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Abstract 

We present a hardware-software cosimulation environ- 
ment f o r  heterogeneous systems. To be an eficient sys- 
tem veriJication environment for  the rapid prototyping of 
heterogeneous systems, the environment provides follow- 
ing features: interface transparency, smooth transition to 
cosynthesis, simulation acceleration, and integrated user 
interface and internal representation. Among them, thejrst  
two are more important than the others. To support these two 
features, we have developed automatic interface generation 
schemes. As demonstrating experiments, two heterogeneous 
systems performing same function with different target ar- 
chitectures were cosimulated and prototyped successfully in 
our environment. The experimental results show that our 
environment can be a useful heterogeneous system spec$- 
cationherijktion environment f o r  rapid prototyping. 

1. Introduction 

Cosimulation refers to the simulation of heterogeneous 
systems whose hardware and software components are inter- 
acting. Traditionally, the task has been performed only after 
the prototype hardware became available and with the help 
of in-circuit emulators and/or other techniques [ 141. With 
hardware-software codesign, it is essential to verify fimc- 
tionality even before hardware is built. In contrast to the 
conventional(or homogeneous) simulation of digital hard- 
ware, cosimulation should care for the interactions among 
hardware and software components. To model the inter- 
actions during cosimulation in exact and efficient manner, 
target architecture and interface among the components must 
be considered. 

The available techniques for hardware-software cosimu- 
lation trade off among a number of factors such as perfor- 
mance, timing accuracy, and model availability [ 141. The 
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model availability of processor in target architecture domi- 
nates the choice of techniques. Becker, et al. [5] performed 
cosimulation of a network interface unit on a distributed 
network using UNIX socket. They used C++ and Verilog in 
describing the software component and the hardware com- 
ponent, respectively. Their cosimulation is a combination 
of synchronized handshake and cycle accurate processor 
model. Cosimulation scheme of Thomas, et al. [18] is simi- 
lar to [ 5 ] ,  but their technique is based on synchronized hand- 
shake with no processor model. Cosimulation techniques of 
Poseidon [7] and Ptolemy [8] need pin-level model of pro- 
cessors. Their approaches are most accurate but take much 
more simulation time. Although above existing approaches 
vary in model availability, accuracy, and time, they all did 
not take into account interface model explicitly or efficiently. 

In this paper, we present a hardware-software cosimu- 
lation environment for heterogeneous systems. To be an 
efficient system verification environment for the rapid pro- 
totyping of a heterogeneous system, the environment pro- 
vides interface transparency, smooth transition to prototype 
synthesis from simulation, simulation acceleration, and in- 
tegrated user interface and internal representation. Among 
those features, the first two are more important than the oth- 
ers. To support these two features, we have developed auto- 
matic interface generation schemes. The resultant benefits 
of those features are no need of processor models, target ar- 
chitecture independence, and the conceptual simplicity and 
easiness in establishing and expanding the environment. 

The rest of this paper is organized as follows: Section 
2 presents the overview of our cosimulation environment. 
Section 3 describes automatic interface generation schemes. 
Section 4 describes the application of our cosimulation en- 
vironment to real systems prototyping as experimental ex- 
amples. Then Section 5 concludes with some remarks on 
future work. 
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Figure 1. Cosimulation environment. 
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Figure 2. Cosimulation at abstract level. 

2. Cosimulation environment overview 

As shown in Fig. 1, the environment [ 1 11 has three ma- 
jor elements for the execution of cosimulation: a software 
process running C program, a simulation process executing 
hardware model in VHDL, and interface model. A custom 
board is optional for simulation acceleration by emulating 
whole or part of hardware component. Interface model is 
based on inter-process communication (IPC) routines which 
connect the two processes through UNIX Socket [ 171 on a 
single SUN Sparc CPU. Ptolemy [6], which is a framework 
for simulation and prototyping of heterogeneous systems, 
is extended to provide user interface and internal represen- 
tation for system specification and verification. The envi- 
ronment supports cosimulation at any abstraction level. Ini- 
tially, the specification of a heterogeneous system is given in 
VHDL and C for hardware core and software complonents. 
Then simulation modlels for the interface are generated au- 
tomatically and then combined with the cores, thereby al- 
lowing cosimulation at very abstract level. Fig. 2 represents 
the abstract level cosiimulation. As shown in the figure, the 
interface simulation models are mainly IPC routine calls 
with appropriate parameters. After a target architecture is 
determined and an interface is synthesized, more detailed 
simulation models for the interface are generated and in- 
serted, thereby allownng detailed level cosimulation. 

Since we use ’synchronized handshake’ simulation tech- 
nique [14], there is no need for processor models. Using 
this technique, the software can run at the workstation speed 
even though overall ispeed will be dominated by the hard- 
ware simulator performance. 

The simulator, IVSIM (SNU ISRC VHDL SIMulator), 
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Figure 3. Interface generation or selection 
from library for detailed level cosimulation. 

is a VHDL simulator based on an event-driven compiled 
code simulation algorithm. It can recognize and support 
’foreign’ attribute defined in VHDL-93 [4]. The attribute 
enables a system to be described by not only VHDL but also 
non-VHDL procedures such as IPC routines in C language. 

2.1. Interface transparency 

Our cosimulation environment provides the users with 
transparency about communication interface between soft- 
ware core and hardware core regardless of the type of target 
architectures and communication protocols. This is espe- 
cially important for detailed level cosimulation. 

Once the user selects the target architecture and commu- 
nication protocol, he or she can concentrate on the function- 
ality simulation of the hardware and software components 
without concerning about the details of the interface or com- 
munication. 

To provide the interface transparency, we implemented 
automatic interface model generation and instantiation. Ap- 
propriate simulation models for the interface between the 
two components are ’created’ by automatic interface model 
generation with parameters according to the chosen commu- 
nication protocol and the target architecture as shown in Fig. 
2 and Fig. 3. Interface simulation models should also be 
’inserted’ at appropriate places in the C program and VHDL 
model in automatic manner. Fig. 3 shows the relevant inter- 
face elements for hardware part and software part, and how 
they are created (or selected) and combined to provide the 
overall simulation model of interface and enable detailed 
level cosimulation. If the users give only the hardware and 
software cores, the interface elements are automatically cre- 
ated by generators or selected from libraries. 

The function of each interface element is as follows: 
(i) IPC handler takes care of reading/writing data f rod to  
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the software process using foreign IPC routines. It han- 
dles IPC jobs by handshaking. It also transfers events from 
software core to hardware core through channel unit, which 
consequently activates VHDL simulation. It is created by a 
generator. 
(ii) Channel unit represents the abstract simulation model 
of a physical channel device. It is selected from interface 
library. 
(iii) Signal register stores data to be transferred between 
hardware component and software component. Protocol 
converter makes hardware core connected to system bus of 
target architecture by interfacing between system bus and 
signal register. 
(iv) Top-level entity acts as a top-level container which gath- 
ers all interface elements. Interface elements are intercon- 
nected using component instantiations and signals declared 
in the entity. 

The hardware core, signal register and protocol converter 
will be mapped into real hardware prototype. When standard 
bus architecture is used, a standard channel device such as 
SBus DMA controller [ 11 can be used as a physical device 
for channel unit. If user-defined bus or channel is used, 
channel unit should be a part of hardware prototype. 

2.2. Smooth transition to cosynthesis 

After detailed level cosimulation, the system components 
must be synthesized as physical components on the selected 
target architecture. For the cosynthesis, the invokes to the 
IPC routines are replaced with the corresponding device 
driver calls or I/O function calls - which are called driver 
functions, collectively - for the software component. For 
the hardware component, top-level entity with foreign inter- 
face procedure declaration is stripped off and the hardware 
interface model remains to be synthesized together with 
hardware core. The driver functions and the software core 
will be compiled and linked together to make executable 
codes. Since this modification of each component specifi- 
cation for the cosynthesis is very simple and limited to a 
minimum degree, it is possible to make a smooth and fast 
transition from cosimulation to the cosynthesis of system 
prototype in our environment. Fig. 4 depicts the transition 
from cosimulation to cosynthesis. 

cosimulation t cosynthesis 

F E I " "  with Decoder 

l l  

Figure 4. Transition to cosynthesis from 
cosimulation. 

prototypes. Currently, the custom board consists of an 
FPGA and bus interface. The FPGA is used to implement a 
part of hardware model as real hardware. The communica- 
tion between the CPU and the custom board is done through 
SBus [3]. To interface between SBus and real hardware, we 
used a SBus DMA controller IC [ 11. 

Presently, we restrict to the case which CPU is always 
the bus master of SBus transactions. To send(receive) 
data to(from) the hardware prototype, software process and 
VHDL simulation process should write(read) data to(from) 
the device driver program. The software and VHDL sim- 
ulation processes communicate each other through socket 
IPC as mentioned above. 

2.4. Integrated user interface and internal repre- 
sentation 

To provide an integrated user interface and internal rep- 
resentation, we extended Ptolemy. Ptolemy [6] is a block- 
diagram oriented environment for simulation and prototyp- 
ing of heterogeneous systems. 

For hardware-software codesign, we are currently de- 
veloping Hetero Domain where heterogeneous models may 
coexist in the same representation of Ptolemy. 

3. Automatic interface generation 

2.3. Simulation acceleration 

In cosimulation using synchronized handshake tech- 
nique, hardware simulation time dominates overall cosimu- 
lation time [ 141. This problem can be alleviated by simula- 
tion acceleration. It consists of a CPU(SUN Sparc proces- 
sor) and a custom board. The CPU is in charge of running 
VHDL simulation process, C program process for software 
component, and CAD tools for the synthesis of hardware 

To generate interface models for cosimulation and cosyn- 
thesis, we developed an interface generation technique. In- 
terface generation starts from a partitioned control/dataflow 
graph (CDFG). The graph is the internal representation of 
the systems to be designed in our environment and consists 
of hardware CDFG and software CDFG. We generate hard- 
ware interface and software interface from these graphs as 
shown in Fig. 5 .  Fig. 6 shows system CDFG and parti- 
tioned CDFG. After partitioning the system CDFG (a) into 
software CDFG (b) and hardware CDFGs (c), special nodes 
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Figure 5. Interface generation flow (shaded 
area) in heterogeneous systems prototyping. 

Figure 6. System CDFG and partitioned 
CDFG. 

('send' and 'receive' nodes) for interface is added to the par- 
titioned CDFG at the partitioning boundary. Each special 
node has its own counter node. Hardware and software 
interface modules are generated from these special nodes 
in the hardware CDFG and software CDFG, respectively, 
according to the selected target architecture and conlmuni- 
cation protocol. The software interface module combines 
device driver routine calls, I/O function calls and loadstore 
commands to readlwrite data f rod to  system bus. The hard- 
ware interface module consists of signal register arid pro- 
tocol converter as shown in Fig. 7. The signal register 
stores data to be transferred between hardware component 
and software component. The protocol converter connects 
the hardware core to 1.he system bus of the target architec- 
ture by interfacing between the system bus and the signal 
register. 

3.1. Hardware interface generation 

Depending on whether the target architecture is already 
defined or not, the protocol converter can be instantiated 

allocate (width) 
{ 
Q = O  
if (width > W) { 

f o r ( p e P  s.t .  w = W ) {  
Q =  Q U {PI; 
P = P - {p); 
Q = Q + allocate (width - W); 

) 

else 
for (p E P s. t. w >= width) { 

P = P - {p I wp = width) u ( q  I q E P, wq = w p -  width); 
Q =  Q u  { p I wp = width]; 

) 
) 

I 
return Q; 

Figure 8. Signal register allocation algorithm. 

or generated. When the architecture is defined before, the 
protocol converter can be instantiated automatically from 
interface library since it is already generated before accord- 
ing to the architecture. For newly defined architectures, 
protocol converter should be generated using the algorithm 
in [ 131 and stored in the library for future instantiations. 

The signal register is generated in two phases - register 
template selection and signal register allocation. In the reg- 
ister template selection phase, an appropriate template for 
signal register is selected from a template library according 
to the characteristics of I/O port of hardware core. Each 
template differs in the configuration of components of sig- 
nal registers: multiplexers, decoders, buffers, and registers. 
An example of signal register instantiated from template li- 
brary is shown in Fig. 10. Currently, four templates are 
supported [9]. In the signal register allocation phase, input 
and output of selected signal register templates are allocated 
to each port of the hardware core. Using the information 
of special nodes such as port name, I/O direction, and bit 
width, register outputs and multiplexer inputs are bound to 
the input and output ports of hardware core, respectively. 
Whenever the bit width of a port to be bound is wider than 
bit width of single data transfer of system bus, a data trans- 
fer through the port must be done by multiple data transfers. 
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the CDFG in Fig. 9. 
Figure 9. (a) Hardware CDFG, (b) CDFG for the 
solution of differential equation: y" + 32y' + 
3y = 0. 

Signal register allocation algorithm is presented in Fig. 8. 
The algorithm returns the set of allocated registers for each 
ports. P, Q, W, w, and wx represent the set of registers not 
yet allocated, the set of allocated registers for each port, the 
bit width of system bus, the bit width of register, and the bit 
width of register x, respectively. 

Example 1. A partitioned CDFG is given as in Fig. 9. 
We assume that all edges in the CDFG are 32-bit integer 
type and the bit width of a system bus is 16 bits. The signal 
register allocation algorithm will generate a signal register 
for the CDFG as shown in Fig. 10. Since bus width is 16 
bits in the target architecture, inputs of a multiplexer (mO, 
ml)  are allocated to a send node t6. Register allocation will 
be done in the same way for other special nodes. 

3.2. Software interface generation 

Table 1. Target architectures and communi- 
cation protocols used in the experiments 

I ExDeriment I I ExDeriment 2 I 

HW device 

DMA controller 
E-channel 

union-temp .ush [l] = union-data. ush [ O ]  ; 
return union-temp. in [ O l  ; 
i 

The driver function calls device driver (here, 'ddps') two 
times and combines the two received data (16 bits each) 
into single integer data (32 bits). This is because the send 
node t6 of hardware CDFG is mapped to mO andml inputs of 
the multiplexer in the hardware interface module as shown 
in Fig. 10. 

Driver functions and the core software module which is 
synthesized from software CDFG [ 161 can be compiled and 
linked together to make executable codes. 

Driver functions are synthesized for each special node us- 
ing the information of special node in software CDFG such 
as function name, function type, parameter type, and map- 
ping results between the ports of hardware core and signal 
registers. The functions take charge of sendinglreceiving 
data tolfrom hardware core. 

Example 2. For the CDFG in Example 1 (shown in Fig. 9), 
the driver function generated for the receive node t6 of the 
software CDFG will be as follows: 

4. Experimental results 

4.1. Experiment 1 

int receive-t6 ( ) 

{ 
un i on-typ e union-temp; 

A lossless data compression system was cosimulated and 
cosynthesized using our environment. Initially, the system 
was only a C program implementing Lempel-Ziv lossless 

ioctl(ddps, RDE-MO, union-data.ch); data compression algorithm [19]. 
union-temp.ush[Ol = union-data.ush[Ol ; The system was manually partitioned into software and 
i o c t l  (ddps, RDE-MI, union-data.ch) ; hardware components resulting in a mixture of a hardware 
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component implementing parsing step and a software com- 
ponent implementing the remaining steps - initialization, 
coding, buffer updating, and file I/O. After inserting IPC 
routine calls in the Components, we performed abstract level 
cosimulation. Once the target architecture and communica- 
tion protocol were determined as shown in Table 1, hardware 
and software interface elements were generated or selected 
from library and added to the hardware component and soft- 
ware component for detailed level cosimulation. Combining 
all simulation models, the detailed level cosimulation was 
done successhlly and the result was identical to thait of the 
abstract level cosimulation. 

Then the hardware component of the system with buffer 
size of 16 was protot,yped with an FPGA [2] using the ar- 
chitecture in [lo]. The resultant hardware has taken 645 
CLBs including interface. With the clock frequency of 6.25 
MHz for FPGA, the priototyped heterogeneous system shows 
speedup of 1.7 over the implementation using only software 
component. 

4.2. Experiment 2 

We cosimulated and cosynthesized the same system as 
Experiment 1 but with different target architecture, commu- 
nication protocol, and buffer size n = 32 as shown in Table 
1. Signal register which matched with I/O ports of hardware 
core has been generated using interface module library for 
system bus (ISA Bus [15]). With the clock frequency of 
8.33 MHz for FPGA, we obtained speedup of 2.5 over the 
implementation using only software component. 

5. Conclusions 

In this paper, we present a hardware-software cosimu- 
lation environment for heterogeneous systems prototyping. 
To be an efficient system verification environment for the 
rapid prototyping of lieterogeneous systems which consist 
of hardware and software components, the environment sup- 
ports special features: interface transparency, cosimulation 
acceleration, smooth iransition to system prototype synthe- 
sis, and integrated user interface and internal representa- 
tions. The resultant benefits of those features are the mod- 
ularity of cosimulation components, no need of processor 
models, target architecture independence, and the concep- 
tual simplicity and easiness in establishing and expanding 
the environment. 

(i) Complete the implementation of the environment. 
(ii) Extend the environment to more general target architec- 
tures including microprocessors or micro-controllers digital 
signal processors, andl ASICs. 
(iii) Apply our approach to various system prototyping ex- 
amples such as MPEG-2. 

On-going and future works are as follows: 
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