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In  many  manufacturing  environments,  costly  job  inspection  provides  information  about  the  random
deterioration  of  the  machines.  The  resulting  maintenance  and  inspection  problem  is  extensively  studied
for  a  single  machine  system  by  using  the  framework  of  Partially  Observable  Markov  Decision  Processes
(POMDPs).  In  this  work,  this  concept  is  extended  to  multiple  operations  and  multiple  job  types  by  consid-
ering  two  process  flow  topologies:  (i)  re-entrant  flow,  (ii)  hybrid  flow.  The  resulting  (significantly  large
sized)  POMDPs  are  solved  using  a point  based  method  called  PERSEUS,  and the  results  are  compared  with
eywords:
arkov decision processes
ynamic programming
andom deterioration
aintenance

nspection

those  obtained  by conventionally  used  periodic  policies.
© 2012 Elsevier Ltd. All rights reserved.
. Introduction

Many manufacturing systems have machines/equipments that
eteriorate randomly. Examples can be seen in auto-parts manufac-
uring, semi-conductor manufacturing, chemical process industry,
tc. The effect of this deterioration is generally reflected as one or

 combination of the followings: a lower yield, higher fraction of
efective intermediates, higher operating or maintenance cost, or

ncreased probability of complete failure of the equipment. The ran-
om deterioration in a single machine is often modeled as a Markov
hain [1],  where the equipment can be in one of N states at any
ime. Several researchers have leveraged the flexibility associated
ith Markov chains for modeling machine deterioration problems

3,11,14–17,20] since the 60 s. Machine state is typically designated
s i = 1,2, . . .,  N, with ‘1’ being the best state and the machine pro-
ressively degrading until it reaches an absorbing state ‘N’. The state

 may  characterize a completely failed state or a state of worst pos-
ible machine performance leading to least economically favorable
roduction scenario. The state that a machine occupies at a partic-
lar time is rarely known with certainty to the decision-maker and

he machine may  end up in state N (failed) without the decision-

aker’s notice, which is termed as ‘silent failures’ in [2].

∗ Corresponding author. Tel.: +82 42 350 3926; fax: +82 42 350 3910.
E-mail address: jayhlee@kaist.ac.kr (J.H. Lee).

959-1524/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
oi:10.1016/j.jprocont.2012.01.018
To keep the machine from ending up in a failed state, an
optimal maintenance policy is needed. Typical decisions include
renewal/replacement (to bring the machine back to the state ‘1’),
repair (bring it back to a relatively newer state), machine inspec-
tion (incur a cost to know the machine condition), or inspection of
machine’s output. The inspection is needed because the machine
condition is not directly observable and may  lead to perfect or
imperfect knowledge of the condition depending on the quality
of observations [4],  presents a survey on replacement and repair
policies for randomly deteriorating systems found in existing liter-
ature and industry. Typical policy structures are block replacement,
age replacement, order replacement, failure limit policy, sequen-
tial preventive maintenance policy, and repair cost limit policy. A
more rigorous approach, introduced by [13], is to use the Partially
Observable Markov Decision Process (POMDP) framework to obtain
a mathematically optimal repair and inspection policy. To this end,
a survey of maintenance studies on single machine systems prone
to stochastic degradation is given in [18,19].  Structural properties
of the optimal value function and optimal policies are derived for
many cases.

A case of particular interest considered in [3] is the one where
the machine deterioration is reflected in increased production of
defective jobs. The information about the machine condition may

be known only by means of costly inspection of the machine out-
put, which relates probabilistically with the machine condition. The
problem of costly job inspection is considered by [3,15,16,20] and is
referred to as the case with ‘imperfect and incomplete observation’.

dx.doi.org/10.1016/j.jprocont.2012.01.018
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
mailto:jayhlee@kaist.ac.kr
dx.doi.org/10.1016/j.jprocont.2012.01.018
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ue to high cost of inspection, it may  not be economically favorable
o test every processed job. Such characteristics are prevalent in
obs requiring specialized testing for quality variables like electrical
roperties, radioactivity, product composition, uniformity, etc.

In most real world situations, a job undergoes a series of opera-
ions on multiple machines. Therefore, the notion of incomplete job
nspection motivates the analysis of defect accumulation and prop-
gation in the systems with multiple operations and (or) multiple
achines, which is the main subject of this paper. Defect prop-

gation here means that untested defective intermediates would
o through the system, until found defective in the final testing.
ue to the possibility of accumulation of defective intermediates,

ob scheduling may  also be affected by machine renewal and job
nspection decisions. It should be noted that even if the inspection
f all jobs was favorable, in the presence of inspection errors of type

 [5],  defective jobs would be reported non-defective and allowed to
ropagate through the system. Only error-free or perfect inspection

s considered in this work but the analysis can be easily extended
o type I errors. The above mentioned aspects of defect accumu-
ation and propagation in systems with stochastically degrading

achine(s) are addressed by considering two process flow topolo-
ies:

(i) a re-entrant flow system characterized by a job going through
the same operation more than once

ii) a hybrid flow system which is a combination of serial and re-
entrant flow

Since the knowledge of deterioration level of the machine(s) and
he un-tested defective jobs is not available in complete form, the
roblems are naturally formulated as partially observable Markov
ecision processes (POMDPs). However, the addition of schedul-

ng decisions in the presence of partially observable states leads
o fairly large size problems even for simple real world systems.
ecent research [6–8] in the area of approximate solution meth-
ds for large POMDPs proves helpful in this regard. In this work, a
oint based solution method called PERSEUS [6] is used to solve the
bove-mentioned problems and the numerical results are reported.
omparison with commonly used periodic policies for mainte-
ance and inspection are also presented to demonstrate the benefit

rom taking the more rigorous POMDP approach. It turns out that,
ue to the added complications in the illustrated cases, the optimal
olicies cannot be characterized in a convenient, simple form.

The article is organized as follows: to start with, an overview of
he theory and solution methods for Partially Observable Markov
ecision Processes (POMDPs) is provided in Section 2. The point-
ased methods used to solve medium sized POMDPs are discussed
riefly. The nomenclature used in this article is summarized in
ection 3. Section 4 presents details about the manufacturing
ystems considered in this work along with modeling assump-
ions. Section 5 contains three illustrations. Specific system models,
arameter values, and solution procedures are reported. Results
nd important findings are discussed in Section 6 and conclusions
re reported in Section 7.

. POMDP overview

.1. Definition and notation

POMDP describes a discrete-time stochastic control process
hen the states of the environment are partially observed. At any
ime, the system is in one of the states s ∈ S where S is a set of all
ermissible states and is called ‘state space’. By taking an action a,
he system transitions to the next state s′ ∈ S according to a known
robability of p(s′|s,a) and accrues a reward r(s,a). The next state s′ is
Control 22 (2012) 1478– 1489 1479

not completely observed but an observation o may  be made, which
is probabilistically related to the state s′ and action a by p(o|s′,a)
through stochastic system dynamics. Throughout this paper, sym-
bol p(.) is used to denote probability of a quantity.

More formally, it corresponds to a tuple (S, A, �,  T, O, R) where
S is a set of states, A is a set of actions, � is a set of observa-
tions, T: S × A × S → [0,1] is a set of transition probabilities that
describe the dynamic behavior of the modeled environment, O:
S × A × � → [0,1] is a set of observation probabilities that describe
the relationships among observations, states and actions, and
R: S × A × S → R1 denotes a reward model that determines the
reward when action a is taken in state s leading to next state s′.
Mostly, the notational convention for POMDPs is adopted from
[10]. r(.) represents the reward received for a state-action pair.
The dependence of reward function on s′ is usually suppressed by
taking a weighted average over all possible next states (r(s, a) =∑

s′ p(s′|s, a)R(s, a, s′)). pij denoting transition from state s = i to s′ = j
is used to denote transition probabilities associated with the system
dynamics. Ta and Oa are used to represent the probability transition
matrix and observation matrix corresponding to action a. Symbols
s, s′, o and a are used to denote current state, next state, observation
and action and belong to sets S, S, � and A, respectively.

The goal is to maximize the discounted sum of rewards over a
time horizon, which can be either finite or infinite. When the states
are completely observed, the resulting problem is simply a Markov
Decision Process (MDP) and the goal can be achieved by solving the
Bellman Equation for finite or infinite horizon problems. It is well-
known [9] that for infinite horizon problems, a stationary optimal
policy of the form in (1) exists, where V*(s) is the average discounted
infinite horizon reward obtained when the optimal policy is fol-
lowed starting from s until infinity [9].  a*(s) is the optimal action to
be taken when the system is in state s, independent of time t. V*(s) is
called the optimal value function and is obtained as the solution to
Bellman Eq. (2) for all s. 0 ≤ � < 1 is the discount rate that discounts
the future rewards.

a∗(s) = arg max
a ∈ A

∑
s′ ∈ S

p(s′|s, a){R(s, a, s′) + �V∗(s′)} ∀s (1)

V∗(s) = max
a ∈ A

∑
s′ ∈ S

p(s′|s, a){R(s, a, s′) + �V∗(s′)} ∀s (2)

For the solution of MDP  in this work, one of the popular solution
methods called value iteration is chosen. Starting with an arbi-
trary value function V0(s), the value function is iteratively improved
using (3) until �-convergence is reached. The operator for one iter-
ation can be denoted as H such that Vn+1 = HVn., as below:

Vn+1(s) = max
a ∈ A

∑
s′ ∈ S

{R(s, a, s′) + �p(s′|s, a)Vn(s′)} ∀s until |Vn+1

− Vn|∞ ≤ ε (3)

When the system state is not perfectly observed, a history of all
actions and observations since t = 0 need to be maintained. Due to
Markov property, this information is contained in the probability
distribution over all states at any time. The probability distribu-
tion is referred to as belief state b(s) for s ∈ S. The belief states
are continuous since they contain the probability values, which
are continuous numbers between 0 and 1. The partial observabil-
ity thus converts the original problem into a fully observable MDP
(FOMDP) with continuous states. Since all the elements of a belief
state add up to 1, the state dimension of the surrogate FOMDP is

one less than the size of the original state space.

Similar to MDP, an infinite horizon POMDP has an optimal sta-
tionary policy �*(b), which maps the belief states to optimal actions.
A policy � can be characterized by a value function V� which is
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efined as the expected future discounted reward. V�(b) is accrued
hen system is initially in state b and policy � is followed, where

 ≤ � < 1 is the discount rate that discounts the future rewards.

�(b) = E�

[ ∞∑
t=0

�tr(bt, �(bt))|b0 = b

]
(4)

The value function corresponding to the optimal policy maxi-
izes V(b) over all feasible � and satisfies the Bellman Eq. (5) for

ll b.

∗(b) = max
a ∈ A

[∑
s ∈ S

r(s, a)b(s) + �
∑
o ∈ O

p(o|b, a)V∗(bo
a)

]
∀b ∈ B (5)

ere bo
a is the belief state for the subsequent time obtained when

ction a is taken in state b and observation o is made. The expression
or each element of bo

a is as below:

o
a(s′) =

p(o|s′, a)
∑
s ∈ S

p(s′|s, a)b(s)

p(o|b, a)
(6)

ere bo
a(s′) represents the element of the belief vector bo

a corre-
ponding to the state s′. Similar to the value iteration for MDPs, the
alue update step for a belief point b is shown in (7).

n+1(b) = max
a ∈ A

[∑
s ∈ S

r(s, a)b(s) + �
∑
o  ∈ O

p(o|b, a)Vn(bo
a)

]
(7)

However, due to the continuous nature of the belief state space
nd consequently an infinite number of belief points, it may  not
e feasible to perform the exact value iteration. To alleviate this
roblem, researchers have looked into ways to exploit the fact
hat the optimal value function corresponding to POMDP has a
arametric form. For finite horizon problems, the value function

s piece-wise linear and convex (PWLC) function of the belief states
3] and for discounted infinite horizon POMDP, it can be approxi-

ated arbitrarily well with a PWLC function [11]. Over the years,
any methods have been developed that make use of this prop-

rty to solve the POMDP. Since, the exact solution methods are
imited to problems of very small sizes, approximate point based
olution methods like PERSEUS [6],  HSVI [7],  BPVI [8],  etc. have been
tudied recently, which expand the scope of POMDP to problems
f much larger sizes. In particular, PERSEUS uses the concept of
synchronous dynamic programming and randomly updates only

 subset of belief states in one value iteration step. In this work,
alue updates in spirit similar to PERSEUS are used.

.2. PERSEUS – an approximate solution method

Here we summarize the basics of the algorithm. For details, the
eaders are referred to [6].

Given the PWLC structure of the value function, the value func-
ion at the nth iteration (Vn) is parameterized by a finite set of
radient vectors ˛i

n, i = 1, 2,. . .,  |Vn|, as shown in (8).  The gradient
ector that maximizes the value at a belief state b (also referred
o as a belief point or just point) in the infinite belief space is rep-
esented by ˛(b)

n as in (9).  Superscript i indicates the ith gradient
ector in the set and superscript (b) indicates the vector that max-
mizes Vn(b) for a particular b. During an exact value iteration step
hen, the value (Vn+1(b)) and the gradient (˛(b)

n+1) corresponding to
ny point can be updated using the Bellman backup operator as

hown in (10), which can be derived based on (5) and (6):

n(b) = max
˛i

n

〈b, ˛i
n〉 (8)
Control 22 (2012) 1478– 1489

˛(b)
n = arg max˛i

n
〈b, ˛i

n〉 (9)

backup(b) = ˛(b)
n+1 = arg max

{gb
a }a  ∈ A

〈b, gb
a 〉 (10)

where

gb
a (s) = r(s, a) + �

∑
o ∈ �

arg max
{gi

a,o}
i

〈b, gi
a,o〉

gi
a,o(s) =

∑
s′ ∈ S

p(o|s′, a)p(s′|s, a)˛i
n(s′)

Vn(b) ≤ Vn+1(b) ≤ HVn(b) ∀b ∈ B (11)

As before, the notation gb
a (s) represents the scalar element of the

vector gb
a corresponding to the state s. The same is true for gi

a,o(s)
and ˛i

n(s′).
In PERSEUS, a subset B of belief points is obtained by taking

random actions. This belief set is fixed and chosen as the new belief
space for value function updates. Due to parameterization of the
value function (8),  an updated gradient vector for a belief point
may improve the value of many other points in the belief set. This
leads to the concept of approximate PERSEUS backups as shown in
the algorithm below. In each value backup stage, the value of all
points in the belief set can be improved by only updating the value
and gradient of only a subset of points. The resulting value function
estimate will follow the condition shown in (11) where HVn is the
estimate of the value function at nth iteration if the entire belief
space were updated. For more details on PERSEUS, please refer to
[6].
Perseus backup stage: Vn+1 = HperseusVn

1. Set Vn+1 = ø. Initialize B̃ to B
2. Sample a belief point b uniformly at random from B̃ and compute  ̨ = backup(b)
3. If b.  ̨ ≥ Vn(b) then add  ̨ to Vn+1, otherwise add ˛

′ = argmax{˛i
n }

i
b.˛i

n to Vn+1 .

4.  Compute B̃ = {b ∈ B̃: Vn+1(b) < Vn(b)}
5. If B̃ = ø then stop, else go to 2.

PERSEUS is an elegant and fast method for solution of POMDPs
with proven convergence properties. For convergence, it is required
that the initial value function is under-estimated everywhere.
However, there are no performance guarantees with respect to
the optimal value function. This is because the method considers a
randomly selected belief set on which value iteration updates are
carried out. This is done under the assumption that the parame-
terization using the gradient vectors would generalize well to the
entire belief space. However, there is no indication of how good
that generalization will be, even after the convergence criterion is
met. Therefore, re-sampling techniques are used to ensure that the
value function generalizes well to different parts of the belief space.
A detailed discussion on the algorithms we used is deferred until
Section 4. In the following section, the general properties of the
systems considered in this work are presented.

3. Formal nomenclature

This section is dedicated to presenting the nomenclature for
modeling and solution variables at one place.

Recall from the POMDP definition in Section 2:
POMDP model

S = {si for i = 1,2,. . .|S|} – underlying state space
A = {ai for i = 1,2,. . .|A|} – action space
� = {oi for i = 1,2,. . .|�|}  – observation space
T: p(s′|s,a) for all s ∈ S, s′ ∈ S, a ∈ A – transition probability matrix

O: p(o|s′,a) for all s′ ∈ S, a ∈ A – observation probability matrix
R: r(s,a) for all s ∈ S, a ∈ A – reward matrix
�-discounting factor
B = {bi for i = 1,2,. . .|B|} – belief space
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Optimal value function, action and policy

V*—optimal value function associated with state s ∈ S or belief state
b ∈ B for infinite horizon problem
�*—optimal policy associated with state s ∈ S or belief state b ∈ B
for infinite horizon problem
a*—optimal action associated with state s ∈ S or belief state b ∈ B
for infinite horizon problem

Other variables

Vn—approximation of value function at nth iteration
˛i

n(s) — ith gradient vector for i = 1,2, . . .,  |Vn| and s belonging to S
used for characterizing piece-wise linear value function Vn at nth
iteration
ε—parameter for criterion for stopping value iteration
ˇs—probability of defect in state s
L—total number of layers in the final product of re-entrant flow
operation
�—length/size of queue for re-entrant flow operation
Cx—cost/reward for various operations/events x, e.g. production,
inspection, successful completion of non-defective product, etc.
nl—number of total jobs in the queue which have undergone re-
entrant flow operations l times
dl—number of defective jobs in the queue which have undergone
re-entrant flow operations l times
Ã, B̃, C̃—designation for different types of machines (sign ∼ used
to distinguish between machine related and state/action space
related variables)
ãl, b̃l, c̃l—designation for different types of jobs that are processed
at machines Ã, B̃, C̃, respectively and have
l = 1,2, . . .,  |L| layers deposited on them

. System description

In this work, discrete manufacturing systems with single or mul-
iple machines are considered. The general characteristics of the
ystem and modeling assumptions are as follows:

.1. Modeling machine deterioration

All machines considered in subsequent problems are modeled
o be deteriorating according to an underlying Markov chain, as
iscussed in Section 1. A good state is differentiated from a bad
tate by the associated probability of defect generation ˇs, such
hat ˇs < ˇs+1 for s = 1,2, . . .,  N − 1. Actions of machine renewal, job
nspection and job scheduling are considered. The processed job
s observed to be either defective or non-defective with complete
ccuracy whenever job inspection is performed. In case of multiple
achine systems, the state transition probabilities and defect prob-

bilities corresponding to machine states are independent from one
achine to another unless otherwise mentioned.

.2. Defect accumulation and propagation

It is assumed that a defective job can be scrapped or reworked
depending on the problem specification), only when a job inspec-
ion is carried out at that instant. If the job is not inspected due
o economic reasons, the defective jobs tend to accumulate and
ropagate through the system. Fig. 1(a) and (b) shows a serial
anufacturing system and a parallel assembly system, respectively
12]. The jobs (denoted by ãl for job completing the lth opera-
ion) that are found defective may  be reworked/repaired in the
erial manufacturing system, while defective jobs would typically
e scrapped in the assembly system when found defective. The
Fig. 1. (a) Serial production system with rework. (b) Assembly system with scrap.

defective jobs that are not inspected would go on to the next oper-
ation or final assembly. It is assumed that when a job is inspected,
defects caused by all prior operations are revealed as opposed to
just the last operation.

For the purpose of modeling, the defective jobs in the system
need to be kept track of at all time. Therefore, at any time, the sys-
tem state can be fully characterized by two pieces of information:
(i) the state of all the machines; (ii) the total number of intermedi-
ates and the fraction of defective items in them. To differentiate the
general system state from machine state, the latter is referred by
machine condition or deterioration level in the subsequent analysis.

4.3. Objective

Most studies on optimal maintenance policies for randomly
deteriorating systems minimize the finite or infinite horizon cost
[1–3]. This is because the degradation of the machine is reflected
in increased operating cost and/or increased maintenance cost. For
example, in [2],  the cost of repair increases with the extent of repair,
which in turn depends on severity of the deterioration. In this work,
it is assumed that the cost of renewal is the same for all machine
regimes. Since inspection is carried out on jobs only, and not on
machines, inspection cost is not a function of machine regime.
Consequently, the deterioration is reflected only in the fraction of
defective jobs, an increase in which leads to a lower revenue. There-
fore, the infinite horizon profit is maximized for all illustrations.

A good heuristic used in industrial applications is to employ an
age replacement/renewal policy and periodic inspection policy. In
similar spirit, heuristics of the following nature are used to establish
a lower bound on the POMDP solution.

- maintain every �m time units
- test every �t time units

The best periodic policy also helps to obtain a sample set of
belief points representing the relevant region of the belief space

for carrying out the PERSEUS iterations. The Fully Observable MPD
(FOMDP) solution, which makes an unrealistic assumption of the
full knowledge of the Markov states at all times, provides a loose
but unachievable theoretical upper bound.
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(This re-entrant characteristic is observed in semi-conductor fabri-
cation, for example, where multiple layers are deposited on silicon
wafers. Therefore, jobs at various stages of production compete for
the same resources.) The process is shown in Fig. 3, where ãl refers
482 R. Agrawal et al. / Journal of Pr

.4. The single machine system

For a single machine prone to random degradation, the follow-
ng cases have been extensively studied:

Fully observable – the machine state is perfectly observable
Unobservable – no information about the machine condition is
available at any time
Imperfect observation – imperfect observations, e.g. information
about processed job is readily available at all times
Costly inspections – machine inspection or job inspection may  be
carried out at a cost.

For all of the above cases [16,17,20] have proven the existence
f optimal control limit policies under certain assumptions on the
ystem dynamics and reward function. A particular instance is the
nobservable case where the optimal policy is to replace every m
uns, where m can be infinity [17]. The conditions for such a policy
o be optimal are:

(i) r(s,a) is nonincreasing in s ∀a
(ii) Foran ordering a′ > a r(s, a′) − r(s, a) ismonotonein s

iii)
N∑

j=k

pij is nondecreasing in i for ∀a, k ∈ {1, 2, . . .,  N}

. Illustrations, specific models and solution

In order to understand the concept of partial and incomplete
bservation and lay the foundation for future illustrations, an
nstance of the ‘general repair and inspection model’ presented in
19] is shown as Illustration I. For ease of exposition, the transition
robability matrix is considered to be an upper triangular matrix
or all actions except that of machine renewal. This requires that
ij = 0 for i < j and pNN = 1, making s = N an absorbing state. The transi-
ion probabilities corresponding to the renewal action have pi1 = 1,
ij = 0, j /= 1.

Illustration I: A hypothetical machine produces one job per unit
ime and is prone to deterioration according to the model described
arlier in this section. Pertinent decisions include machine renewal
nd job inspection, both of which are assumed to be instantaneous
nd have associated costs of CM and CI, respectively. The machine
ay  transition to a different deterioration level at each time.
egradation time-scales are therefore controlled by the probability

ransition matrix corresponding to the action(s) of non-renewal. A
eward of CP is received only if the processed job is non-defective
which is determined for all jobs during final testing before product
ale).

S = {1,2, . . .,  N}
A = {a1,a2,a3}: a1—do nothing; a2—inspect; a3—renew
O = {o1,o2,o3}: o1—no defect; o2—defect; o3—no observation
R(s,a,s′) = (1 − ˇs′ )CP − IM(a)CM − II(a)CI

Oa2(o1|s′) = 1 − ˇs′ ; Oa2(o2|s′) = ˇs′
Oa(o3|s′) = 1 for a /= a2

here IM(a) and II(a) are binary numbers equal to 1 when the
achine is renewed and job inspection is performed, respectively,

nd 0 otherwise. The POMDP for N = 3 (three levels of deterioration)
ith CP = 1000, CM = 10,000 and three different values of CI (param-
ter sets 1, 2 and 3 shown in Table 1), is solved using PERSEUS (as
iscussed in Section 2) and the optimal policy structure is shown

n Fig. 2 (for CI = 150). It is seen that the optimal policy has a control
imit structure due to the following system properties.
Fig. 2. Optimal policy for three-state single machine problem.

The policy can therefore be compactly represented as (12) for
the above parameter values. It can be shown that a

(i) r(s, a) − r(s1, a) ≥ 0 for s < s1
(ii) p(s′|s, a) − p(s′|N, a) ≥ 0 for s′ /= N
iii) p(o1|s, a) − p(o1|s1, a) ≥ 0 for s < s1

(iv) p(o1|s = 1, a) ≥ p(o2|s = 1, a) ∀ a

general system with N-state deterioration and above properties
satisfies the monotonicity properties shown by [20]. Those noted
above represent sufficient conditions for the monotonicity results
to hold. The proofs are omitted due to space restrictions; however,
they can be found on the authors’ webpage

policy =

⎧⎨
⎩

do nothing if b(3) ≤ 0.09

renew if
4
3

b(3) − 2b(1) ≥ 1

inspect job otherwise

(12)

In the illustrations to follow, the concept of imperfect and
incomplete observation is extended to multiple type of jobs oper-
ated on a single machine (Illustration 2) and finally to multiple
type of jobs operated on multiple machines (Illustration 3). In both
examples, the issue of propagation of defective jobs is central to the
problem contributing the most to the problem size and computa-
tional complexity.

Illustration 2: The machine in Illustration 2 again operates on
one job per time unit and undergoes degradation at each time,
according to the Markov chain similar to the one in Illustration 1.
However, the job cycles back to the machine until it undergoes the
same operation L times, after which it leaves the system as product.
Fig. 3. Re-entrant flow problem.
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Table  1
Parameter sets.

Parameter set number CP CM C0 CI Cl CR Machine regime ransition Beta

ã0 ã1 ã2

1 1000 10,000 – 150 – – – –

[
0.99 0.0075 0.0025

0 0.99 0.01
0 0 1

]
[0.05 0.1 0.5]

2  1000 10,000 – 50 – – – –

[
0.99 0.0075 0.0025

0 0.99 0.01
0 0 1

]
[0.05 0.1 0.5]

3 1000 10,000 – 500 – – – –

[
0.99 0.0075 0.0025

0 0.99 0.01
0 0 1

]
[0.05 0.1 0.5]

4  2000 10,000 100 150 20 100 200 –

[
0.99 0.0075 0.0025

0 0.99 0.01
0 0 1

]
[0.05 0.1 0.5]

5  2000 10,000 100 150 100 200 500 –

[
0.99 0.0075 0.0025

0 0.99 0.01
0 0 1

]
[0.05 0.1 0.5]

6  2000 10,000 100 150 100 200 500 –

[
0.99 0.0075 0.0025

0 0.99 0.01
0 0 1

]
[0.05 0.25 0.75]

Parameter set CP CM CI CR Machine regime transition (Ã, B̃, C̃) ˇs

A B̃  C̃  ã  b̃  ã  b̃

7 1000 2000 2000 3000 25 25 175 175

[
0.99 0.01

0 1

]
[0.10 0.60] (Ã)

[0.25 0.75] (B̃)
[0 0.5 0] (C̃)

8  1000 1000 1500 3000 25 25 175 175

[
0.99 0.01

0 1

]
[0.25 0.75] (Ã)

[0.25 0.75] (B̃)
[0 0.5 0] (C̃)

9  1000 2000 2000 3000 25 25 175 275

[
0.99 0.01

]
[0.10 0.60] (Ã)
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o the job and subscript l = 0,1, . . .,  L refers to the number of oper-
tions that the job has gone through. For simplicity they are called

 layers.  There is a queue before the operation where intermedi-
te jobs wait for processing. Therefore, an added decision in this
ase is job scheduling, i.e. which of the intermediates ãl, l = 0,1, . . .,

 − 1 to admit for processing. Each intermediate can be inspected if
he decision-maker so chooses. Defect in all existing layers can be
etected at the time of inspection. If found defective, the interme-
iate job is immediately scrapped/removed from the system. But if
he inspection is not carried out at each time, then defective items
ould propagate through the system. The product brings revenue

P only if all the L layers are non-defective. The costs for machine
enewal, job inspection, processing the lth layer and raw material
0̃ are CM, CI, Cl and C0, respectively. The overall objective motivated
y quality management is to devise an optimal machine renewal,

ob inspection and job scheduling policy that maximizes the infi-
ite horizon profit from product sales. It is assumed that supply of
0̃ is unlimited and final product ãL is always tested. (The symbol
˜ is used to differentiate the job from action a. The nomenclature
ith tilda (∼) is maintained to denote jobs and machines in the sub-

equent analysis, in order to avoid confusion with variables related
o the state and action spaces.)

The above problem is interesting in the following ways:

i. It allows for analysis of the propagation and accumulation of
defective jobs by means of a compact system representation.

ii. For very small and very large queue sizes, the system would
behave as a serial production (Fig. 1(a)) and assembly system

(Fig. 1(b)), respectively. For example, when no jobs are allowed
to wait in the queue, one job remains in the system until com-
pletion. This is similar to the job going through a sequence of
L operations in series. On the other hand, if a large number of
0 1
[0.25 0.75] (B̃)
[0 0.50] (C̃)

intermediates are waiting in the queue for processing, then it
acts more like an assembly system.

ii. Job inspection now serves two purposes, i.e. it not only pro-
vides information about the machine degradation, but also gives
information about defective intermediates so that they can be
picked out of the system to save the cost of additional operation
on them.

iv. The job gathers value with each deposited layer. With better
inspection and job scheduling, it is possible to reduce the num-
ber of good layers lost on bad products. This is because, a product
is considered defective if at least one layer on it is defective.

Similar to the previous illustration, the system is modeled as a
POMDP. The modeling details are included in the formulation and
examples are presented for a three layer product, i.e. for L = 3. The
problem is referred to as the re-entrant flow problem. It is worth
noticing that the state dimension and consequently, the size of the
state space are significantly larger in this case. This is because now
the total number of intermediates in the system and the fraction of
defective intermediates need to be accounted for. The action space
has an added dimension of job scheduling and the state transition
probability matrix also takes into account the probability of defect
propagation.

5.1. Formulation as POMDP

State: The system at any time is fully characterized by the total

number of jobs, the fraction of defective jobs and the deterioration
level of the machine. Therefore,

s = [n1, n2, . . .,  nL−1 d1, d2, . . .,  dL−1 � ]
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ig. 4. State transition for the re-entrant flow problem for 3 levels of machine dete
iven  the current machine condition (� ) and the renewal decision. (b) Probabilities
nd  observations depending upon job scheduling and job inspection decisions and 

nl ∈{0,1,2,. . .,�}—total number of ãl in the queue for l = 1,2, . . .,  L − 1
dl ∈ {0,1,2, . . .,  nl}—number of defective ãl in the queue for l = 1,2,
. . .,  L − 1
� ∈ {1,2, . . .,  N}—discrete integer representing the deterioration
level of the machine.

The state space consists of all possible combinations of the above
arameters. For instance, if L = 3 and if the maximum allowable
umber of jobs in the queue (�) is limited to 3 (i.e. n1 + n2 ≤3), then
here are following (n1, n2) combinations: (3,0) (2,1) (1,2) (0,3) (2,0)
1,1) (0,2) (1,0) (0,1) (0,0). For a particular value of n1, say 3, d1 can
old 4 possible values from 0, 1, 2, 3. With such calculations, the
otal number of possible combinations for [n1 n2 d1 d2] is 35. With

 deterioration levels for the machine, the size of the state space
s 105 (35 × 3). Similarly, the size of the state space for maximum
ueue sizes of 4 and 5 are 210 and 378, respectively.

Action/decision

 = [a1 a2 a3]

here a1 ∈ {0,1,2, . . .,  L − 1} pertains to the job scheduling deci-
ion (admit ã0, ã1, . . . ãL−1); a2 ∈ {0,1} pertains to job inspection

ecision (test (1) the processed job or not (0)); a3 ∈ {0,1} pertains
o renewal decision (renew the machine (1) or not (0)). Assum-
ng all final products are tested, the size of action space for L = 3 is
(3 × 2) − 1) × 2 = 10.
on and L = 3. (a) Possible values of the machine condition at the next time step (� ′)
iated with defect generation (ˇ� ) and propagation (d1/n1). (c) Possible next states
tion of uncertainty.

Observation

o ∈ {o1, o2, o3}

where o1 represents ‘no defect’, o2 ‘defect’, and o3 ‘no observation’
as before.

Transition and observation probability matrices
For a queue length of 3, T is a 105 × 105 × 10 matrix incorporat-

ing the 3 sources of uncertainty mentioned below:

(1) Machine regime switching—as shown in illustration 1, the
machine can switch between regimes with certain probabilities
in a non-deterministic manner.

(2) Defect generation—defect generation is probabilistic and the
defect probability (ˇs) is set by the regime in which the machine
is operating.

(3) Error propagation—since not all intermediates are tested, the
queue can contain defective intermediates, designated as d1
and d2 in the state description. Probability that a defective inter-
mediate is picked and operated upon is given by q:

q = dl For ãl being operated

nl

For a queue length of 3, O is a 105 × 10 × 3 matrix. It must be
noted that the total number of the intermediates in the system
(n1 n2 . . . nL−1) are always observable. The specific form of state
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i. Gen erate  a sam ple belie f B wit h 10 ,00 0 belie f poin ts by 
simulating  the sy stem under  the pol icies  below:  
(i) full  assuming policy optimal FOMDP 

observa bility  
(ii)  Various  peri odic   mai ntena nce and  in spection  

polici es 
(iii)  Rando m actio ns  

Initializ e V init= min (R(s,a)) 

ii. Using B and V init, run  PERSEUS ite ratio ns as  sho wn in 
section 2 for  ε = 0.01. The  conve rged valu e fun cti on is  

denot ed by *
PERSEUSV

iii. Use  *
PERSEUSV  to  sample an other  be lief  set  Bba r wi th 

10,000  states.   

iv. Set *0
PERSEUSVV = . Make  one PERSEUS iterat ion  to 

obtain  V 1

v. If  01.0|| 01 ≤− ∞VV , stop , else  se t B= Bbar, Vinit = 

V 1, go  to step  ii.   
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Fig. 5. Algorithm I for solving POMDP.

ransitions for three levels of machine deterioration, L = 3 and a1 = 1
s shown in Fig. 4. If nl = 0, admitting ãl for processing is not a permis-
ible action. To avoid this situation while implementing the POMDP
olicy, ãl−1 is admitted.

Objective
The infinite horizon discounted profit/reward is given by (13):

�∗ = max
a1,a2...a∞

∞∑
t=1

�t−1(CPIP(at) − CMIM(at) − CIII(at) − ClIl(at)

− C0I0(at)) (13)

here � is the discounting factor, at is the action at time t and all I’s
IP, IM, II, Il, I0) are binary and are equal to 1 when a non-defective
roduct is produced, when a maintenance job is run, when an inter-
ediate job is tested when ãl is run, and when raw material ã0 is

dmitted at time t, respectively.
The maximum allowable size of the queue largely governs

he size of the state space which eventually controls the size of
he problem. The above problem is solved for maximum queue
engths of 3, 4 and 5. Three different parameter sets (4–6) shown
n Table 1(a) are considered. The parameter values are reasonably
hosen to represent the trade-offs among different cost heads in

 typical manufacturing environment. Since the queue length is
onstrained, holding cost/work in progress (WIP) cost is not consid-
red. All problem instances are solved using the algorithm shown
n Fig. 5. An initial belief sample set is obtained by using three dif-
erent policies (i) optimal policy for the FOMDP problem, (ii) best
eriodic or block replacement and inspection policy, and (iii) policy
o select a random action at each time. The algorithm uses PERSEUS
Section 2) iterations on the fixed initial belief set until � conver-
ence is achieved. A new sample is then obtained using the current
alue function for POMDP and the above is repeated (this is called
ne sample iteration). These sample iterations are carried out until
he performance of two subsequent sample iterations is found to
e �-close for a randomly chosen test belief set.

The results are reported in Table 2. Table 2 includes the size
f the problem for the queue sizes considered. |V| is the size of
he optimal policy, i.e. the number of gradient vectors ˛i

n, i = 1, 2,
 . .,  |Vn|. The reported profit figure for the POMDP is the average
rofit obtained by starting in s = 1 ([0 0 0 0 1] – no jobs in the sys-

em and best machine condition) and following the optimal policy.
verage is taken over 100 experiments in all cases. The profit fig-
re reported for the FOMDP case starting in state s = 1, acts as a

oose upper bound, which cannot be achieved. The difference in the Ta
b
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wo values provides the extent to which the partial observability
ffects the performance. For parameter set 5, the processing costs
or layers 1, 2 and 3 are higher as compared to those for param-
ter set 4. This causes reduction in the overall profit as compared
ith parameter set 4 but evidently no difference in the optimal
olicy for the fully observable problems. However, in the partially
bservable case, the (near) optimal policy instructs an increase in
he average queue size (number of intermediates in the queue at
ny time) with an increase in the processing cost. This is because
he system is more cautious about running an expensive interme-
iate when the machine deterioration level is high. In parameter
et 6, the defect probabilities associated with machine deteriora-
ion levels 2 and 3 are increased which leads to further reduction in
he overall profit. The general characteristics of the FOMDP policies
re discussed in further details.

.2. Characterization of FOMDP policy

In order to understand the system behavior, the optimal policy
orresponding to the FOMDP problem is analyzed. It is seen that the
achine renewal, job inspection and job scheduling decisions are
utually correlated and therefore a compact representation of the

olicy is not possible, unlike in the single operation case previously
onsidered. The general characteristics of the optimal policy are
iscussed further:

. The optimal policy is a strong function of the probability of defect
generation and that of defect propagation. The former is the deter-
mined by ˇs, the defect probability associated with machine
deterioration level s and the latter is the probability that the
incoming job is already defective. The latter is given by dl/nl.
Also the term expensive intermediate is used to denote al with
relatively large l.

. The machine is renewed when defect generation probability is
high (3 and 2) and defect propagation probability is low.

. Job inspection is carried out when both of the above probabilities
are high and when an expensive intermediate is admitted for
processing. Note that according to problem specification, ãL is
always tested.

. An expensive intermediate ãl is admitted for processing when-
ever nl /= 0 and defect generation and propagation probabilities
are low. Otherwise, al−1 is picked for processing.

For the cost values considered, the systems tends to keep a small
umber of intermediates in the system as guided by the optimal
olicy. This is the reason why the optimal policy and the perfor-
ance of the reentrant flow problems with varying limits on queue

izes (3, 4 and 5) are the same (please see Table 2).
As for the structure of the POMDP policy, trends similar to the

OMDP policy are observed. However, job inspection also serves
he purpose of determining the machine condition, which is not
nown with certainty along with the fraction of defective interme-
iates. The policy space is very large in the case of POMDP problem
o be represented in a meaningful way. Since the policy is charac-
erized by the value function, some conjectures on the structure
f the value function for re-entrant flow problem are presented in
ection 5.

The case with multiple machines in the hybrid-flow example is
resented below. It combines the re-entrant flow feature with serial
ow topology as shown further.

Illustration 3: There are three machines (Ã, B̃, C̃) similar to the

ne in Illustration 1 that undergo degradation according to separate
ndependent Markov chains and defect probabilities. The machines
re in series and the jobs have a pre-defined order of operation as
hown below:
Control 22 (2012) 1478– 1489

1. Three layers at machine Ã
2. Two layers at machine B̃
3. One layer at machine C̃

Here layer again refers to one machine operation for simplicity.
The jobs being operated at machines Ã, B̃ and C̃ are designated as ãl,
b̃l, and c̃l respectively, where the subscript l refers to the number
of layers already deposited. The process is schematically shown in
Fig. 6. For simplicity, it is assumed that all machines can transition
to a lower deterioration level at each time unit but the result is only
reflected on the next job to be processed and not on the current
job. There is an inspection station after machines Ã  and B̃. If an
intermediate is tested and found defective, it is sent to a repair
station where only the topmost layer can be repaired. It costs CR

for each repair and the repaired job is returned to the system for
further processing. It takes 2 time units for an operation at Ã, 3 units
at B̃ and 6 units at C̃. Unlike in Illustration 2, there is no possibility
of queuing the jobs in this system. Jobs are fed sequentially, there is
one job at each machine at any time and product is obtained every 6
time units. It is assumed that machine maintenance, job inspection
and rework take negligible time.

One additional feature we introduce is that, if a defect is detected
in the last layer of ã or b̃, then repair is not required and it can be
repaired by the subsequent operation (B̃ or C̃ resp.) without any
additional cost. Reward is received only when all the layers in the
final product c̃1 are non-defective. The objective is to maximize
the average infinite horizon discounted profit while obtaining an
optimal renewal policy and job inspection policy for all three oper-
ations. It is assumed that the final product is always tested. The
feature of the above problem that a defect in the last layer of ã and
b̃  can be corrected by subsequent operations is seen in automo-
tive assembly where downstream correction of errors in physical
dimensions of jobs is possible. Due to this feature, the mainte-
nance decisions downstream affect the upstream processing. The
system is balanced since a job spends exactly 6 time units at each
machine. A time counter t(t = 1, 2, . . .,  6) is used to designate the
time elapsed since the job first entered the machine. It is assumed
that the machine can be serviced and job can be inspected only at
the end of a run. Therefore, maintenance and inspection at machine
Ã, B̃ and C̃ can be done when t is a multiple of 2, 3 and 6, respectively.
The formulation of the problem as a POMDP is presented below.

5.3. Formulation as POMDP

State
The system is fully characterized by the following:

s = [� Ã � B̃ � C̃ t defectã defectb̃ defectc̃]
where
� Ã,� B̃,� C̃ ∈ {1,2, . . .,  N} represent the regime of machines Ã, B̃ and
C̃
t ∈ {1,2, . . .,  6} is the time counter which goes from 1 to 6 and then
resets to 1.
defect ∈ {0,1} shows whether the jobs ã, b̃, c̃  that are being pro-
cessed have one or more defective layer(s) (1) or not (0)

Action/decision

a = [renewÃ renewB̃ renewC̃ testã testb̃]
renewi ∈ {0,1} for i = Ã, B̃, C̃, pertains to whether to renew the
machine i (1) or not (0)

testi ∈ {0,1} for i = ã, b̃ pertains to whether to test the processed job
i(1) or not (0)

Observation
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ã1

a2

ã0
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o = [oã ob̃ oc̃]
where oi ∈ {o1,o2,o3} for i = ã, b̃
oi ∈ {o1,o2} for i = c̃

This is because the final product is always tested
Transition probability matrix
T  incorporates the following sources of uncertainty

a. Machine regime switching—as shown in Illustration 1 (Fig. 4(a)),
the machines can switch between regimes with certain proba-
bilities in a non-deterministic manner.

. Defect generation—defect generation is probabilistic and the
defect probability (ˇs) is set by the regime in which the machines
are operating.

Objective
Maximization of the infinite horizon discounted profit/reward

iven by (14):

�∗ = max
a1,a2,...a∞

∞∑
t=1

�t−1{CPIP(at) −
C̃∑

i=Ã

Ci
MIi

M(at) −
b̃∑

j=ã

Cj
I I

j
I(at)

− C0I0(at)} (14)

 is the discounting factor, at is the action at time t and all I’s (IP, IM,
I, I0) are binary and are equal to 1 when a non-defective product
s produced, when a maintenance job is run, when an intermedi-
te job is tested, and when raw material ã0 is admitted at time t,
espectively.

The above is solved for two possible regimes (N = 2) for each
achine and the parameter sets 7, 8 and 9 shown in Table 1. The

OMDP is solved using the algorithm shown in Fig. 5 and the results
re reported in Table 2. Similar to the results for Illustration 2, the
OMDP profit is also reported to highlight the loss due to the par-
ial observability in each case. Similar to the re-entrant flow case,
he policy space is complicated leading to difficulties with compact
olicy representations even for the fully observable problem. For
he parameter sets 7, 8 and 9 shown in Table 1, the characteristics
f the optimal FOMDP policy are as follows:

. When the time counter t = 2, only machine Ã can be renewed and
ã1 inspected. The optimal policy pertaining to all parameter sets
(7, 8 and 9) is to never renew the machine and always inspect
the job ã1.

. When t = 3, the optimal policy is never to renew machine B̃ and
always inspect job b̃1

. When t = 4, the optimal policy is to not renew machine A but to
inspect job ã2 only when ã1 is non-defective. This is expected
since only the top layer can be repaired upon inspection. How-

ever since all ã1s are tested at t = 2, this situation never arises in
the fully observable case.

. When t = 6, only machine C̃  is renewed when machine is in
deterioration level 2 and the incoming job is non-defective, for
rework b̃

w system.

parameter sets 7 and 9. For parameter set 8, machine Ã  is also
renewed when in deterioration level 2. This difference can be
attributed to the lower renewal cost in the case of parameter set
8.

The high dimensionality associated with the (near) optimal
policy for the partially observed hybrid flow problem prevents a
compact representation. Some conjectures on the POMDP  policy
together with those on the partially observed reentrant flow prob-
lem are presented in the following section. Alternative policies are
also discussed in order to establish the goodness of the POMDP
solution.

6. Discussion on results and policy structure

6.1. Comparison

In order to understand the advantages of a rigorous approach
to solving this class of problems, the following is used as a basis of
comparison:

(i) FOMDP solution—the performance of the MDP, assuming that
the system state is fully observed, establishes a non-achievable
upper bound to the POMDP solution and the gap between the
performances show the extent to which the partial observ-
ability affects the performance of the system. It also helps
understand the policy structure and the relevant region of
the state space in certain cases. The optimal discounted infi-
nite horizon reward for starting in s = 1 for all illustrations and
parameter sets is reported in Table 2. For the single machine
problem, the changing inspection cost has no effect on the solu-
tion since the state is fully observed and inspection is never
carried out. (State s = 1 in all illustartions, represents the start-
ing state with the best machine regime(s) and no jobs in the
system.)

(ii) QMDP approximation—a lower bound on the close-to-optimal
solution of the POMDP is established by using a simple function
approximation scheme [10]. The optimal Q-function associ-
ated with the fully observable MDP  is shown in (15), where
VMDP is the optimal value function. The Q-function associated
with the partially observable problem for each belief state and
action is then approximated as shown in (16). The approximate
Q function can then serve as a basis for the decision-making.
The resulting performance is contained in Table 2. Note that
the optimal policy corresponding to the FOMDP does not con-
tain the inspection decision for gauging machine regime when
states are fully observed. That is the reason why, at times,
the performance of this approximation is worse than that of

periodic policy as discussed next.

Q MDP(s, a) = r(s, a) +
∑

s′
p(s′|s, a)VMDP(s) (15)
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Fig. 7. Value function v/s linear approximation plot.

	
Q (b, a) =

N∑
s=1

Q MDP(s, a)b(s) (16)

iii) Periodic maintenance and (or) inspection policies—as men-
tioned in Section 2, the periodic policies are easy to implement
and form the industrial standard for maintenance and job
inspection decisions. For single machine problem, a periodic
maintenance policy is optimal when inspection costs are pro-
hibitively high (shown as the unobservable case in Section 2).
As seen in Table 2, the performance of the POMDP for the sin-
gle machine problem drops with increasing cost of inspection.
For parameter set 3, the periodic policy gives a performance
similar to that of the POMDP.

.2. Empirical findings and conjectures

In addition to the rigorous results, the following empirical obser-
ations are reported for the illustrations that were studied:

(i) In the relevant belief space, the close-to-optimal value function
for the partially observed re-entrant flow problem and for the
single machine could be well represented as a linear function
of the belief states.

ii) In the relevant belief space, the close-to-optimal decision rule
for single machine, reentrant flow and hybrid flow could be well
represented as a decision tree of size substantially smaller than
the dimension of the belief space.

The value function in this case can be claimed as only close-to-
ptimal because there are no guarantees for optimality of solutions
ielded by PERSEUS in solving large size POMDPs. Relevant belief
pace refers to the set of belief points that are visited by following
he close-to-optimal policy. Fig. 7 is a plot between the actual value
unction v/s that obtained by a linear regression for the re-entrant
ow case and parameter set 4. The value function is plotted for the
elief states that are visited when POMDP close-to-optimal policy

s followed. The band around 45◦ line represents a good fit. It is seen
hat the points mostly lie within that band.

.3. Value function approximation

It is well-known that for a general infinite horizon POMDP, the

ptimal value function can be closely approximated as a piecewise
inear and convex function [11] as shown in (8).  From the finding in
i) above, it turns out that in the relevant region of the belief space,
Fig. 8. Algorithm II to solve POMDP with linear value function approximation.

the value function can be approximated as a single linear function
shown in (17) where ws are the weights for each system state.

s.t.
∼
V(b) =

|S|∑
s=1

wsb(s) (17)

Therefore, the close to optimal value function can be repre-
sented as a set of weights {w1, w2, . . .,  |S|}. In order to determine
these weights, value iterations can be carried out on |S| different
belief points where |S| is the dimension of the belief state. Fig. 8
shows a simplified version of algorithm I (Fig. 5) which utilizes the
linear value function. The results from algorithm II are also reported
in Table 2. It is seen that the performance for the single machine
and re-entrant flow cases are comparable with that of algorithm I.

6.4. Decision-tree analysis

A decision tree serves as a good tool to represent a policy. The
size of the decision-tree is determined by the number of levels at
which decisions are determined by conditions on the state vari-
ables. The size of the decision-tree is governed by two  factors:

(i) The number of actual states s visited while following the close-
to-optimal policy. Let us say Sv ∈ S is the set of actual states
visited and Sv′ = S/Sv. The size of the decision-tree depends on
the size of Sv. When the close-to-optimal policy is implemented,
the belief dimensions corresponding to Sv′ contribute less and
less to decision-making.

(ii) The level of similarity between actual states s—due to the
similarity, a cluster of states would correspond to the same
(near)optimal action. In the region of belief states, the states
belonging to these clusters would form hyper-planes and lead
to a decision-tree of much lower dimension. The sizes of the
decision-trees are also reported in Table 2 and are substan-
tially smaller than the size of Sv. This indicates the formation
of clusters of states that behave in a similar manner.

Consequently, the decision tree allows for compressing the
information corresponding to a potentially large policy and thus
helps representing it in a compact manner.

7. Conclusions

Judging by the research efforts in the area of partially observable
degradation of manufacturing equipments and costly inspection,
In this work this problem is addressed for different a re-entrant
and a hybrid flow topology. The significance of rigorous treatment
of this class of problems is demonstrated for the illustrated cases by
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