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Abstract
We investigate the no-boundary measure in the context of moduli stabilization.
To this end, we first show that for exponential potentials, there are no
classical histories once the slope exceeds a critical value. We also investigate
the probability distributions given by the no-boundary wavefunction near
maxima of the potential. These results are then applied to a simple model that
compactifies 6D to 4D (HBSV model) with fluxes. We find that the no-boundary
wavefunction effectively stabilizes the moduli of the model. Moreover, we find
the a priori probability for the cosmological constant in this model. We find
that a negative value is preferred, and a vanishing cosmological constant is not
distinguished by the probability measure. We also discuss the application to
the cosmic landscape. Our preliminary arguments indicate that the probability
of obtaining anti-de Sitter space is vastly greater than that for de Sitter.

PACS numbers: 98.80.Qc, 04.60.−m, 11.25.Mj, 98.80.Jk

(Some figures may appear in colour only in the online journal)

1. Introduction

String theory predicts the existence of extra dimensions beyond the observed four. To conform
with observations, these must be compactified to very small scales. The geometry of the
extra dimensions is dynamical in principle; thus, the dynamics has to explain why the extra
dimensions stay curled up. In low-energy effective actions, the geometry is described by scalar
fields evolving in complicated potentials, and the problem of trapping them is known as the
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moduli stabilization problem. In the context of quantum theory, the question is whether the
fields find themselves in a state that is sufficiently and suitably localized in positions and
momenta to be trapped in a local minimum of the potential. Here the initial state comes into
play, because it determines probabilities for such dynamical conditions to be satisfied. In
this work, we analyze the ability of a specific proposal for the initial state, the no-boundary
wavefunction of Hartle and Hawking in this respect. To be precise, we calculate approximate
probabilities for the field to find itself as a sharply peaked wave packet at various locations
in the potential. These can then be used for further dynamical considerations because such
a wave packet then evolves further according to the classical equations of motion and may
get trapped by a local minimum, or roll in an unstable direction forever. In the following, we
describe the moduli stabilization problem and the no-boundary proposal in more detail.

1.1. Flux compactification in string theory

Moduli stabilization problem. String theory is motivated to resolve the renormalization
problem [1]. Einstein gravity is not renormalizable, while, if we introduce string theory, then
all quantum corrections can be manifestly finite. However, to obtain a consistent quantum
theory, (super) string theory requires ten dimensions.

A rather traditional approach to reducing dimensions is to compactify extra dimensions.
It is known that a Calabi–Yau manifold can maintain supersymmetry, so that it can be
possible to obtain a four-dimensional effective supersymmetric action. Another approach
is not to compactify extra dimensions, and to stipulate that we are attached to a D-brane; extra
dimensions can be sufficiently large, or extra dimensions can be warped so that all gauge fields
can be confined on three-branes. The latter approach is a viable and interesting idea, but the
existence of such a brane combination and a metric ansatz should be explained in the context
of string theory.

In terms of a bottom-up approach, the traditional compactifying scenario is rather rigorous.
However, there is a well-known problem, that of moduli stabilization. When we compactify
extra dimensions to a compact manifold, there are continuous degrees of freedom that
determine the size or shape of the compact manifold. After integrating out the extra dimensions,
the degrees of freedom become a number of fields in the four-dimensional effective action,
the moduli fields. There is no fundamental mechanism to stabilize these fields, and thus no
fundamental mechanism keeps the size and shape of the compactified manifolds fixed. Of
course, one may believe that the fields can be initially fixed to have a certain value. However,
there is no way to prohibit the movement of the fields during an evolution of the universe, and
then it becomes very strange to see a stable compactified universe at the present time.

A solution of this problem requires at least two conditions to be satisfied:

(1) all moduli fields must have potentials and the potentials must have local minima;
(2) if the potential has a non-compact region in which the sign of the slope is negative (‘run-

away region’), the probability for the system to end up in this region should be strictly
smaller than 1.

The best-known mechanism for satisfying the first condition is the so-called flux
compactification [2], which we will discuss in the next paragraph. In this paper, for a given
toy model of flux compactification, we try to determine whether the second condition is met
for a universe born from the no-boundary wavefunction.

Flux compactification. To induce fluxes, we require some charged objects in the manifold.
Good candidates for this purpose are D-branes, physical objects with tension, mass and charge.
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In general, the natural tendency of moduli fields is to collapse so that they tend to become
smaller and smaller. However, the existence of flux tends to enlarge the size of the manifold.
So there can be a stable equilibrium, in which two forces—collapsing and repulsing—cancel
each other.

This flux compactification is an important mechanism to stabilize moduli fields. However,
the properties of the induced potential now become important, in particular, the potential
energies at the local minima. Anti-de Sitter vacua are quite natural in string theory, but our
universe is not described by anti-de Sitter space. To obtain a de Sitter vacuum, one has to
violate supersymmetry.

One successive model to violate supersymmetry and to obtain a de Sitter vacuum is
the model of Kachru, Kallosh, Linde and Trivedi [3]. In their model, they introduced D3-
branes and anti-D3-branes. Since they require tadpole cancelation, the only quantum effects
in their calculation are non-perturbative. They violate supersymmetry and eventually lift up
the potential from anti-de Sitter to de Sitter.

The level of uplift is determined by the number of anti-D3-branes. The number of anti-
D3-branes is a free parameter, and hence each value of the vacuum can be chosen arbitrarily.
As the number of fluxes changes, so does the allowed vacuum energy. The number of vacua
can be huge, so that there is effectively a continuous spectrum of cosmological constants
(so-called discrituum [4]).

In this paper, we study a simple model (Halliwell [5] and Blanco-Pillado, Schwartz-Perlov
and Vilenkin [6]), which we will call the HBSV model. Let us begin with the six-dimensional
action

S = 1

16πG6

∫
d6x

√−g
(
R(6) − 2�(6)

) − 1

4

∫
d6x

√−gFMNFMN, (1)

where M, N = 0, 1, . . . , 5 are the coordinates, �(6) is the six-dimensional cosmological
constant and FMN is the field strength tensor of the Maxwell field. Now, assuming the metric
ansatz

ds2 = gMN dxM dxN = e−(
√

2G6/R)ψ(x)gμν dxμ dxν + e(
√

2G6/R)ψ(x)R2 d�2
2 (2)

and the Maxwell field

Aϕ̃ = − n

2e
(cos θ̃ ± 1), (3)

where μ, ν = 0, 1, 2, 3 with [t, χ, θ, ϕ] and the compactified coordinates are just a sphere
[θ̃ , ϕ̃], we obtain four-dimensional effective action after integrating out:

S =
∫

d4x
√−g

(
1

16πG4
R(4) − 1

2
(∇ψ)2 − Vn(ψ)

)
(4)

and

Vn(ψ)= 1

2

(
πn2

e2R2
e−3(

√
2G6/R)ψ − 1

G6
e−2(

√
2G6/R)ψ + R2�(6)e−(

√
2G6/R)ψ

)
, (5)

where G4 = G6/V2 and V2 = 4πR2. In this paper, we choose the four-dimensional Planck
units � = c = G4 = 1. Then we have

Vn(ψ) = πn2

2e2R2
e−3

√
8πψ − 1

8πR2
e−2

√
8πψ + R2�(6)

2
e−√

8πψ . (6)

The HBSV model has two essential properties in this context: (1) it has one moduli field that
is stabilized by a potential and (2) as one increases the number of fluxes, one can change the
vacua from anti-de Sitter to de Sitter. The former property is useful to explain the moduli
stabilization problem and the latter is useful to understand the basic nature of huge numbers
of flux vacua, the so-called cosmic landscape.

3



Class. Quantum Grav. 29 (2012) 175001 D-i Hwang et al

Cosmic landscape and multiverse. As one changes the number of fluxes, one can see different
vacuum expectation values. According to Susskind [4], each different flux can be approximated
by some fields, so that each vacuum corresponds to different field values according to the
complex potential of the fields. Then, tunneling from one vacuum to another vacuum can
be described by the tunneling of a scalar field with a certain potential. The huge number of
different vacua that can be approximated by the potential of a scalar field is called the cosmic
landscape.

The huge number of different vacua can be of the order of 10500. Then, this can explain
the fine-tuning problem of the cosmological constant, in that it needs fine-tuning of the order
of 10−120. Therefore, the cosmic landscape can explain that there can be a huge number of
different universes. However, this does not necessarily imply that such universes should exist.
To realize a vacuum of the landscape, Susskind considered the eternal inflation. Since an
eternal inflation would never end, at a certain time, tunneling will realize all possible vacua, as
pocket universes. The totality of pocket universes is called the multiverse, and, by definition,
the multiverse has infinite volume and is formed by an infinite number of all possible pocket
universes.

If the multiverse picture becomes a concrete scientific hypothesis, it can assign
probabilities to each pocket universe [7]. However, it is known that such a measure is difficult
to define [8]. There are some promising candidates; however, there is no common consensus
on the problem.

The wavefunction of the universe has some interesting positions in this context, as it [9]
encodes the probability of a universe with certain initial conditions (also, as historic references
[10]). Will it prefer eternal inflation? Will it form the multiverse? Can it have implications for
the measure problem of the multiverse? At least, Hartle, Hawking and Hertog [11–14] believed
so, and they argued that the no-boundary wavefunction does not prefer a multiverse [11, 12],
and even though there is eternal inflation, the no-boundary measure is still meaningful and
it will give some expectations about the multiverse [13, 14]. On the other hand, some authors
have believed that the expectation of the no-boundary proposal is contradictory with the
multiverse picture [15, 16] and hence the wavefunction of the universe is not useful to
understand the nature of the multiverse measure. We hope that we can critically appraise
and answer these opinions.

Purpose of this paper. With this paper, we would like to shed some light on the question
of whether the no-boundary proposal is viable in the context of string theory or not. In the
context of the moduli stabilization problem, we commented that two conditions need to be
met. In addition, since we live in a de Sitter universe, the further requirements are natural:

(3) various vacuum expectation values, including positive vacuum energy, should be allowed,
and hence lead to a cosmic landscape;

(4) with a view to observations, a small positive cosmological constant and a sufficient
inflationary history should be preferred.

The HBSV model satisfies conditions (1) and (3). In the current paper, we ask whether
the no-boundary wavefunction can explain conditions (2) and (4).

To summarize, we ask, and partially answer, the following questions about the no-
boundary wavefunction and apply it to the following questions.

Moduli stabilization problem. Does the no-boundary measure explain the stability of the
moduli fields?
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A priori probability of the cosmological constant. Does the no-boundary measure explain
the a priori probability of the cosmological constant, or the probability for each vacuum
expectation value?

Probability of the cosmic landscape. What is the relation between the wavefunction of the
universe and the multiverse measure? Does the no-boundary measure prefer eternal inflation
and multiverse? If not, which universe is preferred in the landscape?

To be concrete, we will perform calculations within the HBSV model.

1.2. Review of no-boundary measure

No-boundary proposal. The no-boundary wavefunction [9] for gravity coupled to a matter
field is


[hμν, χ ] =
∫

∂g=h,∂φ=χ

DgDφ e−SE[g,φ], (7)

where hμν and χ are the boundary values of the Euclidean metric gμν and the matter field
φ which are the integration variables, and the integration is over all non-singular geometries
with a single boundary. SE is the Euclidean action:

SE = −
∫

d4x
√+g

(
1

16π
R − 1

2
(∇φ)2 − V (φ)

)
(8)

for φ a scalar field. This path-integral formula is a solution of the Wheeler–DeWitt equation.
Moreover, it can be regarded as a ‘ground state’ for the gravitational field [9]. However, the
path integral in (7) badly diverges as the action is not bounded from below, see for example [17]
for a discussion. To obtain convergence, Halliwell and Hartle [18, 19] argued that regarding
the path integral as a contour integral and choosing a contour involving complex metrics and
fields may improve convergence.

In the minisuperspace approximation,

ds2
E = dη2 + ρ2(η)(dχ2 + sin2 χ(dθ2 + sin2 θ dϕ2)). (9)

Then, the minisuperspace version of the no-boundary proposal with complex contour
integration is


[a, χ ] =
∫
C
DρDφ e−SE[ρ,φ], (10)

where

SE = 2π2
∫

dη

[
− 3

8π
(ρρ̇2 + ρ) + 1

2
ρ3φ̇2 + ρ3V (φ)

]
(11)

and the integration is over (potentially complex-valued) regular geometries and fields that
connect the boundary values

ρ|boundary = a, φ|boundary = χ, (12)

with the ‘no-boundary’ initial conditions

ρ|initial = 0, ρ̇|initial = 1, φ̇|initial = 0, (13)

which express regularity of the geometry at the initial time. The dot in the last equation stands
for derivative with respect to any chosen time parameter.
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Classicality condition. Because of the analytic continuation to complex functions, the action
is in general complex, so that


[a, χ ] = A[a, χ ]eiS[a,χ] (14)

with A, S real. If the rate of change of S is much greater than that of A,

|∇IA(q)| � |∇IS(q)|, I = 1, . . . , n, (15)

then the wavefunction describes almost classical behavior [11, 12]. In fact the Wigner function
W [
] of a state satisfying the classicality condition (15) in some region of q-space is
approximately

W [
](q, p) ∼ |A(q)|2 δ(p − ∇S). (16)

This shows that for q in this region, 
 determines a probability distribution for q and a
momentum value p = ∇S, which has a high likelihood.

Steepest descent approximation. To calculate the path integral, we will use the steepest
descent approximation, which requires us to evaluate the action for on-shell paths. As usual,
to obtain the best approximation, complex saddle points have to be admitted. To solve the
equations of motion, we must choose a time parameter, and since we are already forced to
consider complex metrics and fields by the steepest descent approximation, it is useful to
regard the action integral as a contour integral in complex time, and choose a time parameter
that is not always real. We call the on-shell complexified instantons fuzzy instantons.

For practical reasons, we follow [11, 12] and consider time contours that begin parallel to
the Euclidean time axis, and at a certain point, turn to the Lorentzian time axis. We denote the
Euclidean time with η, real time with dt ≡ −idη and the turn point in Lorentzian time with X .
At the starting point of the contour, we require the no-boundary initial conditions; after some
time along the Lorentzian direction, we require the classicality condition and that all fields be
real.

We solve the classical equations of motion for Euclidean and Lorentzian time directions,

φ̈ = −3
ρ̇

ρ
φ̇ ± V ′, (17)

ρ̈ = −8π

3
ρ(φ̇2 ± V ), (18)

where the upper sign is for the Euclidean time and the lower sign is for the Lorentzian time.
The on-shell Euclidean action is

S E = 4π2
∫

dη

(
ρ3V − 3

8π
ρ

)
, (19)

and after the turning point, we integrate along dη = i dt.
The required initial conditions are

ρ(0)Re = ρ(0)Im = 0, (20)

ρ̇(0)Re = 1, (21)

ρ̇(0)Im = 0, (22)

φ̇(0)Re = φ̇(0)Im = 0. (23)

At the junction time η = X , we paste ρ(η) and ρ(η) to ρ(t) and φ(t) so that

ρ(t = 0) = ρ(η = X ), ρ̇(t = 0) = iρ̇(η = X ), (24)

6
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φ(t = 0) = φ(η = X ), φ̇(t = 0) = iφ̇(η = X ). (25)

The remaining initial conditions are the initial field value φ(0) = φ0 eiθ , where φ0 is a positive
value and θ is a phase angle. After fixing φ0, by tuning the two parameters θ and the turning
point X , we (1) evolve equations (17) and (18), (2) calculate the classicality condition (equation
(15)) and (3) find the most optimal initial condition that satisfies the classicality condition7. If
the potential is symmetric, there can be multiple solutions; however, after we restrict the final
condition (e.g., ‘φ(T ) is in the left side of the local maximum’ for a sufficiently large T ), we
can uniquely specify the solution. If there exists a classical history, then we can calculate a
meaningful probability for a classical universe.

2. Fuzzy instantons in Einstein gravity

Now we will investigate some properties of the probability distribution on histories given
by the no-boundary wavefunction for Einstein gravity coupled to a scalar field. This is the
preparation for discussion of the resulting probability distributions in potentials of the type
that show up in string theory compactifications, and in the HBSV model. For performing
calculations, we must work in the minisuperspace approximation.

2.1. Definitions and notation

We will denote the space of histories satisfying the no-boundary condition by H.8 We eventually
want to calculate the probability of histories satisfying certain (boundary) conditions. Let us
say that we are interested in histories satisfying a certain condition A. Then we can define the
subset by

HA = {h ∈ H | h has property A} (26)

of H. Given a set of classical histories HA, in principle, we have

PA =
∫

QA

|
(h, χ )|2n · ∇SDμ(h, χ ). (27)

The integration is over a subset QA of a spatial slice with normal n in superspace. QA is the set
of points on this slice such that the wavefunction satisfies the classicality condition in a way
compatible with the condition A. S was defined in (14). μ is a certain measure which can be
obtained in principle from the inner product on the space of solutions to the Wheeler–DeWitt
equation and the slice. But it is very difficult to obtain in practice. Using minisuperspace and
the steepest descent approximation, using �0 as a parameter on the slice, and ignoring details
of the measure as well as the variation of n · ∇S,

PA ≈ 1

ZA

∫
QA

| exp(−SE[hφ0 ])|2 dφ0 = 1

ZA

∫
QA

e−2ReSE[hφ0 ] dφ0, (28)

where ZA is some normalization constant and hφ0 is a history that initially has a scalar field
modulus equal to φ0.

If we have two conditions A, B, where A is an initial and B is a final condition, we use the
notation HA→B for HA ∩ HB and PA→B for the corresponding probability.

7 The detailed numerical technique (searching algorithm) is introduced in [21].
8 Note that histories which differ by time reparametrization are considered the same. Note also that while these
histories are regular in Euclidean time as per the no-boundary conditions, they may well have singularities along the
real-time axis.
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2.2. Static results

Even under minisuperspace and stationary phase approximation, analytic calculations are
quite difficult since they involve solving the equations of motion and calculating the action
for various initial conditions. For the quadratic potential V (φ) = (1/2)m2φ2, an approximate
calculation is due to Lyons [20], and since it is instructive, we will discuss it briefly, here. The
starting point is the following approximate solutions of the equations of motion:

φ � φ0 + i
m

3

√
3

4π
η, ρ �

√
3

4π

i

mφRe
0

exp

(
−i

√
4π

3
mφ0η + 1

6
m2η2

)
, (29)

in which the scalar field φ slowly rolls. If the scalar field rolls more slowly, then we can further
approximate

φ � φRe
0 , ρ �

√
3

4π

1

mφRe
0

sin

(√
4π

3
mφRe

0 η

)
. (30)

We choose the integration contour in two steps: (1) we integrate in the Euclidean time
direction from ηRe = 0 to ηRe = √

3π/4mφRe
0 ≡ X so that the imaginary part of φ vanishes.

(2) At the turning point ηRe = X , we turn to the Lorentzian time direction.
Using this contour of integration, the Euclidean action can be calculated. Note that, if the

classicality condition is valid, the real part of the action SE picks up the biggest contribution
during the Euclidean time integration. Using equation (30), we can calculate the Euclidean
action and the result is

S(1)
E = 4π2

∫ X

0

(
ρ3V − 3

8π
ρ

)
dηRe � − 3

8m2(φRe
0 )2

∼ − 3

16V (φ)
. (31)

Therefore, as the vacuum energy becomes smaller and smaller, the probability gets larger and
larger. This qualitative result is confirmed in more detailed calculations by Hartle, Hawking
and Hertog [11, 12].

2.3. Symmetric tachyonic potential

To discuss potentials with local maxima, we now turn to the inverted square potential
V (φ) = V0 − (1/2)m2φ2 as a model case. While analytic results are not available, we can still
take a cue from the quadratic potential treated before, and form the hypothesis that

SRe
E � − 3

16

1

V (φ0)
. (32)

For the discussion of our numerical results, it is convenient to consider SE as a function of
μφ0, where μ2 = m2/V0, since according to (32),

V0SRe
E � − 3

16

1

1 − 1
2μ2φ2

0

(33)

and hence independent of the parameters of the potential.
Our numerical investigations show several things: first of all, we do find instantons

satisfying the classicality conditions for a wide range of parameters for the potential. Moreover,
(33) describes the situation very well, as long as the potential is not too steep and the field
evolves slowly as a consequence, see figure 1. Deviations become apparent, however, as μ2

increases, and the real part of the action eventually becomes approximately independent of the
starting modulus φ0 of the scalar field, see figure 1. In these instantons, the scalar field evolves
quickly, and the Euclidean action is more accurately described by

V0SRe
E � − 3

16

V0

maxV
= − 3

16
. (34)

8
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Figure 1. Euclidean action V0SE as a function of μφ0. We searched for classicalized solutions for
μ2 = 1, 5, 10, 15. The red curve represents the fitting function equation (33) as a function of μφ0
and the blue line is given by equation (34).

Instantons with this kind of behavior were also found in our previous work [21] in the context
of scalar tensor gravity, and were important to reach some of the conclusions of that work.
The reason for the different behavior is that the slow-rolling instantons classicalize before
ever reaching the maximum of the potential under evolution. The fast-rolling instantons reach
the maximum and oscillate there before Lorentzian evolution sets in; therefore, the maximum
value of the potential is relevant for them, see figure 2.

There is another surprising difference between the slow-rolling and the fast-rolling
instantons, namely the scaling of the region in which we find instantons satisfying the
classicality condition. For any μ, we find a symmetric region around the maximum of the
potential such that there are classical histories starting with φ0 in that region. For μ2 � 1,
there is no solution when V (φ0) < 0, and hence �φ0 should be less than the order of μ−1. We
find approximately

�φ0 ∝
{
μ−1 for μ2 � 1
exp −cμ for μ2 � 10

(35)

with c given by (see figure 3)

c ≈ 0.916 ln 10 ≈ 2.11. (36)

Let us finish by discussing the numerical results in terms of probabilities. Of particular
interest are the probabilities PR, PL for obtaining a classical universe with a right-rolling,
respectively, left-rolling, scalar field. Since the system is invariant under φ ↔ −φ, these
probabilities are certainly equal. For the slow-rolling case, we have

PL/R �
∫ �φ0

0
exp

(
3

8V0
+ 3

16V0
μ2φ2

0

)
dφ0 (37)

� 1

μ
exp

(
3

8V0
(1 + ε)

)
, (38)

where ε is order of μ, and hence small in the slow-rolling case. For the fast-rolling case
(μ2 � 10), we have

PL/R � exp
3

8V0

∫ �φ0

0
dφ0 (39)

9
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SE

0

16V 0

3

V

V0

SE

0

16V 0

3

V

V0

slow-rolling fast-rolling

Figure 2. Left: during Euclidean time, fields cannot roll up because the potential is sufficiently
flat. Therefore, the final probability depends on the initial field values. Right: if the potential is
sufficiently steep, then classical histories are allowed only for restricted field spaces. These initial
field values roll up to the local maximum before classicalization, and hence the probability does
not depend on the initial field values. (The dotted curves represent fitting functions: equations (33)
and (34).)

Figure 3. Field space φ0 in which the classicalizing instantons are allowed, as a function of μ: as
μ increases, the allowed field space exponentially decreases.
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� exp

[
1

V0

(
3

8
− cm

√
V0

)]
. (40)

If the mass m is sufficiently large, the probability of classicalized instantons can be
exponentially suppressed. This can be very important when comparing probabilities for
different types of instantons when the potential has a more complicated shape.

2.4. Run-away potential

Let us first consider the scaling

η = Dη̃, ρ = Dρ̃, V = D−2Ṽ , (41)

where D is a non-zero constant. Then we can easily show that

SE = D2S̃E, (42)

and hence the equations of motion are invariant via the scaling. Therefore, if there is a fuzzy
instanton solution, then there is also a fuzzy instanton solution for the scaled system, and vice
versa.

Keeping this in mind, for a given exponential-type potential

V (φ) = Ae−Cφ, (43)

there is/is not a fuzzy instanton solution at φRe(η = 0) = s0, if and only if there is/is not a
fuzzy instanton solution with the redefined scalar field ψ ≡ φ − s0 and the redefined potential

Ṽ (ψ) = e−Cψ, (44)

by choosing the scaling parameter D−2 = A e−Cs0 . This shows that to find classical histories
for the potential in equation (43), we can focus on the case φRe(η = 0) = 0.

We have searched for fuzzy instantons for this potential, using numerics. By virtue of the
above scaling argument, we can set φRe(η = 0) = 0 and then tune X and φIm(η = 0) to
find the classicalized solution. It turned out that very high numerical accuracy was needed to
reliably distinguish classical from non-classical solutions. The result was very surprising. It is
depicted in figure 4, where we have plotted the Euclidean action of classical histories versus
the parameter C of the potential. There is a critical value C � 4 above which no classicalized
solutions exist. Due to the scaling argument, this result extends to histories with an arbitrary
initial value for the field. This has interesting implications for the stabilization probability
of the HBSV model discussed in the next section, and potentially for moduli stabilization in
general.

Let us try to explain using analytic arguments. We can approximate around φ0 by the
quadratic-type potential

Ṽ (φ) = 1

2
(AC2 e−Cφ0 )

(
φ − φ0 − 1

C

)2

+ A e−Cφ0

2
, (45)

since V (φ0) = Ṽ (φ0), V ′(φ0) = Ṽ ′(φ0) and V ′′(φ0) = Ṽ ′′(φ0). Hence, as long as φ − φ0 is
sufficiently smaller than 1, the approximated potential Ṽ will give physically the same results
as those of V . If we consider the slow-rolling case, then such an approximation is sufficiently
fine. Therefore, the potential now looks like

Ṽ (ψ) = 1
2 m2ψ2 + V0, (46)

where ψ = φ − φ0 − 1/C.
Revisiting the results of Hartle, Hawking and Hertog [12]:

11



Class. Quantum Grav. 29 (2012) 175001 D-i Hwang et al

Figure 4. Euclidean action for the exponential potential V (φ) = e−Cφ , around φRe (η = 0) = 0.
Around C ∼= 3, there appears qualitatively different behavior. If C > 4, then classicalized solutions
are not allowed.

(1) If m2 > 6πV0, or equivalently, C2 > 3π , then there is a cutoff ψc such that if |ψ | < ψc,
then there is no classicalized solution. Here, ψc ∼ √

3/4π × O(1).
(2) Otherwise, if C2 � 3π , then there is no cutoff ψc.

Therefore, we can conclude that

• for the C >
√

3π ∼ 3 cases, if ψc > 1/C or equivalently C >
√

4π/3×O(1) ∼ 2×O(1),
then there is no classicalized solution;

• if C �
√

3π , then there are always fuzzy instantons.

Therefore, when we compare the numerical results, the order 1 constant O(1) is
approximately 2. In addition, we can explain the following behavior: around C = √

3π ∼= 3,
there appears a qualitatively different phase.

For a typical form of the moduli potential

V (φ) =
∑

i

fi(φ)e−Ciφ, (47)

where fis are the polynomials of φ and Cis are the constants, we require the condition

minCi � 4. (48)

If this condition does not hold, then the no-boundary measure cannot explain the stabilization
of moduli fields.

3. No-boundary measure in string theory

3.1. Stabilization of moduli fields

Let us analyze the HBSV model in detail (figure 5).

(1) For typical examples, μ2 at the local maximum is greater than 10. Therefore, around
the local maximum, in many cases, it follows almost the flat probability distribution
(fast-rolling fuzzy instantons).

12
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4 10 15 2 10 15 2 10 15 4 10 15

10

20

30

40

µ2

µ2=10~40

fast-rolling
fuzzy instantons

No fuzzy instantons

C > 4.0C > 4.0

No fuzzy instantons

excluded by absense of
slow-rolling fuzzy instantons

Figure 5. An example of the HBSV model: R = 0.01, e = 0.1, �(6) = 0.01, n = 225. Upper:
we plot μ2 at the local maximum as a function of � = 8πVmin. Therefore, a typical μ2 is greater
than 10 and hence the probability will be almost flat. Lower: a typical potential. Around the local
maximum, μ2 � 10 such that fast-rolling instantons can classicalize there. Instantons cannot
classicalize at large values of φ since the potential is ∼ exp −Cφ and C = √

8π > 4.0. Therefore,
run-away solutions cannot be generated in this way.

(2) For the run-away direction, it is approximately e−√
8πφ . However, in our model,√

8π > 4.0. Therefore, there are no classical solutions for the run-away direction.

(3) Around the local minimum, there is no classical solution (according to Hartle, Hawking
and Hertog). Also, there is no classical solution for the left side of the local minimum,
since ∼ e−3

√
8πφ .
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allowed range of
initial conditions

right-rolling

left-rolling

rolls up during Euclidean time
and classicalized

Figure 6. Conceptual discussion on the moduli stabilization problem. As discussed in figure 5,
the initial conditions are allowed only by the blue-colored region. Between the allowed region, a
fuzzy instanton can start and role up around the local maximum (red arrows) along the Euclidean
time. After the turning point, it can role to the left side or the right side (black arrows) along
the Lorentzian time. Approximately, the probability is almost half, and hence it can explain the
stabilization of the moduli field.

Therefore, for our specific model, we can explain the stabilization of the moduli field.
We denote the conceptual picture in figure 6. As we discussed, the initial conditions are
allowed only around the local maximum. Around the local maximum, a fuzzy instanton can
start and role up near the local maximum (red arrows) along the Euclidean time. After the
turning point, it can role to the left side or the right side (black arrows) along the Lorentzian
time. Approximately, the probability of each side is almost half, and hence it can explain the
stabilization of the moduli field.

Perhaps, this can be generalized.

• Small μ2 is related to small slow-roll parameters. Therefore, slow-rolling fuzzy instantons
need some fine-tuning for the potential.

• For the run-away potential e−Cφ , C will be of the order of Planck units (∼√
8π ). Therefore,

in fact, the condition C > 4.0 is quite general for moduli stabilization models, since the
typical dimensions of such a theory should be Planck units.

• However, if we have to consider many numbers of moduli fields, then the stabilization of
all moduli fields will be a difficult problem. If there are N ‘coherent’ fields with potential
V = ∑

i e−Cφi , then it will be approximated by the potential Ne−C/
√

Nψ with a single field
ψ = φi

√
N. Hence, even though C > 4, for large N, C/

√
N can be sufficiently small.

Therefore, the stabilization is highly non-trivial. We will leave this for future work.

3.2. Bayesian inference: a priori probability of cosmological constant

Up to now we have studied the probability distribution for the motions of the moduli field. Now
we would like to discuss the flux, since it determines, among other things, the cosmological
constant. In the HBSV model, the flux is simply an input. But in view of applications in the
context of cosmic landscape, there may be a continuous function of a field that varies the
flux. Of course, we do not know how to construct the exact landscape potential and it highly

14
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depends on the underling theory. In this context, it may be useful to regard it as a random
variable. Alternatively, we can still consider it fixed but unknown, and consider our belief in
its various values in the sense of Bayes.

In either case, we have

P(n|h) = P(h|n)P(n)

P(h)
, (49)

where n denotes the value of charge in the HBSV model, and h is a (stabilized) history, or a
family of such histories. What is given to us by the no-boundary proposal is P(h|n). Note that
the normalization of the probability becomes∑

n

( ∑
h:stable

P(h|n) +
∑

h:unstable

P(h|n)

)
= 1 (50)

and from the discussion of the previous section, we obtain∑
h:stable

P(h|n) �
∑

h:unstable

P(h|n). (51)

However, in general P(stab|n) �= P(stab|n′) for n �= n′ and it depends on the Euclidean action.
Let us assume that we observe stable moduli. Based on this observation, we obtain a

probability distribution for n,

P(n|stab) =
∑

h:stable

P(h|n)P(n)

P(h)
. (52)

P(h) is approximately constant on the set of stabilized histories, and we also assume P(n) to
be constant in the absence of any better idea. Then

P(n|stab) ∝
∑

h:stable

P(h|n). (53)

We can calculate the probability density p(hφ0 |n), where hφ0 is a classical history labeled by
the initial condition φ0. It is approximately given by the intergrand in (28). Then we can define

P(stab|n) ≡
∫

C→L
p(hφ0 |n) dφ0, (54)

where C is the set of initial conditions with classical histories. Then from our previous
discussion,

P(n|stab) ∝ P(stab|n). (55)

For each different n, each stabilized history will have a specified potential energy. Therefore,
we also obtain a distribution P(�|stab), where � is the effective cosmological constant.
Therefore, this will give the a priori probability of the cosmological constant.

To approximately evaluate the probability distribution, we will use the relation

PL � exp

(
3

8Vmax
(1 + ε)

)
�φ0, (56)

where ε may be non-zero for instantons that are slow-rolling. To see the qualitative properties,
it is not unreasonable to ignore ε � 1. We have to consider �φ0. However, if it is not measure
zero, then it will not have a significant effect. Therefore, the crucial point is the relation between
the local minimum and the local maximum of the potential, where it crucially depends on the
details of the potential.

Figure 7 shows the typical distribution on log P(�|stab) for an HBSV model. In the
model, we used the condition R = 0.01, e = 0.1, �(6) = 0.01. Then the allowed n is less
than 259. The former plot is the overall distribution for 100 < n < 259. The latter plot is the
distribution near � = 0 (210 < n < 259).
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Figure 7. log P(�|stab) � −SE � 3/16V (φM) as a function of � = 8πV (φm). We used the
condition R = 0.01, e = 0.1 and �(6) = 0.01. The former plot is the overall distribution for
100 < n < 259. The latter plot is the distribution near � = 0 (210 < n < 259).

We can obtain two general conclusions:

(1) anti-de Sitter vacua are preferred to de Sitter vacua;

(2) however, if we restrict to � � 0 so that the cosmological constant should be sufficiently
small for anthropic requirements, then we will see effectively flat a priori probability.

Therefore, � = 0 is no longer a special point in terms of Euclidean quantum gravity.

3.3. Generalization to cosmic landscape: AdS catastrophe?

Dead de Sitter catastrophe of multiverse: Susskind and Page’s arguments. First, let us
summarize the assumptions and results of Dyson, Kleban and Susskind [15].

16



Class. Quantum Grav. 29 (2012) 175001 D-i Hwang et al

V

Figure 8. An example of a potential that can be allowed from the cosmic landscape. The local
maximum near zero vacuum energy (arrow) is the most probable region, and the nearest vacua of
the local maximum will probably be anti-de Sitter.

Assumption 1. The time evolution of multiverse is unitary for an observer’s causal patch.

Assumption 2. There is a fundamental cosmological constant larger than 0.

According to assumption 1, the probability of the vacuum energy of an observer
in the multiverse (or manyworld [22]) is proportional to the exponential of the entropy:
P ∼ exp −2SE. According to assumption 2, the most probable cosmological constant is the
smallest vacuum energy � > 0. Then, in the full phase space, the probability that one will see
inflation with the vacuum energy V0 is approximately

P � exp

(
1

V0
− 1

�

)
. (57)

For our universe, V0 � 10−10 and � � 10−120. If we consider 10500 numbers of vacua, then
� � 10−500 is not a strange number. Then, P � 0. According to Dyson, Kleban and Susskind
[15], therefore, the most dominant position in the phase space of the multiverse is the dead de
Sitter. According to Page [16], the dead de Sitter is filled by not human observers but freak
observers, for example, so-called Boltzmann Brains. To solve this problem, we have to include
anti-de Sitter vacua and a proper measure should be defined so that de Sitter vacua should
decay to anti-de Sitter vacua before Boltzmann brains are dominant.

Therefore, introduction of the anti-de Sitter region (dropping assumption 2) resolves such
a problem. Now what we want to discuss is that the introduction of anti-de Sitter vacua can
generate a difficult problem for the no-boundary measure.

Anti-de Sitter catastrophe and the no-boundary measure. If there is a local maximum with
a very small vacuum energy of a potential that is allowed from string theory, then around the
point will give the μ2 = m2/V0 parameter. As we discussed, unless m is super-Planckian, the
probability will be approximately ∼ exp 1/V0.

The question is how small the vacuum energy will be. If the cosmic landscape allows 10500

vacua, then the possible local maxima can be of the order of V0 ∼ 10−500. Then, the position
V0 ∼ 10−500 is the most favorable position in terms of the no-boundary measure. Then, after
the turning time, the scalar field will roll to the nearest vacua of the local maximum. If V0 is
very close to zero, then the nearest vacuum will probably be anti-de Sitter (figure 8). Therefore,
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it seems that the natural version of string theory seems to prefer not de Sitter but anti-de Sitter
vacua, of the order of exp 10500. We will call this anti-de Sitter catastrophe.

We suggest possible resolutions of the anti-de Sitter catastrophe.

Hypothesis 1. There can be some fundamental limitations on the potential. For example, there
can be a fundamental principle that the mass of the local maximum should be super-Planckian.
Also, there can be a limitation that whenever the local maximum has sufficiently small vacuum
energy, the nearest vacuum should be de Sitter.

These possibilities can resolve the anti-de Sitter catastrophe; however, we think that these
resolutions are quite ad hoc.

Rather, we suggest two probable resolutions.

Hypothesis 2. The bottom-up probability prefers anti-de Sitter vacua to de Sitter vacua.
However, in terms of anthropic considerations, a universe should experience inflation.
However, such anti-de Sitter fuzzy instantons cannot experience sufficient e-foldings. Then,
the universe will not have anthropically viable structures and cannot include human-like
observers.

This possibility can be falsifiable. We have to check whether such an anti-de Sitter
universe can include Boltzmann-brain-like freak observers or not. If it is possible, then we
can compare the number of freak observers of the anti-de Sitter universe and the number of
human-like observers in our universe. After we weight the bottom-up probability, if the former
is dominant over the latter, then hypothesis 2 cannot be true.

Hypothesis 3. Even though the bottom-up probability prefers an anti-de Sitter vacuum, there
is a small probability that a universe can experience eternal inflation. Then, although it is
a small probability, after a long time, the volume of the eternally inflating histories will be
dominant over the other anti-de Sitter histories, and the anti-de Sitter histories will experience
a big crunch in a finite time. Eventually, the eternally inflating universe will remain. And then,
it can generate de Sitter vacua as pocket universes.

Next, the distribution of the pocket universes will follow the measure of eternally inflating
multiverse. Now it is not clear whether there will remain a signature of the no-boundary
measure through the eternal inflation, or it is entirely erased.

In conclusion, we obtained a result that the no-boundary bottom-up measure prefers not de
Sitter but anti-de Sitter vacua exponentially. One way to resolve this is the anthropic argument
and the other way is to introduce eternal inflation. For this issue, we may not be able to
say any concrete things, since our knowledge for all over the landscape is absent. Rather, our
cautious conclusion is that the no-boundary measure potentially has a problem of anti-de Sitter
catastrophe, and this is another version of the dead de Sitter catastrophe of multiverse.

4. Discussion

In this paper, we investigate the no-boundary measure in string theory: in the context of moduli
stabilization, flux compactification and cosmic landscape. The simple model that compactifies
6D to 4D (HBSV model) is used as a concrete toy model.

Section 2.3. To study fuzzy instantons, the study of the tachyonic potential around
the local maximum is very important. If the ratio between the negative mass square m2 and the
vacuum energy V0 decreases, then we observe slowly rolling fuzzy instantons. In this case, the
probability depends on the initial conditions. We call this case slow-rolling fuzzy instantons.
On the other hand, if the ratio sufficiently increases, the field relatively quickly moves and
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hence the dependence on the initial conditions disappears. We call this case fast-rolling fuzzy
instantons.

Section 2.4. For an exponential-type run-away potential e−Cφ , if the coefficient C is larger
than ∼ 4, then there is no run-away classicalized solution for the no-boundary measure.

These two observations are applied to the HBSV model: classical histories are allowed
only for the local maximum, and the probability will not crucially depend on the initial
conditions (fast-rolling fuzzy instantons). Therefore, the no-boundary measure can explain
the stabilization of the HBSV model. Moreover, we can assert the a priori probability of the
cosmological constant. It naturally prefers to be anti-de Sitter, but a zero cosmological constant
is not a special or singular region.

Finally, we try to generalize to the context of the cosmic landscape. Perhaps, the no-
boundary measure extremely prefers anti-de Sitter to de Sitter. This can be a fundamental
property of the no-boundary measure. If we believe the principle that a probability of a given
gravitational system is determined by the entropy, which is the same as the Euclidean action,
then it will be a natural consequence.

However, this crucially depends on the details of the potential and the choice of the
boundary condition of the universe. Thus, we are not ready to conclude with definite results,
or to say for certain whether the no-boundary measure is consistent with string theory or not.
We have already obtained some evidence that the no-boundary measure partly explains the
stabilization of the moduli fields and the dilaton field [21]. Of course, we have to generalize not
only for the single-field case, but also for multi-field cases. We need further study for these
issues.
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