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Abstract 
This paper deals with the problem of hardware- 

software codesign of hard real-time systems. For a 
given task set, we perform an exact schedulability test 
to determine whether the task set is schedulable or not. 
When there is a task that cannot meet the deadline, 
we compute the amount of time by  which the deadline 
is missed. Then  we determine which tasks should re- 
duce their execution time to compensate that amount 
of time deviation. The reduction of execution time i s  
achieved by  implementing parts of the tasks with hard- 
ware. With this approach, we can systematically de- 
sign a hard real-time system which is infeasible with 
all software implementation. Preliminary experimen- 
tal results are given to  demonstrate the efectiveness 
of our approach. 

I. Introduction 
These days, as the complexity of embedded sys- 

tems increases, a systematic design approach called 
hardware-software codesign is receiving a lot of atten- 
tion. Most such embedded real-time systems can be 
described as a set of tasks with timing constraints. 
Depending on the strictness of timing constraints, a 
system can be referred to as a hard real-time or a 
soft real-time system. In a hard real-time system, it 
is crucial to satisfy timing requirements as well as its 
functional correctness. Such systems are easily found 
in most control systems, avionics, and many other em- 
bedded systems. 

Usual approaches to  a real-time system design in- 
volve much ad-hoc style engineering. This includes 
hand-crafted code tuning, reimplementing core rou- 
tines, experimenting with various timing parameters, 
and so on. In the extreme, the entire system may be 
redesigned to  satisfy timing constraints. In designing 
complex systems, however, these approaches are hard 
to employ or even are not acceptable. Moreover, sys- 
tems designed with these approaches are brittle when 
we should replace certain tasks with their version-ups 
or when we should add other functionalities. There- 
fore, we need a systematic approach which will replace 
the ad hoc approaches. 

There have been some research efforts for codesign 
targeting a multiple task model [l], [2]. Their ap- 
proaches can be considered as an architectural explo- 
ration in that timing parameters for tasks are given 
for various kinds of processing elements from which 
they select appropriate candidates. However, it is dif- 
ficult to extract a priori timing information for various 
kinds of implementation styles and for various kinds of 
processing elements. Therefore, their approaches are 
sometimes hard to  employ in realistic system design. 

In this paper, we take an approach where the execu- 
tion time of tasks can be reduced by moving some code 
fragments to  hardware components. In other words, 
when we cannot schedule the given task set in a spec- 
ified deadline, we reduce the execution time of some 
tasks by employing a coprocessor which is a hardware 
implementation of the code fragments of the tasks. 
In this approach, the essential problem is a decision 
about how much portion of which tasks should be im- 
plemented with hardware components. 

The overall flow of our approach is as follows. First, 
the system is specified as a set of tasks with their tim- 
ing attributes/constraints. Each task is modeled as 
a control data flow graph(CDFG) [3]. If there are 
tasks to  be speeded up to satisfy the schedulability 
condition, we compute the percentage of the task’s 
execution time to be cut off in order to satisfy the 
schedulability condition. From this information, a 
hardware-software partitioner [4] partitions the task 
into two parts to  be implemented with hardware and 
software, respectively. Then the interface between the 
two parts is generated and annotated to each parti- 
tioned parts [5], [6]. The software part is synthesized 
by software synthesis process 131 to  become an exe- 
cutable and hardware part is synthesized to become 
an ASIC or FPGA. All these processes are illustrated 
in Fig. 1. 

The rest of the paper is structured as follows. In the 
next section, we summarize rate monotonic scheduling 
and its schedulability test which are used in our ap- 
proach. We propose and describe a novel algorithm for 
achieving schedulability using schedulability analysis 
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satisfies the following equation. 

(3) 

(-1 (*) 

Fig. 1. Hardware-software codesign flow. 

in section 111. In section IV, we consider extensions to 
our basic algorithm in order to incorporate deadline 
monotonic scheduling and discuss the scheduler over- 
head. We show experimental results in section V and 
draw conclusions with some remarks in section VI. 

11. Rate Monotonic Schedulability 
Analysis 

Given a set of independent periodic tasks, rate 
monotonic scheduling (RMS) assigns a higher priority 
to tasks with shorter period or with higher execution 
rate [7]. RMS is proved to be an optimal static prior- 
ity assignment in the sense that if a given task set can 
be scheduled using a certain static priority scheduling 
algorithm, then it can also be scheduled using RMS. 
The advantage of RMS lies in its simplicity as well as 
the existence of schedulability tests. 

In [7], they proposed the following sufficient and 
non-necessary schedulability test which is based on the 
processor utilization factor: 

where Ci and Ti are the worst case execution time and 
period of task ri, respectively. 

There are also necessary and sufficient schedulabil- 
ity test based on the critical instant theorem [SI which 
tests schedulability on the sets of scheduling points de- 
fined by the following equation. 

Ti 
Tj 

sz = {kT,Ij = l,.. . , i ; k  = 1,. . . , 1-1) ( 2 )  

where ri’s are sorted in the ascending order of the 
period. 

Note that we need to check the sclhedulability of 
task ~i only at those points which are multiples of 
Tj(T’ 5 Ti for 1 5 j < i )  and in the interval [O,Ti] as 
expressed in equation ( 2 ) .  Task ~i is schedulable if it 

The above process is illustrated in the following ex- 

Example 1: Consider the case of the following three 

ample. 

tasks with scheduling points computed as shown: 
7 1 :  C1=4, Tl=lO, Si = {Ti} 

~ 3 :  C3=7, T3=25, Ss {Tl,T2,2Ti,T3} 
7 2 :  C2=10, T2=l6, S, = {T1,T2} 

We perform scRedulability analysis for all three 
tasks at each scheduling point as follows. 

TI : C1 5 Ti 
7 2  : Ci +C2 > Ti 

2C1 + C2 > T2 
CI + C2 + C3 > Ti 
2C1+ C2 + C3 > T2 
2Ci + 2C2 + C3 > 2Tj 
3c1 + 2C2 + C3 > T3 

7 3  : 

From the analysis, we can see that 7 1  is schedulable, 
but 7 2  and r3 do not meet their deadlines. 

The basic RMS theory seems to be very restric- 
tive in that they can only be applied to the cases 
where tasks are independent and periodic, deadlines 
are equal to periods, and tasks are executing on a 
uniprocessor. However, there have been many re- 
searches on extending the basic RMS theory for more 
general cases [9], [lo] .  

111. Algorithm for Achieving Schedula- 
bility . 

The schedulability analysis described in the pre- 
vious section cannot help once the task set is found 
to be unschedulable. In this situation, a lot of ad 
hoc style engineering is needed until the modified task 
set satisfy the schedulability. Our work on algorithm 
for achieving schedulability is motivated by this short- 
coming of the existing methodology for hard real-time 
system designer. 

Our algorithm for achieving schedulability is based 
on the exact schedulability analysis given by equation 
(3). In our algorithm, we iterate a process of reducing 
the execution time of tasks until all tasks meet their 
deadlines. To this end, we define mrci as the maxi- 
mum value by which we can reduce the execution time 
of task ~i and it is computed as follows: 

mrci = Ci - [input-communication-overhead + 
critical -path_lengt h + 
output-communicationaverhead] (4) 
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where criticalqath-length is the latency of the task 
obtained by implementing it with hardware through 
schedulingland allocation. Note that we need to com- 
pute mrci for task ri only when it is totally or partially 
implemented with hardware and this will be evident 
in the following discussion. This computation does 
not increase much the total computational complex- 
ity because tasks determined to be implemented with 
hardware will be synthesized after all. Alternatively, 
the designer can control mrci by assigning a certain 
value. For example, we can assign 0 to  mrcl when we 
do not want to  reduce the execution time of 7-1. 

We define Si,j as the j t h  scheduling point of task ri 
when elements of Si are sorted in the ascending order. 
For each task which does not satisfy equation (3), we 
compute the time deviation by which the task misses 
its deadline. We define Acij as the time deviation of 
task 7-i at the j t h  scheduling point. It is given by the 
following equation. 

7-2 

7-3 

For each Acid, we compute the time d i j k ,  k = 
1,. . . ,i, by which the execution time of each task Tk 
must be reduced in order to  make ri schedulable. It is 
computed by the following equation. 

A C ~ J  = 1.2 
A c z , ~  = -3.6 
Ac3,l = 8.2 d312 = 8.2 d313 = 8.2 

Ac3,3 = 9.4 d332 = 4.7 d333 = 9.4 
Ac3,4 = 5.6 d342 = 2.8 d343 = 5.6 

A C ~ J  = 3.4 d322 = 3.4 d323 = 3.4 
It can be easily shown that if the execution time of 

any task 7-k is reduced by the amount given in equation 
(6), then 7-i can be made schedulable. From this com- 
putation, we can compute the minimum required time 
by which the execution time of r k  must be reduced in 
order to  make all tasks schedulable as follows. 

Vk = max min dijk ( 7) 
a L 1 

For any k, if we reduce the execution time of 7-k by 
Dk, then all tasks become schedulable. However, if Vk 
is larger than mrck which is the maximum value we 
can take off from the execution time of task Tk, then 
it is impossible to achieve our goal by only reducing 
the execution time of task rk. We solve this prob- 
lem through iteration. First, we reduce the execution 
time of 7-1 by Vi. If D1 is larger than mrcl, we iterate 
the above steps with r2,73,. . . until all tasks become 

lThis should not be confused with the scheduling of real time 
tasks. Scheduling in this phrase means assigning a control step 
to each operation in hardware implementation and is one of the 
phases performed in a high-level synthesis. 

schedulable. We start from r1 because it is more effec- 
tive than starting from any other task. Note that D, 
is always smaller than or equal to  D,, provided that m 
is smaller than n. In the (k+l) th  iteration, Acj,j com- 
puted in the kth iteration should be updated. Note 
that the execution time of q, . . . , r k  have been modi- 
fied during the first k iterations. This computation is 
performed incrementally using the following equation. 

3 . .  
k Ac$' = Acj . - mrck 

Tk >3 

Example 2: Let's revisit the case of three tasks in 
Example 1 and assume that mrci is 70% of Ci for all 
tasks. In the first iteration, we compute D1 as follows. 

The negative value of Ac2,2 indicates that 7 2  be- 
comes schedulable. The values of d3jl are not present 
in the table because we cannot reduce the execution 
time of r1 further after the first iteration. Because V2 
is smaller than mrcg which is 7 ,  the iteration com- 
pletes. 

IV. Extension 
Our algorithm described in the previous section is 

based on the schedulability analysis for a system us- 
ing RMS. However, our methodology can be easily ex- 
tended in various directions. In this section, we con- 
sider some of these extensions. 
A. Deadline Monotonic Scheduling 

Deadline monotonic scheduling (DMS) is an exten- 
sion of RMS where the deadline of a task is smaller 
than the period. DMS provides a more flexible model 
for various situations which include catering for ape- 
riodic events. It is also proved to be optimal in the 
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same context of RMS [ll]. There is also a schedula- 
bility test which is both necessary and sufficient [12], 
[ l l ] .  It finds the worst case response time of task 7 ;  
as follows: 

where B i  is the maximum duration when we use prior- 
ity ceiling protocol [13] in which task r i  can be blocked 
by lower priority tasks when it tries to  access shared 
resources. hp(i)  is a set of tasks with priorities higher 
than ~ i .  There are no simple solutions for equation (9) 
because R i  appears on both sides. However, the so- 
lution can be found by using the following recurrence 
equation. 

R i  becomes ty+' when tY+l equals to t l .  
It is proved that equation (10) converges for a set 

of tasks when processor utilization is smaller than or 
equal to 1. However, this is not guaranteed when uti- 
lization is larger than 1. Therefore, we cannot use this 
schedulability test for our purpose. Instead, we can 
use RMS analysis for testing schedulability. The dif- 
ference from normal RMS analysis is that we test only 
at  scheduling points that are smaller than or equal to  
the deadline of a task. For this extension, equation 
(2) is modified as follows: 

Fig. 2 shows the pseudo code for the proposed al- 
gorithm that achieves schedulability by adjusting task 
execution times. It works for both RMS and DMS. 
B. Scheduler Overhead 

In most schedulability analyses, the cost of sched- 
uler overhead is assumed to  be 0 for simplicity. How- 
ever, we should take into account this overhead in 
practical system design. In [14], [15], they proposed 
effective methods for incorporating scheduler overhead 
into fixed priority schedulability analysis. We can eas- 
ily accommodate them to our algorithm. 

For example, when we use timer-driven scheduling 
or tick scheduling2 [14], we can use the following equa- 
tion instead of equation (3). 

min 
{ tESi)  

'A scheduler maintains a run queue and a delay queue. The 
former holds the tasks ready for execution and is ordered by 
priority. The latter holds the suspended tasks and is ordered 
by due time for release. The scheduler is released at regular 
intervals by a timer interrupt and moves candidate tasks from 
the delay queue to the run queue. 

Calculatedeviation-time() { 
find-schedulingpoints(); 

schedulability-test (); 
f o r ( k = 1 , 2 ,  ..., n) { 

for (all tasks T, wich are not schedulable) 
compute Aci,j at Si,$; 

z ) k  = maxi [minj,k dijk]; 

if (Dk > mTCk) { 
s. ' AC;,j = ACi,j - mTCkr3]; Tk 

reduce c k  Of T k  by mTCk; 

1 
else { 

reduce c k  O f  7 k  by mTCk - Dk; 
exit loop; 

1 
1 .  

1 

schedulability. 
Fig. 2. Pseudo code for adjusting task execution times for 

where Cpreempt is time for handling task preemption, 
Cezi t  for handling normally completed task, Ctimer 
for handling timer interrupt. Tt ic  is period of timer 
interrupt. 

V. Experimental Results 
We perform experiments for two kinds of examples. 

The first example is a case study based upon an iner- 
tial navigation system(1NS) [14] and the second exam- 
ple is the GAP case study [16]. In the first example, 
we decrease periods of all tasks by 10% of original pe- 
riods. Table I and I1 summarize timing attributes of 
the two examples, respectively. Note that we can use 
RMS schedulability analysis for INS example because 
periods are equal to  deadlines. In GAP example, we 
use DMS test: In both examples, we take into account 
scheduling overhead. The parameters for scheduler 
overhead are set as follows. 

Cpreempt = 2, Cezi t  = 2, Ctimer = 2, Ttic = 20 
For all the experiments, we assume mrci to be 70% 

In the first experiment, 231 is 280.812 after the first 
iteration. The results are that we should reduce the 
execution time of taskl by 23.8% to satisfy timing 
constraints and the resulting processor utilization is 
0.893. Recall that the reduction of the execution time 
is achieved by implementing part of taskl with hard- 
ware. In the second experiment, ID1 is 1046.25 after 
the first iteration. The results are that we should re- 
duce the computation time of taskl by 34.9% to satisfy 

of c i .  



TABLE I 
TIMING ATTRIBUTES OF INS TASKS 

I Timing attributes 
Ti I Di I ci I B; 

task1 
task2 

, J 

Timing attributes 

200000 5000 3000 300 
25000 25000 2000 600 

Ti Di Ci Bi 

task8 
task9 

I task7 I 59000 I 59000 I 8000 I 750 I 
80000 80000 9000 1350 
80000 80000 2000 450 

task10 100000 100000 
task11 200000 200000 
task12 200000 200000 

5000 1050 
1000 450 
3000 450 

1 task17 I 1000000 I 1000000 I 1000 I 0 I 

timing constraints and the resulting processor utiliza- 
tion is 0.845. 

VI. Conclusions 
We have proposed in this paper a systematic design 

approach for hard real-time systems. Our work was 
motivated by the following two facts. 

Design of hard real-time systems involve a lot of 
ad hoc engineering. Systematic design approach 
is needed to design a complex system. 
Most schedulability analysis can do little when 
tasks can not meet their deadlines. We need sys- 
tematic strategy for this situation. 

To satisfy strict timing constraints, we computed 
a time deviation by which tasks miss their dead- 
lines. This computation can be used as a directive 
for hardware-software partitioning tool. 

Our future work includes synthesis of predictable 
microkernel and incorporating our approach into a de- 
sign environment as shown in Fig. l. 
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