
Enforcing Schedulability of Multi-Task Systems by
Hardware-Software Codesign

Youngsoo Shin Kiyoung Choi
School of Electrical Engineering

Seoul National University
Seoul 151-742, Korea

Abstract
This paper deals with the problem of hardware-

software codesign of hard real-time systems. For a
given task set, we perform an exact schedulability test
to determine whether the task set is schedulable or not.
When there is a task that cannot meet the deadline,
we compute the amount of time by which the deadline
is missed. Then we determine which tasks should re-
duce their execution time to compensate that amount
of time deviation. The reduction of execution time i s
achieved by implementing parts of the tasks with hard-
ware. With this approach, we can systematically de-
sign a hard real-time system which is infeasible with
all software implementation. Preliminary experimen-
tal results are given to demonstrate the efectiveness
of our approach.

I. Introduction
These days, as the complexity of embedded sys-

tems increases, a systematic design approach called
hardware-software codesign is receiving a lot of atten-
tion. Most such embedded real-time systems can be
described as a set of tasks with timing constraints.
Depending on the strictness of timing constraints, a
system can be referred to as a hard real-time or a
soft real-time system. In a hard real-time system, it
is crucial to satisfy timing requirements as well as its
functional correctness. Such systems are easily found
in most control systems, avionics, and many other em-
bedded systems.

Usual approaches to a real-time system design in-
volve much ad-hoc style engineering. This includes
hand-crafted code tuning, reimplementing core rou-
tines, experimenting with various timing parameters,
and so on. In the extreme, the entire system may be
redesigned to satisfy timing constraints. In designing
complex systems, however, these approaches are hard
to employ or even are not acceptable. Moreover, sys-
tems designed with these approaches are brittle when
we should replace certain tasks with their version-ups
or when we should add other functionalities. There-
fore, we need a systematic approach which will replace
the ad hoc approaches.

There have been some research efforts for codesign
targeting a multiple task model [l], [2]. Their ap-
proaches can be considered as an architectural explo-
ration in that timing parameters for tasks are given
for various kinds of processing elements from which
they select appropriate candidates. However, it is dif-
ficult to extract a priori timing information for various
kinds of implementation styles and for various kinds of
processing elements. Therefore, their approaches are
sometimes hard to employ in realistic system design.

In this paper, we take an approach where the execu-
tion time of tasks can be reduced by moving some code
fragments to hardware components. In other words,
when we cannot schedule the given task set in a spec-
ified deadline, we reduce the execution time of some
tasks by employing a coprocessor which is a hardware
implementation of the code fragments of the tasks.
In this approach, the essential problem is a decision
about how much portion of which tasks should be im-
plemented with hardware components.

The overall flow of our approach is as follows. First,
the system is specified as a set of tasks with their tim-
ing attributes/constraints. Each task is modeled as
a control data flow graph(CDFG) [3]. If there are
tasks to be speeded up to satisfy the schedulability
condition, we compute the percentage of the task’s
execution time to be cut off in order to satisfy the
schedulability condition. From this information, a
hardware-software partitioner [4] partitions the task
into two parts to be implemented with hardware and
software, respectively. Then the interface between the
two parts is generated and annotated to each parti-
tioned parts [5], [6]. The software part is synthesized
by software synthesis process 131 to become an exe-
cutable and hardware part is synthesized to become
an ASIC or FPGA. All these processes are illustrated
in Fig. 1.

The rest of the paper is structured as follows. In the
next section, we summarize rate monotonic scheduling
and its schedulability test which are used in our ap-
proach. We propose and describe a novel algorithm for
achieving schedulability using schedulability analysis

3
0-8186-7895-X/97 $10.00 0 1997 IEEE

satisfies the following equation.

(3)

(-1 (*)

Fig. 1. Hardware-software codesign flow.

in section 111. In section IV, we consider extensions to
our basic algorithm in order to incorporate deadline
monotonic scheduling and discuss the scheduler over-
head. We show experimental results in section V and
draw conclusions with some remarks in section VI.

11. Rate Monotonic Schedulability
Analysis

Given a set of independent periodic tasks, rate
monotonic scheduling (RMS) assigns a higher priority
to tasks with shorter period or with higher execution
rate [7]. RMS is proved to be an optimal static prior-
ity assignment in the sense that if a given task set can
be scheduled using a certain static priority scheduling
algorithm, then it can also be scheduled using RMS.
The advantage of RMS lies in its simplicity as well as
the existence of schedulability tests.

In [7], they proposed the following sufficient and
non-necessary schedulability test which is based on the
processor utilization factor:

where Ci and Ti are the worst case execution time and
period of task ri, respectively.

There are also necessary and sufficient schedulabil-
ity test based on the critical instant theorem [SI which
tests schedulability on the sets of scheduling points de-
fined by the following equation.

Ti
Tj

sz = {kT,Ij = l,.. . , i ; k = 1,. . . , 1-1) (2)

where ri’s are sorted in the ascending order of the
period.

Note that we need to check the sclhedulability of
task ~i only at those points which are multiples of
Tj(T’ 5 Ti for 1 5 j < i) and in the interval [O,Ti] as
expressed in equation (2) . Task ~i is schedulable if it

The above process is illustrated in the following ex-

Example 1: Consider the case of the following three

ample.

tasks with scheduling points computed as shown:
7 1 : C1=4, Tl=lO, Si = {Ti}

~ 3 : C3=7, T3=25, Ss {Tl,T2,2Ti,T3}
7 2 : C2=10, T2=l6, S, = {T1,T2}

We perform scRedulability analysis for all three
tasks at each scheduling point as follows.

TI : C1 5 Ti
7 2 : Ci +C2 > Ti

2C1 + C2 > T2
CI + C2 + C3 > Ti
2C1+ C2 + C3 > T2
2Ci + 2C2 + C3 > 2Tj
3c1 + 2C2 + C3 > T3

7 3 :

From the analysis, we can see that 7 1 is schedulable,
but 7 2 and r3 do not meet their deadlines.

The basic RMS theory seems to be very restric-
tive in that they can only be applied to the cases
where tasks are independent and periodic, deadlines
are equal to periods, and tasks are executing on a
uniprocessor. However, there have been many re-
searches on extending the basic RMS theory for more
general cases [9], [lo] .

111. Algorithm for Achieving Schedula-
bility .

The schedulability analysis described in the pre-
vious section cannot help once the task set is found
to be unschedulable. In this situation, a lot of ad
hoc style engineering is needed until the modified task
set satisfy the schedulability. Our work on algorithm
for achieving schedulability is motivated by this short-
coming of the existing methodology for hard real-time
system designer.

Our algorithm for achieving schedulability is based
on the exact schedulability analysis given by equation
(3). In our algorithm, we iterate a process of reducing
the execution time of tasks until all tasks meet their
deadlines. To this end, we define mrci as the maxi-
mum value by which we can reduce the execution time
of task ~i and it is computed as follows:

mrci = Ci - [input-communication-overhead +
critical -path_lengt h +
output-communicationaverhead] (4)

4

where criticalqath-length is the latency of the task
obtained by implementing it with hardware through
schedulingland allocation. Note that we need to com-
pute mrci for task ri only when it is totally or partially
implemented with hardware and this will be evident
in the following discussion. This computation does
not increase much the total computational complex-
ity because tasks determined to be implemented with
hardware will be synthesized after all. Alternatively,
the designer can control mrci by assigning a certain
value. For example, we can assign 0 to mrcl when we
do not want to reduce the execution time of 7-1.

We define Si,j as the j t h scheduling point of task ri
when elements of Si are sorted in the ascending order.
For each task which does not satisfy equation (3), we
compute the time deviation by which the task misses
its deadline. We define Acij as the time deviation of
task 7-i at the j t h scheduling point. It is given by the
following equation.

7-2

7-3

For each Acid, we compute the time d i j k , k =
1,. . . ,i, by which the execution time of each task Tk
must be reduced in order to make ri schedulable. It is
computed by the following equation.

A C ~ J = 1.2
A c z , ~ = -3.6
Ac3,l = 8.2 d312 = 8.2 d313 = 8.2

Ac3,3 = 9.4 d332 = 4.7 d333 = 9.4
Ac3,4 = 5.6 d342 = 2.8 d343 = 5.6

A C ~ J = 3.4 d322 = 3.4 d323 = 3.4
It can be easily shown that if the execution time of

any task 7-k is reduced by the amount given in equation
(6), then 7-i can be made schedulable. From this com-
putation, we can compute the minimum required time
by which the execution time of r k must be reduced in
order to make all tasks schedulable as follows.

Vk = max min dijk (7)
a L 1

For any k, if we reduce the execution time of 7-k by
Dk, then all tasks become schedulable. However, if Vk
is larger than mrck which is the maximum value we
can take off from the execution time of task Tk, then
it is impossible to achieve our goal by only reducing
the execution time of task rk. We solve this prob-
lem through iteration. First, we reduce the execution
time of 7-1 by Vi. If D1 is larger than mrcl, we iterate
the above steps with r2,73,. . . until all tasks become

lThis should not be confused with the scheduling of real time
tasks. Scheduling in this phrase means assigning a control step
to each operation in hardware implementation and is one of the
phases performed in a high-level synthesis.

schedulable. We start from r1 because it is more effec-
tive than starting from any other task. Note that D,
is always smaller than or equal to D,, provided that m
is smaller than n. In the (k+l) th iteration, Acj,j com-
puted in the kth iteration should be updated. Note
that the execution time of q, . . . , r k have been modi-
fied during the first k iterations. This computation is
performed incrementally using the following equation.

3 . .
k Ac$' = Acj . - mrck

Tk >3

Example 2: Let's revisit the case of three tasks in
Example 1 and assume that mrci is 70% of Ci for all
tasks. In the first iteration, we compute D1 as follows.

The negative value of Ac2,2 indicates that 7 2 be-
comes schedulable. The values of d3jl are not present
in the table because we cannot reduce the execution
time of r1 further after the first iteration. Because V2
is smaller than mrcg which is 7 , the iteration com-
pletes.

IV. Extension
Our algorithm described in the previous section is

based on the schedulability analysis for a system us-
ing RMS. However, our methodology can be easily ex-
tended in various directions. In this section, we con-
sider some of these extensions.
A. Deadline Monotonic Scheduling

Deadline monotonic scheduling (DMS) is an exten-
sion of RMS where the deadline of a task is smaller
than the period. DMS provides a more flexible model
for various situations which include catering for ape-
riodic events. It is also proved to be optimal in the

5

same context of RMS [ll]. There is also a schedula-
bility test which is both necessary and sufficient [12],
[l l] . It finds the worst case response time of task 7 ;
as follows:

where B i is the maximum duration when we use prior-
ity ceiling protocol [13] in which task r i can be blocked
by lower priority tasks when it tries to access shared
resources. hp(i) is a set of tasks with priorities higher
than ~ i . There are no simple solutions for equation (9)
because R i appears on both sides. However, the so-
lution can be found by using the following recurrence
equation.

R i becomes ty+' when tY+l equals to t l .
It is proved that equation (10) converges for a set

of tasks when processor utilization is smaller than or
equal to 1. However, this is not guaranteed when uti-
lization is larger than 1. Therefore, we cannot use this
schedulability test for our purpose. Instead, we can
use RMS analysis for testing schedulability. The dif-
ference from normal RMS analysis is that we test only
at scheduling points that are smaller than or equal to
the deadline of a task. For this extension, equation
(2) is modified as follows:

Fig. 2 shows the pseudo code for the proposed al-
gorithm that achieves schedulability by adjusting task
execution times. It works for both RMS and DMS.
B. Scheduler Overhead

In most schedulability analyses, the cost of sched-
uler overhead is assumed to be 0 for simplicity. How-
ever, we should take into account this overhead in
practical system design. In [14], [15], they proposed
effective methods for incorporating scheduler overhead
into fixed priority schedulability analysis. We can eas-
ily accommodate them to our algorithm.

For example, when we use timer-driven scheduling
or tick scheduling2 [14], we can use the following equa-
tion instead of equation (3).

min
{ tESi)

'A scheduler maintains a run queue and a delay queue. The
former holds the tasks ready for execution and is ordered by
priority. The latter holds the suspended tasks and is ordered
by due time for release. The scheduler is released at regular
intervals by a timer interrupt and moves candidate tasks from
the delay queue to the run queue.

Calculatedeviation-time() {
find-schedulingpoints();

schedulability-test ();
f o r (k = 1 , 2 , ..., n) {

for (all tasks T, wich are not schedulable)
compute Aci,j at Si,$;

z) k = maxi [minj,k dijk];

if (Dk > mTCk) {
s. ' AC;,j = ACi,j - mTCkr3]; Tk

reduce c k Of T k by mTCk;

1
else {

reduce c k O f 7 k by mTCk - Dk;
exit loop;

1
1 .

1

schedulability.
Fig. 2. Pseudo code for adjusting task execution times for

where Cpreempt is time for handling task preemption,
Cezi t for handling normally completed task, Ctimer
for handling timer interrupt. Tt ic is period of timer
interrupt.

V. Experimental Results
We perform experiments for two kinds of examples.

The first example is a case study based upon an iner-
tial navigation system(1NS) [14] and the second exam-
ple is the GAP case study [16]. In the first example,
we decrease periods of all tasks by 10% of original pe-
riods. Table I and I1 summarize timing attributes of
the two examples, respectively. Note that we can use
RMS schedulability analysis for INS example because
periods are equal to deadlines. In GAP example, we
use DMS test: In both examples, we take into account
scheduling overhead. The parameters for scheduler
overhead are set as follows.

Cpreempt = 2, Cezi t = 2, Ctimer = 2, Ttic = 20
For all the experiments, we assume mrci to be 70%

In the first experiment, 231 is 280.812 after the first
iteration. The results are that we should reduce the
execution time of taskl by 23.8% to satisfy timing
constraints and the resulting processor utilization is
0.893. Recall that the reduction of the execution time
is achieved by implementing part of taskl with hard-
ware. In the second experiment, ID1 is 1046.25 after
the first iteration. The results are that we should re-
duce the computation time of taskl by 34.9% to satisfy

of c i .

TABLE I
TIMING ATTRIBUTES OF INS TASKS

I Timing attributes
Ti I Di I ci I B;

task1
task2

, J

Timing attributes

200000 5000 3000 300
25000 25000 2000 600

Ti Di Ci Bi

task8
task9

I task7 I 59000 I 59000 I 8000 I 750 I
80000 80000 9000 1350
80000 80000 2000 450

task10 100000 100000
task11 200000 200000
task12 200000 200000

5000 1050
1000 450
3000 450

1 task17 I 1000000 I 1000000 I 1000 I 0 I

timing constraints and the resulting processor utiliza-
tion is 0.845.

VI. Conclusions
We have proposed in this paper a systematic design

approach for hard real-time systems. Our work was
motivated by the following two facts.

Design of hard real-time systems involve a lot of
ad hoc engineering. Systematic design approach
is needed to design a complex system.
Most schedulability analysis can do little when
tasks can not meet their deadlines. We need sys-
tematic strategy for this situation.

To satisfy strict timing constraints, we computed
a time deviation by which tasks miss their dead-
lines. This computation can be used as a directive
for hardware-software partitioning tool.

Our future work includes synthesis of predictable
microkernel and incorporating our approach into a de-
sign environment as shown in Fig. l.

References
T. Yen and W. Wolf, Hardware-Software CO-Synthesis of
Destributed Embedded Systems, Kluwer Academic Pub-
lishers, 1996.
C. Lee, M. Potkonjak, and W. Wolf, “System-level syn-
thesis of application specific systems using A* search and
generalized force-directed heuristics,” in Proc. Int. Sym-
posium on System Synthesis, Nov. 1996.
Y. Shin and K. Choi, “Software synthesis through task de-
composition by dependency analysis,” in Proc. Int. Conf.
on Computer Aided Design, Nov. 1996, pp. 98-102.
J. Jeon and K. Choi, “An effective force-directed partition-
ing algorithm for hardware-software partitioning problem,”
submitted to 5th Int. Workshop on Hardware/Software Co-
Design, Dec. 1996.
K. Kim, “Generation of interface module in hardware-
software codesign,” M.S. thesis, Seoul National University,
Feb. 1996, in Korean.
K. Kim, Y. Kim, Y. Shin, and K. Choi, “An integrated
hardware-software cosimulation environment with auto-
mated interface generation,” in Proc. 7th IEEE Int. Work-
shop on Rapid Systems Prototyping, June 1996, pp. 66-71.
C. L. Liu and James W. Layland, “Scheduling algorithms
for multiprogramming in a hard real time environment ,”
Journal of the AGM, vol. 20, no. 1, pp. 46-61, Jan. 1973.
J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic
scheduling algorithm: exact characterization and average
case behavior,” in Proc. IEEE Real-Time Systems Sym-
posium, Dec. 1989, pp. 166-171.
L. Sha, R. Rajkumar, and S. Sathaye, “Generalized rate-
monotonic scheduling theory: A framework for developing
real-time systems,” Proceedings of the IEEE, vol. 82, no.
1. pp. 68-82, Jan. 1994.

[lo] L. Sha and J. Goodenough, “Real-time scheduling theory
and Ada,” IEEE Computer, vol. 23, no. 4, pp. 53-62, Apr.
1990.

[11] N. Audlsey, A. Burns, A. Richardson, and A. Wellings,
“Hard real-time scheduling: The deadline monotonic ap-
proach,” in IEEE Workshop on Real-Time Operating Sys-
tems and Software, May 1991.

[12] M. Joseph and P. Pandya, “Finding response times in a
real-time system,” The Computer J. , vol. 29, no. 5, pp.

[13] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inher-
itance protocols: An approach to real-time synchroniza-
tion,” IEEE fiansactions on Computers, vol. 39, no. 9,
pp. 1175-1185, Sept. 1990.

[14] D. Katcher, H. Arakawa, and J. Strosnider, “Engineering
and analysis of fixed priority schedulers,” IEEE Tmnsac-
tions on Software Engineering, vol. 19, no. 9, pp. 920-934,
Sept. 1993.

[15] A. Burns, K. Tindell, and A. Wellings, “Effective analysis
for engineering real-time fixed priority schedulers,” IEEE
Tmnsactions on Software Engineering, vol. 21, no. 5, pp.
475-480, May 1995.

[16] C. Locke, D. Vogel, and T. Mesler, “Building a predictable
avionics platform in Ada: A case study,” in Proc. Real-
Time Systems Symp., Dec. 1991.

390-395, Oct. 1986.

7

