient manner,
target architecture and interface among the components must
be considered.

The available techniques for hardware-software cosimu-
lation trade off among a number of factors such as perfor-
mance, timing accuracy, and model availability [141. The

Seoul National University-
Dept. of Electronics Eng.

Seoul 15 1-742, Korea
kchoi@azalea.snu.ac.kr

-

model availability of processor in target architecture domi-
nates the choice of techniques. Becker, et al. [5] performed
cosimulation of a network interface unit on a distributed
network using UNIX socket. They used C++ and Verilog in
describing the software component and the hardware com-
ponent, respectively. Their cosimulation is a combination
of synchronized handshake and cycle accurate processor
model. Cosimulation scheme of Thomas, et al. [18] is simi-
lar to [5] , but their technique is based on synchronized hand-
shake with no processor model. Cosimulation techniques of
Poseidon [7] and Ptolemy [8] need pin-level model of pro-
cessors. Their approaches are most accurate but take much
more simulation time. Although above existing approaches
vary in model availability, accuracy, and time, they all did
not take into account interface model explicitly or efficiently.

In this paper, we present a hardware-software cosimu-
lation environment for heterogeneous systems. To be an
efficient system verification environment for the rapid pro-
totyping of a heterogeneous system, the environment pro-
vides interface transparency, smooth transition to prototype
synthesis from simulation, simulation acceleration, and in-
tegrated user interface and internal representation. Among
those features, the first two are more important than the oth-
ers. To support these two features, we have developed auto-
matic interface generation schemes. The resultant benefits
of those features are no need of processor models, target ar-
chitecture independence, and the conceptual simplicity and
easiness in establishing and expanding the environment.

The rest of this paper is organized as follows: Section
2 presents the overview of our cosimulation environment.
Section 3 describes automatic interface generation schemes.
Section 4 describes the application of our cosimulation en-
vironment to real systems prototyping as experimental ex-
amples. Then Section 5 concludes with some remarks on
future work.

66
0-8186-7603-5/96 $5.00 0 1996 IEEE

Extended F’tolemy
............................

.......
<:. system model;,

optional
..................

/..-

C-program

Interface model

Figure 1. Cosimulation environment.

771 p+q
.

Figure 2. Cosimulation at abstract level.

2. Cosimulation environment overview

As shown in Fig. 1, the environment [1 11 has three ma-
jor elements for the execution of cosimulation: a software
process running C program, a simulation process executing
hardware model in VHDL, and interface model. A custom
board is optional for simulation acceleration by emulating
whole or part of hardware component. Interface model is
based on inter-process communication (IPC) routines which
connect the two processes through UNIX Socket [171 on a
single SUN Sparc CPU. Ptolemy [6], which is a framework
for simulation and prototyping of heterogeneous systems,
is extended to provide user interface and internal represen-
tation for system specification and verification. The envi-
ronment supports cosimulation at any abstraction level. Ini-
tially, the specification of a heterogeneous system is given in
VHDL and C for hardware core and software complonents.
Then simulation modlels for the interface are generated au-
tomatically and then combined with the cores, thereby al-
lowing cosimulation at very abstract level. Fig. 2 represents
the abstract level cosiimulation. As shown in the figure, the
interface simulation models are mainly IPC routine calls
with appropriate parameters. After a target architecture is
determined and an interface is synthesized, more detailed
simulation models for the interface are generated and in-
serted, thereby allownng detailed level cosimulation.

Since we use ’synchronized handshake’ simulation tech-
nique [14], there is no need for processor models. Using
this technique, the software can run at the workstation speed
even though overall ispeed will be dominated by the hard-
ware simulator performance.

The simulator, IVSIM (SNU ISRC VHDL SIMulator),

.................
t C-program ;

: write_socket() j
.

top-level
entity of
VHDL
descnptior

rototype

0 from generator

- - - 1 from library

: . user-gwen

c - - - ,
.......

Figure 3. Interface generation or selection
from library for detailed level cosimulation.

is a VHDL simulator based on an event-driven compiled
code simulation algorithm. It can recognize and support
’foreign’ attribute defined in VHDL-93 [4]. The attribute
enables a system to be described by not only VHDL but also
non-VHDL procedures such as IPC routines in C language.

2.1. Interface transparency

Our cosimulation environment provides the users with
transparency about communication interface between soft-
ware core and hardware core regardless of the type of target
architectures and communication protocols. This is espe-
cially important for detailed level cosimulation.

Once the user selects the target architecture and commu-
nication protocol, he or she can concentrate on the function-
ality simulation of the hardware and software components
without concerning about the details of the interface or com-
munication.

To provide the interface transparency, we implemented
automatic interface model generation and instantiation. Ap-
propriate simulation models for the interface between the
two components are ’created’ by automatic interface model
generation with parameters according to the chosen commu-
nication protocol and the target architecture as shown in Fig.
2 and Fig. 3. Interface simulation models should also be
’inserted’ at appropriate places in the C program and VHDL
model in automatic manner. Fig. 3 shows the relevant inter-
face elements for hardware part and software part, and how
they are created (or selected) and combined to provide the
overall simulation model of interface and enable detailed
level cosimulation. If the users give only the hardware and
software cores, the interface elements are automatically cre-
ated by generators or selected from libraries.

The function of each interface element is as follows:
(i) IPC handler takes care of reading/writing data f rod to

67

the software process using foreign IPC routines. It han-
dles IPC jobs by handshaking. It also transfers events from
software core to hardware core through channel unit, which
consequently activates VHDL simulation. It is created by a
generator.
(ii) Channel unit represents the abstract simulation model
of a physical channel device. It is selected from interface
library.
(iii) Signal register stores data to be transferred between
hardware component and software component. Protocol
converter makes hardware core connected to system bus of
target architecture by interfacing between system bus and
signal register.
(iv) Top-level entity acts as a top-level container which gath-
ers all interface elements. Interface elements are intercon-
nected using component instantiations and signals declared
in the entity.

The hardware core, signal register and protocol converter
will be mapped into real hardware prototype. When standard
bus architecture is used, a standard channel device such as
SBus DMA controller [11 can be used as a physical device
for channel unit. If user-defined bus or channel is used,
channel unit should be a part of hardware prototype.

2.2. Smooth transition to cosynthesis

After detailed level cosimulation, the system components
must be synthesized as physical components on the selected
target architecture. For the cosynthesis, the invokes to the
IPC routines are replaced with the corresponding device
driver calls or I/O function calls - which are called driver
functions, collectively - for the software component. For
the hardware component, top-level entity with foreign inter-
face procedure declaration is stripped off and the hardware
interface model remains to be synthesized together with
hardware core. The driver functions and the software core
will be compiled and linked together to make executable
codes. Since this modification of each component specifi-
cation for the cosynthesis is very simple and limited to a
minimum degree, it is possible to make a smooth and fast
transition from cosimulation to the cosynthesis of system
prototype in our environment. Fig. 4 depicts the transition
from cosimulation to cosynthesis.

cosimulation t cosynthesis

F E I " " with Decoder

l l

Figure 4. Transition to cosynthesis from
cosimulation.

prototypes. Currently, the custom board consists of an
FPGA and bus interface. The FPGA is used to implement a
part of hardware model as real hardware. The communica-
tion between the CPU and the custom board is done through
SBus [3]. To interface between SBus and real hardware, we
used a SBus DMA controller IC [11.

Presently, we restrict to the case which CPU is always
the bus master of SBus transactions. To send(receive)
data to(from) the hardware prototype, software process and
VHDL simulation process should write(read) data to(from)
the device driver program. The software and VHDL sim-
ulation processes communicate each other through socket
IPC as mentioned above.

2.4. Integrated user interface and internal repre-
sentation

To provide an integrated user interface and internal rep-
resentation, we extended Ptolemy. Ptolemy [6] is a block-
diagram oriented environment for simulation and prototyp-
ing of heterogeneous systems.

For hardware-software codesign, we are currently de-
veloping Hetero Domain where heterogeneous models may
coexist in the same representation of Ptolemy.

3. Automatic interface generation

2.3. Simulation acceleration

In cosimulation using synchronized handshake tech-
nique, hardware simulation time dominates overall cosimu-
lation time [141. This problem can be alleviated by simula-
tion acceleration. It consists of a CPU(SUN Sparc proces-
sor) and a custom board. The CPU is in charge of running
VHDL simulation process, C program process for software
component, and CAD tools for the synthesis of hardware

To generate interface models for cosimulation and cosyn-
thesis, we developed an interface generation technique. In-
terface generation starts from a partitioned control/dataflow
graph (CDFG). The graph is the internal representation of
the systems to be designed in our environment and consists
of hardware CDFG and software CDFG. We generate hard-
ware interface and software interface from these graphs as
shown in Fig. 5 . Fig. 6 shows system CDFG and parti-
tioned CDFG. After partitioning the system CDFG (a) into
software CDFG (b) and hardware CDFGs (c), special nodes

68

system, CDFG

I system partitioning I

HW core

Figure 7. Hardware interface module.

Figure 5. Interface generation flow (shaded
area) in heterogeneous systems prototyping.

Figure 6. System CDFG and partitioned
CDFG.

('send' and 'receive' nodes) for interface is added to the par-
titioned CDFG at the partitioning boundary. Each special
node has its own counter node. Hardware and software
interface modules are generated from these special nodes
in the hardware CDFG and software CDFG, respectively,
according to the selected target architecture and conlmuni-
cation protocol. The software interface module combines
device driver routine calls, I/O function calls and loadstore
commands to readlwrite data f rod to system bus. The hard-
ware interface module consists of signal register arid pro-
tocol converter as shown in Fig. 7. The signal register
stores data to be transferred between hardware component
and software component. The protocol converter connects
the hardware core to 1.he system bus of the target architec-
ture by interfacing between the system bus and the signal
register.

3.1. Hardware interface generation

Depending on whether the target architecture is already
defined or not, the protocol converter can be instantiated

allocate (width)
{
Q = O
if (width > W) {

f o r (p e P s.t . w = W) {
Q = Q U {PI;
P = P - {p);
Q = Q + allocate (width - W);

)

else
for (p E P s. t. w >= width) {

P = P - {p I wp = width) u (q I q E P, wq = w p - width);
Q = Q u { p I wp = width];

)
)

I
return Q;

Figure 8. Signal register allocation algorithm.

or generated. When the architecture is defined before, the
protocol converter can be instantiated automatically from
interface library since it is already generated before accord-
ing to the architecture. For newly defined architectures,
protocol converter should be generated using the algorithm
in [131 and stored in the library for future instantiations.

The signal register is generated in two phases - register
template selection and signal register allocation. In the reg-
ister template selection phase, an appropriate template for
signal register is selected from a template library according
to the characteristics of I/O port of hardware core. Each
template differs in the configuration of components of sig-
nal registers: multiplexers, decoders, buffers, and registers.
An example of signal register instantiated from template li-
brary is shown in Fig. 10. Currently, four templates are
supported [9]. In the signal register allocation phase, input
and output of selected signal register templates are allocated
to each port of the hardware core. Using the information
of special nodes such as port name, I/O direction, and bit
width, register outputs and multiplexer inputs are bound to
the input and output ports of hardware core, respectively.
Whenever the bit width of a port to be bound is wider than
bit width of single data transfer of system bus, a data trans-
fer through the port must be done by multiple data transfers.

69

[\p I I I I i4 r2

\

I
I

,'Generated hardware interface module ',
I
I

E-channel
of L64853A'.

Figure 10. Hardware interface generated for -

the CDFG in Fig. 9.
Figure 9. (a) Hardware CDFG, (b) CDFG for the
solution of differential equation: y" + 32y' +
3y = 0.

Signal register allocation algorithm is presented in Fig. 8.
The algorithm returns the set of allocated registers for each
ports. P, Q, W, w, and wx represent the set of registers not
yet allocated, the set of allocated registers for each port, the
bit width of system bus, the bit width of register, and the bit
width of register x, respectively.

Example 1. A partitioned CDFG is given as in Fig. 9.
We assume that all edges in the CDFG are 32-bit integer
type and the bit width of a system bus is 16 bits. The signal
register allocation algorithm will generate a signal register
for the CDFG as shown in Fig. 10. Since bus width is 16
bits in the target architecture, inputs of a multiplexer (mO,
ml) are allocated to a send node t6. Register allocation will
be done in the same way for other special nodes.

3.2. Software interface generation

Table 1. Target architectures and communi-
cation protocols used in the experiments

I ExDeriment I I ExDeriment 2 I

HW device

DMA controller
E-channel

union-temp .ush [l] = union-data. ush [O] ;
return union-temp. in [O l ;
i

The driver function calls device driver (here, 'ddps') two
times and combines the two received data (16 bits each)
into single integer data (32 bits). This is because the send
node t6 of hardware CDFG is mapped to mO andml inputs of
the multiplexer in the hardware interface module as shown
in Fig. 10.

Driver functions and the core software module which is
synthesized from software CDFG [161 can be compiled and
linked together to make executable codes.

Driver functions are synthesized for each special node us-
ing the information of special node in software CDFG such
as function name, function type, parameter type, and map-
ping results between the ports of hardware core and signal
registers. The functions take charge of sendinglreceiving
data tolfrom hardware core.

Example 2. For the CDFG in Example 1 (shown in Fig. 9),
the driver function generated for the receive node t6 of the
software CDFG will be as follows:

4. Experimental results

4.1. Experiment 1

int receive-t6 ()

{
un i on-typ e union-temp;

A lossless data compression system was cosimulated and
cosynthesized using our environment. Initially, the system
was only a C program implementing Lempel-Ziv lossless

ioctl(ddps, RDE-MO, union-data.ch); data compression algorithm [19].
union-temp.ush[Ol = union-data.ush[Ol ; The system was manually partitioned into software and
i o c t l (ddps, RDE-MI, union-data.ch) ; hardware components resulting in a mixture of a hardware

70

component implementing parsing step and a software com-
ponent implementing the remaining steps - initialization,
coding, buffer updating, and file I/O. After inserting IPC
routine calls in the Components, we performed abstract level
cosimulation. Once the target architecture and communica-
tion protocol were determined as shown in Table 1, hardware
and software interface elements were generated or selected
from library and added to the hardware component and soft-
ware component for detailed level cosimulation. Combining
all simulation models, the detailed level cosimulation was
done successhlly and the result was identical to thait of the
abstract level cosimulation.

Then the hardware component of the system with buffer
size of 16 was protot,yped with an FPGA [2] using the ar-
chitecture in [lo]. The resultant hardware has taken 645
CLBs including interface. With the clock frequency of 6.25
MHz for FPGA, the priototyped heterogeneous system shows
speedup of 1.7 over the implementation using only software
component.

4.2. Experiment 2

We cosimulated and cosynthesized the same system as
Experiment 1 but with different target architecture, commu-
nication protocol, and buffer size n = 32 as shown in Table
1. Signal register which matched with I/O ports of hardware
core has been generated using interface module library for
system bus (ISA Bus [15]). With the clock frequency of
8.33 MHz for FPGA, we obtained speedup of 2.5 over the
implementation using only software component.

5. Conclusions

In this paper, we present a hardware-software cosimu-
lation environment for heterogeneous systems prototyping.
To be an efficient system verification environment for the
rapid prototyping of lieterogeneous systems which consist
of hardware and software components, the environment sup-
ports special features: interface transparency, cosimulation
acceleration, smooth iransition to system prototype synthe-
sis, and integrated user interface and internal representa-
tions. The resultant benefits of those features are the mod-
ularity of cosimulation components, no need of processor
models, target architecture independence, and the concep-
tual simplicity and easiness in establishing and expanding
the environment.

(i) Complete the implementation of the environment.
(ii) Extend the environment to more general target architec-
tures including microprocessors or micro-controllers digital
signal processors, andl ASICs.
(iii) Apply our approach to various system prototyping ex-
amples such as MPEG-2.

On-going and future works are as follows:

References

[I] L64853A SBus DMA Controller Technical Manual. LSI

[2] The Programmable Logic Data Book. Xilinx, 1993.
[3] Standard for a Chip and Module Interconnect Bus: SBus

(P1496/Draft 2.3). IEEE Standard Department, 1993.
[4] IEEE Standard VHDL Language Reference Manual,

ANSI/IEEE Std 1076-1993. IEEE, New York, NY, 1994.
[5] D. Becker, R. K. Singh, and S. G. Tell. An engineering en-

vironment for hardwarehoftware co-simulation. Proc. 29th
Des. Auto. Con$, pages 129-134, June 1992.

[6] J. Buck, S. Ha, and E. A. Lee. Ptolemy: A framework
for simulating and prototyping heterogeneous systems. Int ’I
Jour. of Comp. Simulation, pages 155-182, April 1994.

[7] R. K. Gupta, C. Coelho, and G. De Micheli. Synthesis and
simulation of digital systems containing interacting hardware
and software components. Proc. 29th Des. Auto. Con$, pages
129-134, June 1992.

[8] A. Kalavade and E. A. Lee. A hardware-software codesign
methodology for DSP applications. IEEE Design and Test
of Computers, pages 16-28, September 1993.

Generation of interface module in hardware-
software co-design. MS Thesis, Dept. Electronics, Seoul
Nat’l Univ., December 1995.

[lo] Y. Kim, K. Kim, and K. Choi. Efficient VLSI architec-
ture for lossless data compression. IEE Electronics Letters,
3 1(13): 1053-1054, June 1995.

[l 11 Y. Kim, K. Kim, Y. Shin, T. Ahn, W. Sung, K. Choi, and
S. Ha. An integrated hardware-software cosimulation en-
vironment for heterogeneous systems prototyping. Proc. of
Asia and South Pac. Des. Auto. Con$, pages 101-106, Au-
gust 1995.

[12] Y. Kim, Y. Shin, K. Kim, J. Won, and K. Choi. Efficient
prototyping system based on incremental design and module-
by-module verification. Proc. of Int’l Symp. Circ. and Syst.
95, pages 924-927, May 1995.

[131 S. Narayan and D. Gajski. Interfacing incompatible protocols
using interface process generation. Proc. 32nd Des. Auto.
Con$, June 1995.

[141 J. A. Rowson. Hardwareisoftware co-simulation. Proc. 31th
Des. Auto. ConJ, pages 439440, June 1994.

[151 T. Shanley and D. Anderson. ISA System Architecture (3rd
ed.). Mindshare, 1995.

[161 Y. Shin and K. Choi. Thread-based software synthesis for
embedded system design. Proc. Euro. Des. and Test Con$,
March 1996.

[171 W. R. Stevens. UNLYNetwork Programming. Prentice-Hall,
1991.

[18] D. E. Thomas, J. K. Adams, and H. Schmit. A model and
methodology for hardware-software codesign. IEEE Design
and Test ofcomputers, pages 6-15, September 1993.

1191 J. Ziv and A. Lempel. A universal algorithm for sequen-
tial data compression. IEEE Trans. Inform. Theory, IT-

Logic, 199 1.

[9] K. Kim.

23(3):337-343, 1977.

7 1

