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Signals for Previous Goal Choice Persist in the Dorsomedial,
but Not Dorsolateral Striatum of Rats
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The cortico-basal ganglia network has been proposed to consist of parallel loops serving distinct functions. However, it is still uncertain
how the content of processed information varies across different loops and how it is related to the functions of each loop. We investigated
this issue by comparing neuronal activity in the dorsolateral (sensorimotor) and dorsomedial (associative) striatum, which have been
linked to habitual and goal-directed action selection, respectively, in rats performing a dynamic foraging task. Both regions conveyed
significant neural signals for the animal’s goal choice and its outcome. Moreover, both regions conveyed similar levels of neural signals
for action value before the animal’s goal choice and chosen value after the outcome of the animal’s choice was revealed. However, a
striking difference was found in the persistence of neural signals for the animal’s chosen action. Signals for the animal’s goal choice
persisted in the dorsomedial striatum until the outcome of the animal’s next goal choice was revealed, whereas they dissipated rapidly in
the dorsolateral striatum. These persistent choice signals might be used for causally linking temporally discontiguous responses and their
outcomes in the dorsomedial striatum, thereby contributing to its role in goal-directed action selection.

Introduction
The cortico-basal ganglia (BG) network is thought to consist of
parallel segregated loops serving distinct functions (Alexander et
al., 1986; Alexander and Crutcher, 1990), although there exist
substantial degrees of overlap and crosstalk between different
loops (Haber and Knutson, 2010). The number of proposed
loops varies, but they include at least three consisting of sensori-
motor, associative, and limbic loops (Alexander and Crutcher,
1990; Balleine et al., 2007; Redgrave et al., 2010; Ito and Doya,
2011). In rats, dorsolateral (DLS) and dorsomedial striatum
(DMS) are mainly connected with sensorimotor and medial pre-
frontal cortex, respectively (Voorn et al., 2004), and therefore
regarded as sensorimotor and associative divisions of the stria-
tum, respectively. Numerous studies have consistently shown
that disruptive manipulations selective to the DLS alter rat’s
choice behavior so that it is less habitual and more goal-directed,
whereas those selective to the DMS induce the opposite effects
(for review, see Yin and Knowlton, 2006; Balleine et al., 2009;
White, 2009; Redgrave et al., 2010; Devan et al., 2011). These
results provide strong evidence for the involvement of the rat
DLS and DMS in different aspects of action selection. Therefore,
it is expected that neurons in the DLS and DMS convey signals

related to habitual and goal-directed action selection, respec-
tively [i.e., action selection based on stimulus-response (S-R) and
response-outcome (R-O) association, respectively]. Such physi-
ological evidence is needed not only to ascertain functional seg-
regation between the DLS and DMS, but also to gain insights
about how the content of information processed in each struc-
ture can support its specific functions. Surprisingly, however,
previous physiological studies have found similar types of neuro-
nal activity related to sensory stimuli, animal’s responses, and/or
response outcomes across the DLS and DMS in rats performing
various instrumental learning tasks (Kimchi et al., 2009; Stal-
naker et al., 2010; Thorn et al., 2010).

To resolve this discrepancy, we reexamined this issue in the
present study using a dynamic foraging task (Huh et al., 2009; Sul
et al., 2011). In this task, a reward was delivered stochastically in
each trial, rending the animal’s responses across successive trials
only weakly correlated. Hence, this task allowed us to probe neu-
ronal activity related to the animal’s response and its outcome in
the current and previous trials separately. This task is also advan-
tageous for examining value-related neuronal activity because
expected reward values vary dynamically across trials depending
on the history of the animal’s choices and their outcomes. By
exploiting these features, we compared neuronal activity related
to the animal’s responses, their outcomes, and reward values in
the DLS and DMS. We found a striking difference in the persis-
tent neural activity related to the animal’s response, which might
reflect functional differences between the DLS and DMS in ha-
bitual versus goal-direction action selection.

Materials and Methods
Subjects. Three young male Sprague Dawley rats (�8 –10 weeks old, 300 –
350 g) were used. The animals were individually housed in a colony room
and initially allowed ad libitum access to food and water. They were then
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handled extensively while adapting to water deprivation (maintained at
�80% ad libitum body weight) for 1 week, and, once behavioral training
began, restricted to 30 min of access to water after finishing one behav-
ioral session per day. Experiments were performed in the dark phase of a
12 h light/dark cycle. The experimental protocol was approved by the
Ethics Review Committee for Animal Experimentation of the Ajou Uni-
versity School of Medicine.

Behavioral task. The animals were trained in a dynamic foraging task
on a modified T-maze (Fig. 1 A) as in our previous studies (Huh et al.,
2009; Sul et al., 2011). The animals performed four blocks of 35– 45 trials
(35 plus a random number drawn from a geometric mean of 5 with the
maximum set at 45), with each block associated with one of the following
four combinations of reward probabilities at the left and right goals:
0.71:0.12, 0.63:0.21, 0.21:0.63, and 0.12:0.72. The sequence of reward
probabilities was determined randomly with the constraint that the
higher-reward probability goal always changed its location at the begin-
ning of a new block. The animals were required to detect changes in block
reward probabilities by trial and error, because reward probabilities
changed across blocks without any explicit sensory cues. In each trial, the
same amount of water reward (30 �l) was delivered stochastically and
independently with a given set of probabilities at the two goals. Hence,
water could be available at neither, either, or both goals in a given trial. If

the delivery of water was scheduled in a given trial at the unvisited goal, it
remained available until the animal’s next visit, but without any addi-
tional water delivery (i.e., without accumulation). Thus, the probability
for obtaining water with a particular goal choice increased with the num-
ber of consecutive choices at the opposite goal. This task is referred to as
a dual assignment with hold (DAWH) task, and the optimal strategy in
this task requires the animal to visit the goal with the lower reward
probability occasionally after several consecutive visits to the goal with
the higher reward probability (Lau and Glimcher, 2005; Huh et al., 2009).

Behavioral stages. Each trial consisted of the delay, go, approach to
reward, reward consumption, and return stages (Fig. 1 A) (Kim et al.,
2009). A trial began with the delay stage when the animal returned from
either goal to the central stem via the lateral alley and broke the central
photobeam (Fig. 1 A, blue dotted line). The central connecting bridge
was kept elevated for 2 s preventing the animal from moving forward.
The bridge was lowered at the end of the delay stage allowing the animal
to navigate forward (go stage). The approach stage was the time period
during which the animal ran toward either goal on the upper alley. The
onset of the approach stage was determined separately for each behav-
ioral session as the time when the left-right positions became signifi-
cantly different for the left- and right-choice trials (t test, p � 0.05) for the
first time near the upper branching point (Kim et al., 2009; Sul et al.,

Figure 1. Behavioral task, recording sites, and choice behavior. A, Dynamic foraging task. Rats were allowed to choose freely between two goals (blue circles) that delivered water probabilisti-
cally. The task was divided into delay (D), go (G), approach to reward (A), reward (Rw), and return (Rt) stages. The dotted lines indicate approximate boundaries between behavioral stages. The onset
of the delay stage (blue dotted line) marks the beginning of a trial. Arrows indicate alternative movement directions. Scale bar, 10 cm. B, Recording sites. Each diagram is a coronal section view of
the brain at 0.48 mm anterior to bregma for one rat (left hemisphere, n � 1 animal; right hemisphere, n � 2 animals). Circles represent estimated recording sites from which 1–5 single units were
recorded simultaneously. Scale bar, 1 mm. Modified with permission from Elsevier (Paxinos and Watson, 1998). C, The probability to choose the left goal (PL) is plotted in moving average of 10 trials
(gray, actual choice of the animal; black, PL given by a model-based RL algorithm) for one example recording session. Vertical lines indicate block transitions. Numbers at the top indicate reward
probabilities. Tick marks indicate the animal’s trial-by-trial choices (top, left choice; bottom, right choice; long, rewarded trial; short, unrewarded trial). D, The graphs show influences of recent
within-trial choice-outcome pairs (left), pairs of previous choice outcome (t�1) and other choices (t�2 to t�5; center), and pairs of the previous choice (t�1) and other outcome pairs (t�2 to
t�5; right) on the current choice of the animals. A positive coefficient indicates that a reward influenced the animal to repeat the same goal choice of a given choice-outcome pair. Asterisks indicate
that the coefficients are statistically significant (t test, p � 0.05). Error bars are SEM.
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2010, 2011). Thus, the onset of the approach
stage was aligned to the first behavioral mani-
festation of the animal’s goal choice. The onset
of the reward stage was the time when the ani-
mal broke the photobeam that was placed 6 cm
ahead of the water-delivery nozzle, which trig-
gered an immediate delivery of water in re-
warded trials. The return stage began when the
animal broke the photobeam that was placed
11 cm away from the water delivery nozzle on
the lateral alley, and ended when the animal
returned to the central stem and broke the cen-
tral photobeam (i.e., beginning of the delay
stage in the next trial). The animal’s movement
trajectories were monitored by tracking an ar-
ray of light-emitting diodes mounted on the
headstage at 60 Hz. The mean durations of the
five behavioral stages were (mean � SD)
2.00 � 0.00 (delay), 0.9 � 0.23 (go), 0.67 �
0.12 (approach), 4.58 � 1.31 (reward), and
2.24 � 0.62 s (return stage). The mean dura-
tions of the reward stage for the rewarded and
unrewarded trials were 5.71 � 2.84 and 1.72 �
1.07 s, respectively. Thus, the animals stayed
longer in the reward area in rewarded than un-
rewarded trials, although the animals licked the
water-delivery nozzle in most unrewarded tri-
als as in rewarded trials.

Logistic regression analysis. The following lo-
gistic regression model was used to estimate
effects of all possible combinations of recent
past choices and recent past outcomes (up to 5
trials) on the animal’s goal choice (Walton et
al., 2010):

log�PL�i�

PR�i�
� � �

j�1

5 �
k�1

5

�jkC�i � j� � R�i � k� � �0, (1)

where PL(i) (or PR(i)) is the probability of selecting the left (or right) goal
in the i-th trial. The variables R(i) and C(i) are reward delivery (0 or 1)
and the left or right goal choice (1 or �1) in the i-th trial, respectively.
The coefficient �jk denotes the effect of the combination of the j-th past
choice and the k-th past reward and �0 is a bias term. The numbers of total
trials used in the regression for the three animals were 2428, 3357, and 2074.

Reinforcement learning model. We used a model-based reinforcement
learning (RL) algorithm that takes into consideration that the reward
probability of the unchosen goal increases as a function of the number of
consecutive alternative choices (“stacked probability” or SP algorithm)
(Huh et al., 2009). Model parameters (�, learning rate; �, inverse tem-
perature) were estimated for the entire dataset from each animal using a
maximum likelihood procedure (Sul et al., 2011). The values of � for
each animal were 0.64, 0.68, and 0.57, and those for � were 2.30, 2.50, and
2.64, respectively. For comparison, we also analyzed neural data using a
model-free RL algorithm (Rescorla–Wagner rule or Q-learning model)
(Sutton and Barto, 1998). The estimated values of � were 0.25, 0.34, and
0.34, and those for � were 3.59, 3.16, and 2.82, respectively, for the
model-free RL algorithm.

Model comparison. To compare performances of the logistic regres-
sion model, Rescorla–Wagner rule, and SP model, we calculated
Akaike’s information criteria (AIC), Bayesian information criteria
(BIC) (Burnham and Anderson, 2002), and accuracy of the model’s
prediction for the animal’s actual choices (% correct) for the entire
dataset from each animal. AIC and BIC were normalized by dividing
them with the number of trials for each animal. Model prediction of
the animal’s choices was determined by applying a leave-one-out
cross-validation procedure to the behavioral data obtained from dif-
ferent sessions for each animal.

Unit recording. Single units were recorded from the DLS (center of
tetrodes, 0.5 mm anterior and 4.0 mm lateral to bregma; 3.5–5.9 mm

ventral to brain surface) and DMS (0.5 mm anterior and 2.0 mm lateral
to bregma; 3.5–5.5 mm ventral to brain surface; Fig. 1 B). The DMS
recording sites in the present study are somewhat posterior and lateral to
our previous recording sites in the DMS (1.2 mm anterior and 1.7 mm
lateral to bregma and 3.5–5.5 mm ventral to brain surface) (Kim et al.,
2009) and ventral striatum (Kim et al., 2007, 2009) (1.2 m anterior and
1.7 mm lateral to bregma and 6.5– 8.0 mm ventral to brain surface; 1.9
mm anterior and 1.0 mm lateral to bregma and 6.5– 8.0 mm ventral to
brain surface). Recording procedures are similar to those described in
our previous study (Kim et al., 2009). Briefly, two sets of six tetrodes were
implanted in the DMS and DLS of well-trained animals under deep

Figure 2. Unit classification. Units were classified into putative MSNs and putative interneurons based on mean discharge rate
during the entire recording session and the width of a filtered spike waveform. Left, Scatter plot for spike widths and mean
discharge rates of all recorded units. Units were first grouped into high- (	6.0 Hz) and low-rate (�6.0 Hz) units based on the
distribution of mean firing rates of all units (right). The low-rate units were further divided into wide- (	0.24 ms) and narrow-
spiking (�0.24 ms) units based on the distribution of their spike widths (bottom). Those units with a low firing rate (�6.0 Hz) and
a wide spike waveform (	0.24 ms) were classified as putative MSNs and the rest were classified as putative interneurons. The
latter are likely to consist of multiple cell types. Right, Example averaged spike waveforms of a putative MSN (left) and a putative
interneuron (IntN, right).

Table 1. Summary of choice behavior

Choice
(high) (%) Win-stay (%) Lose-switch (%)

Choice
bias (%)

Latency
(trials)

Animal 1 75.0 � 0.4 74.7 � 1.4 66.2 � 1.9 53.8 � 0.8 10.9 � 0.6
Animal 2 74.4 � 0.5 76.9 � 1.1 72.7 � 0.9 52.2 � 0.5 11.9 � 0.8
Animal 3 72.5 � 0.6 71.6 � 2.3 79.3 � 1.9 52.2 � 0.4 10.2 � 0.8
All 74.0 � 0.3 74.9 � 0.9 72.4 � 1.1 52.6 � 0.3 11.1 � 0.5

Choice (high), Percentage of choosing the higher reward probability goal in each block; Win-stay, percentage of
repeating the same goal choice following a rewarded trial; Lose-switch, percentage of switching the goal choice
following an unrewarded trial; Choice bias, percentage of the choice for a preferential goal in a given session; Latency
to steady state, the number of trials after block transition to reach 90% of the steady-state choice rate (mean choice
rate for the last 20 trials in each block). The latency was determined for each block based on a 10-trial moving
average curve of the animal’s goal choice (Fig. 1C). Data are mean � SEM.

Table 2. Model comparison

AIC BIC Prediction (% correct)

Rescorla–Wagner rule 1.114 � 0.03 1.119 � 0.03 73.6 � 0.5
SP model 1.096 � 0.04 1.101 � 0.04 74.2 � 0.1
Logistic regression 1.311 � 0.01 1.314 � 0.02 72.6 � 0.5

Normalized AIC, normalized BIC, and accuracy of the model’s prediction for the animal’s actual goal choices (%
correct) are shown for two RL models (Rescorla–Wagner rule and SP model) and the logistic regression model. Data
are mean � SD (n � 3 animals).
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sodium pentobarbital anesthesia (50 mg/kg). After at least 1 week of
recovery from surgery, tetrodes were gradually lowered to obtain isolated
unit signals. Once the recording began, tetrodes were advanced for a
maximum of 150 �m per day. Unit signals were amplified 	10,000,
filtered between 0.6 – 6 kHz, digitized at 32 kHz, and stored on a personal
computer using a Cheetah data acquisition system. Unit signals were also
recorded with the animals placed on a pedestal before and after each
experimental session to examine stability of recorded unit signals. When
recordings were completed, small marking lesions were made by passing
an electrolytic current (50 �A, 30 s, cathodal) through one channel of
each tetrode, and recording locations were verified histologically as pre-
viously described (Baeg et al., 2001).

Isolation and classification of units. Isolation and classification of unit
signals were done as in our previous study (Kim et al., 2009). Single units
were isolated by manually clustering various spike waveform parameters.
Only those clusters with no interspike interval �2 ms, “L-ratio” �0.2

(0.07 � 0.04, mean � SD), and “isolation distance” �15 (33.71 � 17.37,
mean � SD) (Schmitzer-Torbert et al., 2005) were included in the anal-
ysis. The identity of unit signals was determined based on the clustering
pattern of spike waveform parameters, averaged spike waveforms, mean
discharge rates, autocorrelograms, and interspike interval histograms
(Baeg et al., 2007). For those units that were recorded for two or more
days, the session in which the units were most clearly isolated from back-
ground noise and other unit signals was analyzed. The recorded units
were classified into putative medium spiny neurons (MSNs) and putative
interneurons based on average firing rate and spike width (Fig. 2), and
only putative MSNs were included in the analysis.

Multiple regression analysis. Modulation of neuronal activity according
to the animal’s choices and their outcomes was examined using the fol-
lowing regression model:

S�t� � a0 � a1C�t� � a2C�t � 1� � a3C�t � 2� � a4R�t� � a5R�t � 1�

� a6R�t � 2� � a7X�t� � a8X�t � 1� � a9X�t � 2� � 
�t�, (2)

where S(t) indicates spike discharge rate, C(t), R(t), and X(t) represent
the animal’s choice (left or right; dummy variable, �1 or 1), its outcome
(reward or no reward; dummy variable, �1 or 1), and their interaction
(dummy variable, �1 or 1), respectively, in trial t, 
(t) is the error term,
and a0�a9 are the regression coefficients.

Neuronal activity related to action value and chosen value was exam-
ined using the following regression model:

S�t� � a0 � a1C�t� � a2R�t� � a3X�t� � a4QL�t�

� a5QR�t� � a6Qc�t� � A�t� � 
�t�, (3)

where QL(t) and QR(t) denote left and right action values (i.e., action
values for the leftward and rightward goal choice), respectively, and Qc(t)
indicates chosen value (the value of chosen action in a given trial; i.e.,
QL(t) in left-choice trials and QR(t) in right-choice trials) that were esti-
mated using the SP algorithm (Huh et al., 2009). Because a slow drift in
the firing rate can potentially inflate the estimate of value-related signals,
the model also included a set of autoregressive terms, indicated by A(t)
that consisted of spike discharge rates during the same epoch in the
previous three trials as the following: A(t) � a7S(t � 1) 
 a8S(t � 2) 

a9S(t � 3), where a7�a9 are regression coefficients.

Figure 3. Time courses of neural signals related to the animal’s goal choice and its outcome. The graphs show fractions of neurons that significantly (t test, p � 0.05) modulated their activity
according to the animal’s choice, its outcome, and their interaction (Choice X Outcome) in the current (trial lag � 0) and two previous (trial lags � 1 and 2) trials estimated with a 1 s moving window
advanced in 0.2 s steps (Eq. 2). The shading indicates the chance level for the DLS (binomial test, � � 0.05), which is slightly higher than that for the DMS. Vertical lines indicate the beginning and
end of the delay stage (left panels), the beginning of the approach stage (middle panels) and the beginning of the reward stage (right panels). Large open circles denote significant differences
between the DLS and DMS (� 2-text, p � 0.05).

Figure 4. Neural signals for upcoming goal choice. The fraction of neurons that significantly
modulated their activity according to the current goal choice was examined in higher temporal
resolution (100 ms moving window advanced in 50 ms time steps) around the approach onset.
Large open circles denote significant differences between the DLS and DMS (�2-text, p �0.05).
The triangles on top indicate the onset of the upcoming choice signals. It was 0 and 50 ms before
the onset of the approach stage for the DLS (open triangle) and DMS (filled triangle),
respectively.
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The following regression models were used
to determine whether neuronal activity during
the reward stage is more correlated with reward
prediction error (RPE; the difference between
the actual and expected rewards) (Schultz et al.,
1997; Sutton and Barto, 1998) or updated cho-
sen value (Qc(t
1)), as follows:

S�t� � a0 � a1QL�t� � a2QR�t� � a3C�t�

� a4RPE � A�t� � 
�t�, (4)

and

S�t� � a0 � a1QL�t� � a2QR�t� � a3C�t�

� a4Qc�t � 1� � A�t� � 
�t�, (5)

where RPE � R(t) � Qc(t) and Qc(t
1) �
Qc(t) 
 �RPE (� is the learning constant which
was determined separately for each animal).

Ensemble decoding of goal choice. The ani-
mal’s goal choice was decoded from ensemble
activity of simultaneously recorded neurons
using a template-matching procedure with
leave-one-out cross-validation (Sul et al.,
2011). The analysis was applied to neuronal
ensembles simultaneously recorded from the
DLS or DMS (	3 neurons in each region)
after matching neuronal ensemble sizes of
the two regions by randomly dropping neu-
rons from the larger ensemble (size of ana-
lyzed ensembles, 3–7 neurons; 3.9 � 0.9,
mean � SD). We then calculated the per-
centage of trials in which neuronal ensemble
activity during a 100 ms sliding time window
(50 ms time steps) correctly predicted the
animal’s goal choice.

Statistical tests. Statistical significance of a re-
gression coefficient was determined with a t
test (two-tailed), and significance of the frac-
tion of neurons for a given variable with a bi-
nomial test. Significance of the difference in the
fraction of neurons between the DLS and DMS
was examined with a � 2-test. Fisher’s exact test
was used instead of a � 2-test, however, when-
ever the expected number is equal to or less
than five. A p value �0.05 was used as the
criterion for a significant statistical differ-
ence. Bonferroni correction was used when
we tested whether neuronal activity was
significantly modulated by either left (QL(t))
or right (QR(t)) action value (t test). All data
are expressed as mean � SEM unless noted
otherwise.

Figure 5. Neural activity related to the animal’s previous goal choice. A, An example DMS neuron that significantly modulated
its activity according to the animal’s previous goal choice (C(t�1)). Trials were grouped according to the animal’s previous goal
choice (left choice, black; right choice, gray). Top, Spike raster plot. Each row is one trial and each tick mark denotes an action
potential. Bottom, Spike density functions estimated with a Gaussian kernel (�� 100 ms). B, Summary of activity profiles of DMS

4

neurons encoding the previous goal choice. All DMS neurons
that significantly modulated their activity according to the an-
imal’s previous goal choice during at least one analysis win-
dow (1 s, advanced in 0.2 s steps) between the delay stage
onset and the reward stage onset are shown. Each horizontal
line segment indicates significant modulation of neural activ-
ity according to the previous goal choice in that window. Red
color indicates the example neuron in A. Neurons were ar-
ranged according to the total duration of significant modula-
tion. C, Activity profiles of all DLS neurons encoding the
previous goal choice during at least one analysis window.
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Results
Choice behavior
Three animals performed 13–21 sessions of the dynamic foraging
task (Fig. 1A) while unit signals were recorded from the DLS and
DMS simultaneously (Fig. 1B). In all sessions, the animals
quickly detected changes in relative reward probabilities after a
block transition and biased their goal choices toward the higher
reward probability goal, which was well described by a model-
based RL algorithm (SP model; Huh et al., 2009) (Fig. 1C). A
logistic regression analysis (Walton et al., 2010) also revealed
that the animal’s choice was influenced by past choice out-
comes, with more recent choice outcomes having greater ef-
fects (Fig. 1 D, left). On the other hand, the animal’s choice was
little influenced by unrelated choice-outcome pairs. The ani-
mal’s choice was not significantly influenced by the combina-
tion of the previous choice outcome (trial t�1) and other
previous choices (trials t�2 to t�5) except a weak negative
influence of t�2 trial choice in one animal (Fig. 1 D, middle).
Similarly, the combination of the previous choice (trial t�1)
and other previous choice outcomes (trials t�2 to t�5) had an
insignificant or only a weak negative influence on the animal’s
choice (Fig. 1 D, right). These results suggest that the animals
made goal choices based on the likelihood to obtain a reward
at each goal (action value) that was computed dynamically
according to the history of past choices and their correspond-
ing outcomes, as shown previously (Huh et al., 2009; Kim et
al., 2009; Sul et al., 2010, 2011). The animal’s choice behavior
and results of model comparison are summarized in Tables 1
and 2.

Neural signals for the animal’s choice and its outcome
In total, 206 and 265 well-isolated, stable single units were re-
corded from the DLS and DMS, respectively, in three rats (rat #1,
34 DLS and 74 DMS units; rat #2, 137 DLS and 109 DMS units; rat
#3, 35 DLS and 82 DMS units; Fig. 1B). Only putative MSNs with
mean firing rate �0.1 Hz during the task (DLS, n � 129; DMS,
n � 213; Fig. 2) were subjected to analysis. Their mean discharge
rates during the task were 1.33 � 0.97 and 1.22 � 0.99 Hz, re-
spectively. To examine neural signals for the animal’s goal choice
and its outcome, we assessed fractions of neurons that signifi-
cantly modulated their activity according to the animal’s choice
(C), its outcome (i.e., reward; R), or their interaction (X) in the
current (t) and two previous (t�1 and t�2) trials using a multiple

linear regression analysis (Eq. 2). Neural signals for the animal’s
goal choice were weak during the delay and go stages, but in-
creased steeply after the animal revealed its choice behaviorally
(Figs. 3, 4). Neural signals related to choice outcome and
choice 	 outcome interaction were weak before the reward stage,
but rose rapidly once the outcome was revealed in the reward
stage in both structures (Fig. 3). Albeit statistically significant,
only small differences were found in the strength of these signals
between the DLS and DMS. Thus, both structures conveyed
strong conjunctive signals for the animal’s choice and its out-
come, which is consistent with previous findings (Kimchi et al.,
2009; Stalnaker et al., 2010; Thorn et al., 2010).

For comparison with our previous results (Kim et al., 2009;
Sul et al., 2010, 2011), we examined temporal profiles of choice
signals at a higher temporal resolution (100 ms moving window
in 50 ms steps). As in our previous studies (Sul et al., 2010, 2011),
we defined the onset of the current choice signal as the first time
point at which the fraction of current choice-encoding neurons
exceeded and remained significantly higher than chance level (bi-
nomial test, p � 0.05) for a minimum of 250 ms (5 bins) within
1 s time periods before and after the approach onset. This analysis
revealed that the onsets of the choice signals were only 0 and 50
ms before the onset of the approach stage in the DLS and DMS,
respectively (Fig. 4). Similarly, neuronal ensemble decoding of
the animal’s goal choice exceeded and remained significantly
higher than chance level (50% correct; t test, p � 0.05) only at 250
and 0 ms after the onset of the approach stage in the DLS and
DMS, respectively (data not shown). Thus, neural signals for fu-
ture goal choice were weak in both areas, confirming our previ-
ous results from the DMS (Kim et al., 2009).

Persistence of neural signals for the animal’s choice and
its outcome
Neural signals related to the animal’s choice and its outcome
decayed at different rates in the DLS and DMS. In particular, a
striking difference was found in the persistence of neural signals
for the animal’s goal choice. In the DMS, signals for the animal’s
choice persisted until the reward stage in the next trial (Fig. 3; an
example shown in Fig. 5A). By contrast, choice signals decayed
more rapidly in the DLS so that they were nearly at chance level
once the movement trajectories no longer reflected the animal’s
previous goal choice [0.9 � 0.2 (mean � SD) s after delay onset;
Fig. 3].

We have previously shown that persistent choice signals in the
rat DMS and ventral striatum (VS) were quantitatively similar
during a two-armed bandit task, in which the reward probability
is independent of the animal’s past choices (Kim et al., 2009).
Interestingly, choice signals in the DMS were less persistent dur-
ing this two-armed bandit task than in the DAWH task used in
the present study, in which the reward probability for an unvis-
ited goal increases with the number of consecutive alternative
choices. Choice signals in the DMS tended to decay during the 3 s
delay stage in the two-armed bandit task (Kim et al., 2009),
whereas they were maintained at a stable level in the present
study. Comparing the time period between 2 and 3 s after the
delay stage onset, 9.2% of DMS MSNs significantly modulated
their activity according to the previous goal choice in the two-
armed bandit task (Kim et al., 2009), whereas it was 22.1% in the
DAWH task used in the present study. This difference was statis-
tically significant (� 2-test, p � 0.001). The strength of previous
choice signals in the DMS was also significantly stronger in the
present DAWH task than in the two-armed bandit task when we

Table 3. Persistence of neural signals related to the animal’s previous goal choice

All Delay 1 Delay 2 Post-Delay

DMS
Pre-Delay 102 (47.8%) 43 (34.0)** 20 (21.5) 29 (22.5)*
Delay-1 71 (33.3%) — 31 (15.0)*** 16 (15.7)
Delay-2 45 (21.1%) — — 15 (9.9)*
Post-Delay 47 (22.1%) — — —

DLS
Pre-Delay 43 (33.3%) 12 (7.3)* 5 (3.3) 4 (4.3)
Delay-1 22 (17.1%) — 1 (1.7) 2 (2.2)
Delay-2 10 (7.8%) — — 3 (1.0)
Post-Delay 13 (10.1%) — — —

The second column (All) shows the number (and percentage) of neurons (DMS, out of 213; DLS, out of 129) that
significantly modulated their activity according to the animal’s previous choice during the corresponding epoch
shown in the first column. Numbers in the other columns indicate those neurons that significantly modulated their
activity according to the animal’s previous choice during two different epochs. Shown in the parenthesis is the
expected number of neurons when the effects in two epochs are independent, and asterisk indicates significant
deviation from it (�2-test or Fisher’s exact test when expected numbers are �5; *p � 0.05; **p � 0.01; ***p �
0.001). Pre-delay, 1 s before delay onset; Delay 1 and 2, the first and second 1 s of the delay stage, respectively;
Post-delay, 1 s after delay offset.
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compared previous choice signals during
the first 1 s time period since the go state
onset (22.1 vs 13.1%; � 2-test, p � 0.028).

Although signals for the animal’s goal
choice persisted until the next trial in the
DMS, this information was seldom main-
tained continuously by the same neurons.
For example, during the interval between
1 s after the delay stage onset and the re-
ward stage onset, only a small number of
DMS neurons (n � 3) significantly mod-
ulated their activity according to the pre-
vious goal choice for the entire duration
(Fig. 5B). In the DLS, no such neuron was
found (Fig. 5C). We further investigated
the persistence of previous choice signals
by examining how often each neuron en-
coded the previous choice at two separate
time points. For this, we counted the
number of neurons encoding the previous
choice during different pairs of four suc-
cessive 1 s time windows (1 s before delay
onset, the first and second 1 s periods of
the delay stage, and 1 s after delay offset).
The neurons were significantly more likely
to encode the previous choice during both
of adjacent 1 s time windows than expected
by chance in all three adjacent time window
pairs in the DMS, but only in one pair in the
DLS (Table 3). In contrast, this was the case
for only one (DMS) or none (DLS) of three
nonadjacent time window pairs (Table 3).
These results suggest that the previous
choice signals encoded by individual neu-
rons tended to persist relatively briefly (�2
s), and not throughout the entire duration
of a trial.

Neural signals for choice outcome de-
cayed more rapidly so that the strength of
previous choice outcome signals was
much weaker compared with that of pre-
vious choice signals throughout the delay,
go, and approach stages. Nevertheless,
they were above chance level in the DMS
until the next reward stage (an example
shown in Fig. 6A), whereas they subsided
and arose again above chance level only
around the reward stage onset in the DLS
(Fig. 3). Similar to the previous choice sig-
nals, the previous choice outcome signals
encoded by individual neurons did not
persist throughout the entire duration
of a trial. For example, no DLS or DMS
neuron significantly modulated its ac-
tivity according to the previous choice
outcome for the entire period between
the delay stage onset and the approach
stage onset (Fig. 6 B,C). In addition,
there was no significant tendency for
DLS or DMS neurons to encode previ-
ous choice outcome signals in two suc-
cessive 1 s windows before, during, or
after the delay stage (Table 4).

Figure 6. Neural activity related to the previous choice outcome. A, An example DMS neuron that significantly modulated its
activity according to the previous choice outcome (R(t�1)). Trials were grouped according to the outcome of the animal’s previous
goal choice (rewarded, gray; unrewarded, black). Top, Spike raster plot. Bottom, Spike density functions (� � 100 ms). B,
Summary of activity profiles of all DMS neurons encoding the previous choice outcome during at least one analysis window. Same
format as in Figure 5 except that the horizontal line segments indicate significant modulation of neural activity according to the
previous choice outcome instead of the previous goal choice. Red color indicates the example neuron in A. C, Activity profiles of all
DLS neurons encoding the previous choice outcome during at least one analysis window.
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Value-related neural signals
Time courses of action value signals were examined by calculat-
ing the fraction of neurons that significantly modulated their
activity according to at least one action value (QL(t) or QR(t); p �
0.025; � � 0.05 was corrected for multiple comparisons; Eq. 3) in
each region. Action value signals were weak, but significant be-
fore behavioral manifestation of the animal’s goal choice (last 1 s
of the delay stage, DLS, 8.5%, binomial test, p � 0.029; DMS,
8.0%, p � 0.022; 1 s before the approach onset, DLS, 11.6%, p �
0.001; DMS,11.7%, p � 0.001; Fig. 7), and they did not vary
significantly between the two regions (� 2-test, last 1 s of the delay
stage, p � 0.858; 1 s before the approach onset, p � 0.976). We
also examined time courses of chosen value (the value of chosen
action in a given trial; i.e., QL(t) in left-choice trials and QR(t) in
right-choice trials) signals (Eq. 3). Chosen value signals were
markedly elevated during the time window around the reward
stage onset in both structures (Fig. 7). Analyzing neural activity
during the 2 s period centered around the reward stage onset, we
found that significant fractions of neurons modulated their ac-
tivity according to chosen value in both structures (DLS, 17.8%,
binomial test, p � 0.001; DMS, 24.4%, p � 0.001) and they were
not significantly different from each other (� 2-test, p � 0.154).

Neural signals necessary to evaluate the outcome of the ani-
mal’s choice, namely signals for the animal’s choice, its outcome,
and chosen value, temporally overlapped immediately after the
choice outcome was revealed (i.e., during the early reward stage)
in the DLS as well as DMS (Eq. 3; Fig. 8A). We have shown
previously that relative signs of these neural signals are consistent
with the possibility that they are combined to compute RPE as
well as to update the value of chosen action in the DMS (Kim et
al., 2009). Because RPE and updated chosen value are computed
by the difference between and weighted sum of choice outcome
and chosen value, respectively, those neurons with the opposite
signs in the coefficients for chosen value and choice outcome are
expected to modulate their activity according to RPE. Con-
versely, those with the same signs in their coefficients are ex-
pected to modulate their activity according to updated chosen
value. There were 13 DLS and 13 DMS neurons that significantly
modulated their activity according to both choice outcome and
chosen value during the first 1 s of the reward stage (Eq. 3). As
predicted, their activity was better explained by the model con-
taining updated chosen value (Eq. 5; blue) when the coefficients
for choice outcome and chosen value had the same sign (8 DLS
and 9 DMS neurons; Fig. 8B). In contrast, their activity was better
explained by the model containing RPE (Eq. 4; red) when the
signs for these two coefficients were opposite (5 DLS and 4 DMS
neurons; Fig. 8B). This was also the case for the majority of DLS

and DMS neurons that significantly modulated their activity ac-
cording to either choice outcome or chosen value, but not both
(light-colored circles in Fig. 8B). Activity was better explained by
the model containing updated chosen value (light blue) in 61
among 76 neurons that showed the same signs in their coeffi-
cients for choice outcome and chosen value. In contrast, activity
was better explained by the model containing RPE (light red) in
60 among 81 neurons that showed opposite signs in these two
coefficients. These results suggest that choice outcome and cho-
sen value signals might be combined to compute RPE as well as to
update chosen value in both structures.

We used a model-based RL algorithm (SP algorithm) (Huh et
al., 2009) in the present study to analyze value-related neural
activity. However, trial-by-trial values computed with a model-
based RL algorithm (SP model) and a model-free RL algorithm
(Rescorla–Wagner rule or Q-learning model) are overall similar
except when the number of repeated choices (run length) is large
(Huh et al., 2009). Therefore, trial-by-trial values computed with
model-free and model-based RL algorithms were highly corre-
lated with each other (r � 0.80, 0.86 and 0.88 for three animals),
and neural signals related to values and RPE were similar regard-
less of whether a model-free or model-based RL algorithm was
used to analyze the neural data (Fig. 9).

Discussion
We compared neuronal activity between the DLS and DMS in
rats performing a dynamic foraging task to gain insights about
the types of information processed through different cortico-BG
loops. Both structures conveyed conjunctive neural signals for
the animal’s goal choice and its outcome. Value-related neural
signals were also similar across the two structures. However, sig-
nals for the animal’s goal choice were persistent until the next
trial in the DMS, but not in the DLS. Although individual
DMS neurons tended to convey choice signals only for brief
time periods, DMS neurons as a population conveyed robust
choice signals until the outcome of the animal’s choice was re-
vealed in the next trial. Thus, signals useful for causally linking
temporally discontiguous responses and their outcomes were se-
lectively found in the DMS. These results provide new insights on
the neural basis of distinct functions served by the DLS and DMS.

Persistent choice signals in the DMS
It is often challenging to associate an action and its corresponding
outcome correctly, because a reward resulting from a particular
action is often revealed after a substantial delay (temporal credit
assignment problem) (Sutton and Barto, 1998), and one way to
solve this problem is maintaining memory traces for previous
actions. It is remarkable that persistent signals for the previous
goal choice in the DMS did not decay gradually, but was main-
tained at a stable level until the reward delivery in the next trial, so
that signals for the previous choice and current choice outcome
were both strong when they overlapped temporally. It is also
remarkable that the previous choice signals subsided abruptly
after the current choice outcome was revealed, which is consis-
tent with the possibility that the DMS maintained previous
choice signals to combine them with current choice outcome
signals. These characteristics (stable maintenance of action sig-
nals until an outcome is revealed later) are expected for memory
traces linking temporally discontiguous actions and outcomes.
Therefore, our results raise the possibility that persistent choice
signals in the DMS represent choice-related memory traces that
can be used to causally link temporally discontiguous responses

Table 4. Persistence of neural signals related to the previous choice outcome

All Delay 1 Delay 2 Post-Delay

DMS
Pre-Delay 33 (15.5%) 8 (4.5) 4 (3.6) 9 (4.3)*
Delay-1 29 (13.6%) — 4 (3.1) 4 (3.8)
Delay-2 23 (10.8%) — — 6 (3.0)
Post-Delay 28 (13.1%) — — —

DLS
Pre-Delay 10 (7.6%) 1 (0.6) 1 (0.4) 2 (0.8)
Delay-1 8 (6.2%) — 0 (0.3) 1 (0.6)
Delay-2 5 (3.9%) — — 0 (0.4)
Post-Delay 10 (7.8%) — — —

Same format as in Table 3 except that Fisher’s exact test was used for all statistical comparisons because of small
expected numbers (�5) of neurons encoding the previous choice outcome during two different epochs by chance;
*p � 0.05.
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and their outcomes. Persistent choice signals are found in other
parts of the brain including the VS (Kim et al., 2007, 2009),
prefrontal cortex (Barraclough et al., 2004; Genovesio et al.,
2006; Seo and Lee, 2009; Sul et al., 2010), and parietal cortex
(Seo et al., 2009). It is possible that multiple brain regions are
involved in linking temporally discontiguous responses and
their outcomes.

Choice signals were more persistent in the present study
than in a previous study in which a dynamic two-armed bandit
task was used (Kim et al., 2009). During the DAWH task used
in the present study, reward probability at a particular goal
increased with the number of consecutive alternative choices
(“stacked probability”) (Huh et al., 2009), whereas it was in-
dependent of previous goal choices in the two-armed bandit
task. It is possible that choice signals were more persistent in
the DAWH task because it was advantageous for the animals to
keep track of the number of consecutive goal choices (run
length). It would be important for future studies to compare
DLS versus DMS neural activity and effects of specific DLS
versus DMS lesion/inactivation on behavioral performance
during the tasks in which persistent choice signals can be used
for causally linking choices and their resulting outcomes. For

example, if the outcome of a goal choice is revealed only after
the animal comes back to the central stem in our maze, per-
sistent choice signals might influence more directly the forma-
tion of appropriate R-O associations and thus might become
even stronger than observed in the present study.

Previous studies have shown that during the course of
learning a new task, neural activity changes with different time
courses in the sensorimotor (DLS in rats and putamen in
monkeys) and associative (DMS in rats and caudate in mon-
keys) striatum (Miyachi et al., 1997, 2002; Kimchi et al., 2009;
Yin et al., 2009; Thorn et al., 2010). Since we recorded from
overtrained animals, our study does not provide information
about the time course of neural activity change. Instead, our
study shows that contents of trial-by-trial information pro-
cessed by the DLS and DMS are different in a way consistent
with roles proposed for the two structures (Yin and Knowlton,
2006; Balleine et al., 2007; Ito and Doya, 2011). It is likely that
there are additional differences in the contents of information
processed by the DLS and DMS that were not revealed in the
present study. Other possible functional differences between
these two structures should be further investigated in future
studies.

Figure 7. Neural activity related to values. A, Time courses of neural signals related to action value (QL(t) or QR(t)) and chosen value (Qc(t), Eq. 3). For the action value signals, fractions of those
neurons that significantly modulated their activity according to at least one action value (left or right; corrected for multiple comparisons) were plotted. Same format as in Figure 3. B, Example
neurons that significantly modulated their activity according to the left action value (QL(t), left, DLS neuron) or chosen value (right, DLS neuron). Trials were grouped according to quartiles of left
action value (0�1) or chosen value (0�1), and indicated in different colors. Same format as in Figure 5A.
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Mechanisms for solving temporal credit assignment problem
It is unclear how the temporal credit assignment problem is
solved by the brain (Pawlak et al., 2010). It might be solved by
“tagging” synapses involved in a selected response and modifying
them later (Cassenaer and Laurent, 2012). It might also be solved
by persistently maintaining activity of those neurons involved in
the selected response until the reward delivery (Curtis and Lee,
2010; Lee et al., 2012). In our study, the previous choice signals
encoded by individual neurons tended to persist only briefly and
decay within �2 s. Thus, previous choice signals were maintained
mostly by a group rather than individual DMS neurons. Sequen-
tial activation of multiple neurons has been observed in various
areas of rodent brains under diverse experimental conditions
(Baeg et al., 2003; Carr et al., 2011; Harvey et al., 2012). The DMS
might link an action and its subsequent outcome through se-
quential activation of a group of neurons. It remains to be deter-
mined, however, how synapses involved in the generation of an
action in the first place can be selectively strengthened when its
outcome is revealed later.

Persistent choice outcome signals in the DMS
The DMS conveyed not only persistent choice signals, but also
persistent choice outcome signals until the next trial, albeit at a

weaker level. Thus, the DMS was
equipped with neural substrates necessary
to link an outcome with a choice in the
previous as well as next trial (“spread-of-
effect”) (Thorndike, 1933; Walton et al.,
2010). In our task, however, no strong ev-
idence for the spread-of-effect was found
(Fig. 1D). Nevertheless, persistent choice
outcome signals found in the DMS might
play significant roles for R-O associations
in other circumstances, such as when
choice outcomes and subsequent behav-
ioral responses are temporally more con-
tiguous than in the present study.

Value processing in the DLS and DMS
Different roles of the DLS and DMS in
habitual versus goal-directed action selec-
tion raise the possibility that value infor-
mation may be selectively encoded in the
DMS. On the other hand, to adjust the
strength of S-R association according to
the actual and expected outcomes, value
signals necessary to compute RPE may
also be carried by DLS neurons. Our re-
sults support the latter possibility. Both
structures conveyed significant action
value and chosen value signals. Moreover,
in both areas, the relationship between
chosen value and choice outcome signals
was consistent with the possibility that
they were combined to compute RPE as
well as to update chosen value. Together
with the finding that upcoming action se-
lection signals were weak in both struc-
tures, these results suggest that striatal
value signals may be used to compute
RPE-based teaching signals for S-R and
R-O associations, rather than to guide
value-based action selection, which ap-

pears to be mediated by medial frontal cortex under dynamic
foraging situations in rats (Sul et al., 2011).

The RL theory is classified into two broad categories of model-
free and model-based RL. Model-free RL relies on only directly
experienced reward and penalty in updating values, whereas
model-based RL can update values based on the animal’s moti-
vational state and its knowledge of the environment (Sutton and
Barto, 1998). Based on differences in anatomical connectivity
and lesion effects on choice behavior, the DLS and DMS have
been proposed to be in charge of model-free and model-based
RL, respectively (Bornstein and Daw, 2011; Ito and Doya, 2011).
In this theoretical framework, it is of great interest to reveal sim-
ilarities and differences between the two structures in represent-
ing and updating values. The DLS and DMS might update values
based on similar RPE signals when model-free RL is sufficient for
a given behavioral task, whereas the DMS might use different
types of additional RPE signals to update values when model-
based RL is needed. Our results show that value-related neural
activity is similar between the DLS and DMS during a relatively
simple dynamic foraging task. Although the choice behavior in
our task was better explained by a model-based than model-free
RL algorithm (Table 2; also see Huh et al., 2009), similar results
were obtained when the neural data were analyzed with a model-

Figure 8. Computing RPE and updating chosen value in the striatum. A, Convergence of neural signals for the animal’s goal
choice (C(t)), its outcome (R(t)), and chosen value (Qc(t)) in the DLS and DMS. The graphs show fractions of neurons that signifi-
cantly modulated their activity according to the animal’s current goal choice (blue), its outcome (green), or chosen value (orange)
around the time of reward delivery in an 0.5 s analysis window that was advanced in 0.1 s time steps (Eq. 3). B, Relationship
between the coefficients related to choice outcome and chosen value. Standardized regression coefficients (SRC) for the current
choice outcome (R(t)) were plotted against those for chosen value (Qc(t)) for neural activity during the first 1 s of the reward stage.
Saturated colors indicate the neurons that significantly modulated their activity according to both choice outcome and chosen
value, and light colors indicate those that encoded either choice outcome or chosen value only. The remaining neurons are
indicated in gray. Red and blue indicate those neurons whose activity was better explained by the model containing RPE or updated
chosen value (Qc(t
1); i.e., chosen value in trial t
1), respectively.
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free RL algorithm. It will be important to compare value-related
neural activity between the DLS and DMS in a task in which
model-free and model-based RL algorithms clearly predict differ-
ent goal choices and neural activity (Daw et al., 2011; Simon and
Daw, 2011).
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