
rototyping System Based on Incremental Design and
M o d ul e- by- M o d d e Veri fi c at i on

Yongjoo Kim, Youngsoo Shin, Kyuseok Kim, Jaehee Won, and Kiyoung Choi

ISRC, Seoul National University
Seoul, Korea 151-742

Phone: $81-2-880-6768
Fax : + 8 1 - 2- 8 8 7- 6 5 7 5

E-mail: kchoi@azalea.snu.ac.kr

A BSTRA CT
This p a p e r p r e s e n t s a n e f i c i e n t h a r d w a r e p r o t o t y p i n g
me thodo log ie s of d ig i ta l s y s t e m s . It is based on a low-
cost a n d f l ex ib l e p r o t o t y p i n g s y s t e m w h i c h cons i s t s of a
genera l -purpose CPU a n d a F P G A - b a s e d c u s t o m board.
Us ing our p r o t o t y p i n g me thodo log ie s s u c h as i n c r e m e n t a l
s y s t e m d e s i g n a n d m o d u l e - b y - m o d u l e ver i f i ca t ion , w e can
m a p p a r t i a l s y s t e m spec i f i ca t ion i n t o h a r d w a r e pro to t ype ,
w h i c h is i m p l e m e n t e d by p r o g r a m m i n g FPGAs o n c u s t o m
board. This a l lows f l ex ib l e a n d e f f i c i en t s y s t e m ver i f i ca t ion
a s w e l l a s r e d u c t i o n in cost a n d t i m e of p r o t o t y p e buildzng.

I. I N T R O D U C T I O N

In developing digital systems such as ASICs and custom
chips, it is necessary to simulate the systems completely
before committing ASICs and custom chips to silicon.
Simulation, however, can be a bottleneck in overall sys-
tem development cycle with the rapid increase in the com-
plexity of digital systems. Prototyping can be another
efficient system verification method although prototyping
itself is a design goal in the initial stage of system develop-
ment. With current trend of ever-increasing system size
and ever-decreasing system development time, rapid pro-
totyping is becoming an important design issue in system
development.

When prototyping a system, it is necessary to use a
prototyping medium which is inexpensive, flexible, easy to
build, and with comparable performance to target fabrica-
tion technology. Field-programmable gate array (FPGA)
is an ideal prototyping medium because of its field-
programmability. Using FPGA as prototyping medium,
a class of methods is emerging called computer-aided pro-
totyping(CAP). is emerging. CAP combines synthesis and
verification softwares with FPGA technology to automat-
ically produce hardware prototypes of chip designs. The
CAP environment can be made much more powerful by

0-7803-2570-2/95 $4.00 01995 IEEE 924

adding the capability of concurrent verification of all sys-
tem aspects - including hardware, software, and external
interfaces - leading to higher quality products and shorter
time to market [l].

There are several commercial or research prototyping
systems such as RPM emulation system [l], Diodes system
121, and DSP system with multiprocessors [3]. They are
very expensive or limited in application and flexibility.
Although simulation compiler system [4] is similar to our
prototyping system, it is not oriented to rapid prototyping
of system but oriented to simulation acceleration.

In this paper, we propose a flexible and cost-effective
CAP system and some system prototyping methodologies
using the system. The CAP system consists of a work-
station as a software platform and FPGA-based custom
board as target hardware prototype. The methodologies
we propose as new approach to system prototyping are as
follows:
(1) Incremental system design
Functions which are already defined and verified are im-
plemented with FPGA(s). Functions to be newly verified
will be software-simulated concurrently with the FPGA
implementation. This process continues until all the func-
tions are implemented.
(2) Module-by-module verification
One or several modules of a system can be implemented
with FPGA(s) and the functionality can be checked by
the software. Then the modules are replaced with other
modules to be checked. This process continues until all
the modules to be verified in the form of FPGA imple-
mentation are checked.

The rest of this paper is organized as follows. In Sec-
tion 11, we describe our prototyping system which is used
as platform for the application of our methodology. In
Sections I11 and IV , our system prototyping methodolG
gies are described in detail. Then after describing some

Sparc CPU

(CADSWI)
custom board

SBus interface a
SBus

Figure 1: Prototyping system hardware environment

'*
nw prototype

Figure 2: Major steps in system prototyping or softwares
in prototyping system

experimental results in Section V , we conclude and give
some remarks on future work in Section VI.

11. P R O T O T Y P I N G S Y S T E M

As shown in Figure 1, the hardware environment of
our prototyping system consists of a general purpose
CPU(SUN Sparc processor in Sparc Classic workstation)
and a custom board. The CPU is in charge of running
various softwares such as simulators and tools for synthe-
sis of hardware prototype. The Custom board consists of
FPGAs(Xi1inx 3090 [11]) and bus interface. The comrnu-
nication between CPU and custom board i s done through
SBus. To interface between SBus and hardware prototype,
we used a SBus DMA Controller chip(LS1 Logic L64853A
[SI) and some control logic. They are provided as a part
of SBus-based development board (Dawn VME Products
DPS-1 [TI), which we used for preliminary experiments.
The CPU is always the bus master of SBus transactions
in our system. To send(receive) da ta to(from) hardware-
prototype, softwares can write(read) da ta to(from) the de-
vice driver program which provides and interface on the
software side.

Major steps in system prototyping using our sys-
tem are as follows(Figure 2): (i)system specification
(ii)system partitioning (iii)hardware prototype synthesis

(iv)hardware prototype building (v)system verification.
The system prototyping begins from the specification

of system to be designed. I t is described in VHDL, a
standard hardware description language. The input sys-
tem description is then compiled and checked using VHDL
analysis tool. The error-free system description is parti-
tioned into two parts. One part is to be software-simulated
and the other part is to be hardware-prototyped with FP-
GAS.

At present, partitioning is done manually. There are
several factors t o be considered during partitioning such
as the number of usable gates/pins of FPGAs, expected
speedup of simulation with resultant partition, communi-
cation overhead, etc. The partitioning strategy and feed-
back path for the next design iteration (indicated as thick
lines in Figure 2) depends on the selected prototyping
methodology. The feedback path and library/datii man-
ager will be described in more detail in later secticms.

After partitioning, the hardware prototype for the par-
tition to be hardware-prototyped is synthesized using
FPGA synthesis tools(Synopsys Design Compiler [101 for
logic synthesis and Xilinx XACT [la] for FPGA placement
and routing), and the configuration da ta t o program FP-
GAS is generated.

Hardware prototype can be built by down-loading the
configuration date into FPGAs. The down-loading also
occurs through SBus and SBus interface.

System verification is done using an event-driven VBDL
simulator specially designed for an interface to physical
hardware. Besides normal simulation jobs such as event
handling, the simulator is supposed to do following jobs:
- sending and receiving events on interface signals between
two partitions.
- translating the events so that they conform to the avail-
able da ta width and protocol of bus transaction andl to the
format of internal da ta structure of the simulator. This
is essential in maintaining the semantics of events across
the heterogeneous partitions.
Input vectors are applied to the software-simulated part.
The simulator communicates with the hardware prototype
on the custom board. Because part of the design is han-
dled by the hardware prototype, the VIIDL simulation is
accelerated.

111. I N C R E M E N T A L S Y S T E M DESIGN

Our prototyping system provides a powerful incremen-
tal system design environment. As functions are added
and/or refined incrementally, the whole system design be-
comes bigger and bigger requiring longer and longer veri-
fication cycles. This problem can be solved through incre-
mental prototyping. At any time during the development
of a system, functions which are already verified through
simulation are synthesized and implemented with FPGAs,

925

system
1 unc tions

--+ mbration from SW to HW

time

Figure 3: Incremental system design

Sparc CPU

A

custom bosrd

SBua

Figure 4: Module-by-module verification(i=l, 2, ..,, m;
m = no. of modules)

thus become a part of hardware prototype since then.
Functions to be newly defined, coded in I’IIDL, and/or
synthesized are software-simulated. Because the part put
into FPGAs are stili there during the simulation, and we
need to software-simulate only the incremental part, we
can minimize the time spent for simulation. This process
continues until all the functions are fully prototyped. Fig-
ure 3 illustrates the process. When the development of
whole system is finished, full-scale system prototype has
also been produced.

In Figure 2, partitioning identifies the incremental part
of system functions and regards the part as software-
simulated part. Component reuse is assisted by li-
brary/data manager which serves as library and manager
of da ta of hardware-prototyped parts of system functions.
Hardware-prototyped parts in the library can be instan-
tiated in the next iteration which is indicated by outer
feedback path in the figure. Component reuse enables
fast incremental prototyping.

IV . M 0 D U L E- B Y - M 0 D U L E VERIFICATION

When the function of a system is already coded in VHDL,
some modules in the system can be verified in the form
of FPGA implementation with the remaining modules in
the form of software-simulated model. This process of

module-by-module verification continues until all modules
of interest are individually verified. Figure 4 depicts the
idea. Assume there are m modules in a system and we
want to verify module i in the form of FPGA implemen-
tation. The module i is then implemented using FPGAs
on the custom board. Remaining modules are simulated
as VHDL models using the VHDL simulator. During sim-
ulation, module i and the remaining modules communi-
cate through SBus. This concept resembles a hardware
modeler which are often used to develop microprocessor-
based system but with much higher flexibility in obtaining
hardware models. This approach allows us to easily detect
and locate prototyping-related problems by the narrowed
modulewise design space.

In Figure 2, partitioning is applied to overall system
description and selects the module which is not yet ver-
ified. Although component reuse is not practiced during
the verification iterations as in the incremental system de-
sign methodology, verified modules are saved in the library
in each iteration. When the verification is finished, all the
modules are in library/data manager and ready for full-
scale system prototyping just by instantiating them. The
verification iteration is represented by inner feedback path
in the figure.

V . E X P E R I M E N T A L RESULTS
To confirm the effectiveness of our prototyping system and
methodologies, we performed some experiments. As our
example, we chose DCT(discrete cosine transform) core
for image processing [9]. It consists of four functional
modules: a 16-bit shift and adder(Ml), a ROM as a look-
up table(hl2), a 16 x 14-bit parallel multiplier(M3), and
a 22-bit adder(M4).

Important assumptions to simplify the preliminary ex-
periments are as follows:
- Sparc CPU, thus software simulator is the only master
of bus transaction.
- The systems to be designed are synchronous circuits.
- Clock signal is applied to the software simulator as an
input vector and fed to the hardware prototype via SBus.
- Hardware prototype is fast enough that before the end of
the current, software-simulation cycle, computation by the
hardware prototype for that simulation cycle is finished.

To confirm the effectiveness of our system when ap-
plied to incremental system design, we partitioned the de-
scription of DCT core into two parts: P1 and P2. As-
suming that the partition P2 was designed before P1,
P2 was prototyped into hardware and P1 was software-
simulated. Table 1 presents the results. We tried two
different partitions. In both cases, we achieved consid-
erable improvement in simulation speed over all-software
simulation. The speedup heavily depends on the size, ab-
straction level and characteristics of each partition. In

926

Table 1: Experimental results: simulation results, hard-
ware size, and VHDL code size (all SW: all modules are
simulated, mixed: one partition is simulated, the other
partition is prototyped)

partitioning 1 1 partitioning 2
all S W I mixed I all SW I mixed

sim. time(sec)
no. signals

191 19 196 19
5747 1690 6372 1254 -

no. events

no. gates
no. fliv-flovs

239185 29593 251611 30325

3725 5080
79 201 . .

no. 1/0 pads
no. VHDL lines

our experimental cases, the hardware partition contains
the multiplier which generates many simulation events.
That is why we obtained such drastic improvement.

To validate the module-by-module verification as an-
other flexible methodology of system prototyping and veri-
fication, we performed another experiments with the same
circuit. We verified conveniently and successfully each
module in the form of FPGA implementation with the re-
maining modules in the form of software-simulated model.

’VI. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a flexible and cost-effective
computer-aided prototyping system and efficient and flex-
ible system prototyping methodologies using the system.
The efficiency and flexibility of our system and method-
ologies is due to the field-programmability of FPGAs and
the partial module-oriented prototyping of a system in-
stead of full-scale prototyping.

Comparing with other systems and methodologies, the
contributing points of our system and methodologies are
as follows:
- While existing systems convert a completed system de-
sign into a hardware prototype, our methodologies allows
partial and incremental development of hardware proto-
type through incremental system design.
- Our methodology allows system verification through
the arbitrary mixture of software-simulated modules and
hardware-prototyped modules, whereas existing systems
allow only limited mixtures.

- Extension of our system and methodologies to hard-
ware/software co-design [5] of mixed or embedded sys-
tems.
- Development of automatic partitioning softwares.

Future work will be as follows:

19 18
2921 1463 2921 1281

- Expansion of the prototyping system to cover the sys-
tems with larger size. Because this requires multiple
FPGA chips on custom board, we need the capability of
multi-chip partitioning of system functions.

L (SW simulated) I

REFERENCES
S. Walters, ”Computer-aided prototyping for ASIC-
based systems,” IEEE Design and Test of Computers,
pp. 4-10, June 1991.

R. Hartley, K . Welles 11, and M. Hartman, et al., ”A
rapid prototyping environment for digital-signal pro-
cessors,” IEEE Design and Test of Computers, pp. 11-
26, June 1991.

M. Engels, R. Lauwereins, and J . A. Pepertstaete,
”Rapid prototyping for DSP systems with mult.ipro-
cessors,” IEEE Design and Test of Computers, pp. 52-
62, June 1991.

K. A. Olukotun, R. Helaihel, J . Levitt, and R.
Ramirez, ”A software-hardware cosynthesis apprsoach
to digital system simulation,” IEEE Micro, pp. 48-58,
August 1994.

J . A. Rowson, ” IIardware/software co-simulation,” in
Proc. 31th A CM/IEEE Design Automation Confer-
ence, pp. 439-440, June 1994.

Standard for a Chip and Module Iderconnect Bus:
SBus (P1496/Draft 2.3), IEEE Standard Department,
1993.

User Guide for DAWN VME Products DPS-1: De-
velopment Platform SBus Version 1.0 Revision B,
DAWN VRlE Products, April 1991.

L64853A SBus D M A Controller Technical Manual,
LSI Logic, 1991.

J . S. Lim, Two-Dimensional Signal and Image Pro-
cessing, Prentice-€1 all, 1990.

1

[IO] Design Compiler Reference Manual, Synopsys, Oct.
1991.

[ll] The Programmable Logic Data Book, Xilinx, 1993.

[la] User Guide and Tutorials, Xilinx, 1991.

927

