
Software Synthesis through Task Decomposition by Dependency Analysis

Youngsoo Shin Kiyoung Choi
School of Electrical Engineering

Seoul National University, Seoul, Korea, 151-742

Abstract
Latency tolerance i s one of m a i n problems of software

synthesis in the design of hardware-software mixed sys-
t ems . Th i s paper presents a methodology f o r speeding up
systems through latency tolerance which i s obtained by de-
composition of tasks and generation of a n efficient sched-
uler. T h e task decomposition process focuses o n the depen-
dency analysis of sys tem i/o operations. Scheduling of the
decomposed tasks i s performed in a mixed static and dy-
namic fashion. Experimental results show the significance
of our approach.

I. Introduction
Recently, software synthesis and code generation pro-

cess has become an important step in the cosynthesis of
mixed hardware-software systems. This has been driven
by advances in the performance of modern microproces-
sors and microcontrollers and increasingly large portion of
software in embedded systems.

Most of the previous approaches to the development of
software components in mixed systems use the execution
model of mutual exclusion between hardware and software.
A processor is in a “busy-wait” or “hold” state until the
hardware components complete their computation and re-
turn the results. This strategy is simple and reasonable
when hardware components complete their execution in a
short time interval. However, when the execution delay is
relatively long due to data-dependent loops or the envi-
ronment, this type of execution model can cause very low
processor utilization and long latency. This problem can
be solved by the execution model of multi-thread of con-
trol which is achieved by code restructuring through task
decomposition.

Manual decomposition and code restructuring are error-
prone, hard-to-work, and difficult to preserve the seman-
tics of the original system description. We took automatic
task decomposition and code restructuring schemes in [5],
where we assume that the hardware is capable of executing
a single task at a time. In this paper, we extend the idea
to a general case, where the hardware is composed of mul-
tiple functional resources and can execute multiple tasks
at the same time. In summary, we make assumptions as
follows.

Hardware is composed of a set of functional resources

Hardware functional resources are already bound to

When there are multiple i/o operations that access the
same hardware resource and have no dependencies be-

which can be accessed concurrently.

software i/o operations.

This rpwarch was supported in part by the Institute of Information
Technology Assessment under contract 95-X-5916.

1063-6757196 $5.00 0 1996 IEEE

tween them, access serialization should be guaranteed not
to cause a resource contention. We decompose a task and
generate a scheduler in such a way that the requirement is
not violated.

The overall structure of our software synthesis process
is as follows. First, the system specification is transformed
to a control data flow graph(CDFG) model. Our target
for the description of system specification is mixed VHDL
and C under Ptolemy[G] environment. The current im-
plementation supports cospecification and co-simulation in
both VHDL and C with extended Ptolemy. For the gen-
eration of CDFG, however, only VHDL is supported cur-
rently. The CDFG is partitioned manually into two parts
to be implemented in hardware and software. Then the in-
terface between the two parts is generated and annotated
to each partitioned CDFGs[2]. Automatic partitioning is
currently under development and is beyond the scope of
this paper. CDFG representing the software part consists
of basic operations, control constructs, and system inter-
face operations. It is partitioned into a set of segments
which we call threads. The set of threads together with
their scheduler form the synthesized software. The thread
scheduling is mixture of static and dynamic scheduling but
is maximally static in that all threads that can be given
static ordering are scheduled statically. Threads that is
to be scheduled dynamically are put on an ordered list.
Dynamic scheduling is done by dispatching threads one by
one from the ordered list while polling the synchronization
signal from the hardware. The dynamic dispatch contin-
ues until the synchronization signal is received or there is
no more thread ready to be scheduled.

The rest of this paper is structured as follows. The next
section presents the motivation of our work. System model
and problem formulation are discussed in Section 111. Sec-
tion IV describes the task decomposition and the gener-
ation of the thread scheduler. Experimental results are
presented in Section V. We draw conclusions and present
future work in Section VI.

11. Motivation
There are many approaches to software synthesis in

hardware-software codesign environment. In [l] [3], tim-
ing constraints are specified in the form of min/max con-
straints between operations or rate constraints of opera-
tions. In these approaches, software is structured as a set
of threads which start from non-deterministic operations.
In [4], timing constraints are specified as speed up fac-
tors and software part and hardware part function as mas-
ter and slave mode, respectively. A processor which runs
the software part is in hold state until the hardware part
completes its execution. All these approaches do not use
or limitedly use implicit parallelism between software and

98

timing constmink: 1.0 MK:

n A A

H +

riming estimation’ U=P 1.5 sec perlormanw 1 0 sec performance: 0 8 sec
riming estimation. 1.5 sec perlormanw 1 0 sec performance: 0 8 sec

Fig. 1. Speedup of partitioned task by execution overlap

hardware which is extensively exploited in our approach.
The goal of this paper is to optimally speed up the

software part through latency tolerance achieved by task
decomposition and restructuring. There exist many rea-
sons why we must speed up the software. For example, in
hard-real time systems where tasks are defined with their
timing attributes/constraints such as periods, deadlines,
execution times, assume there is no feasible schedule for a
given task set. In such cases, there are many alternatives
for satisfying schedulability such as code tuning, chang-
ing deadlines, and so on. Reduction of the execution time
of tasks by implementing them in hardware gives another
alternative.

Fig.1 shows an example of the proposed approach. As-
sume a task is to be completed within 0.8 sec but all soft-
ware solution takes 1.5 sec. It can be partitioned toward
hardware solution until given timing constraints are met.
With a given partition that completes the task in 1.0 sec
with mutually exclusive execution model, our approach can
be applied to reduce the execution time further down to
0.8 sec.

111. System Models and Problem Formulation
We use a control data flow graph(CDFG) as an ab-

strxt model of the system specification. Our CDFG is
defined as a graph G (N , E) where N is a set of nodes
ni(i = 1 ,..., m,j = s,e,op,ct ,w,r) and E is a set of di-
rected edges between nodes. We distinguish four types
of nodes. n: and nt are introduced as polar nodes to an
entire graph, to a condition clause or predicate of each
conditional statement, and to a conditional branch. All
nodes and edges on the paths from nf to nl form a con-
vex subgraph. nf” is an operational node. nCt is a con-
trol node which represents conditional statement. n: and
n,.l are nodes for system i/o operations. They represent
any sequence of operations required to satisfy the selected
communication protocol. So their granularity can vary ac-
cording to the complexity of the communication protocol.
These nodes are generated and annotated to software parts
and hardware parts, respectively, according to the selected
target architecture and communication protocol[2]. We de-
fine HW(nT) and HW(ny) as hardware resources accessed
by ny and n:, respectively.

The software interface module combines device driver
routine calls, 1/0 function calls, and load/store commands
to read/write data from/to the system bus. The hardware
interface module consists of signal registers and a protocol
converter[2].

An edge 72% > n, denotes a dependency from node n, to

node nj. When there is a transitive dependency relation
between ni and nj, that is, there exists a path from nj
to nj, we denote the relation as ni >t nj. Dependency
between nodes exists when there are data dependency or
control dependency.

In this paper, we define a thread Ti as a subset of N
that consists of a sequence of successively connected nodes
and has the property that once the first node fires then
it executes to the end without interruption. Dependency
relations between threads arise from the relation between
nodes in the threads. For example, when ni E Tk, nj E Tl,
and ni > nj, we say that Ti depends on Tk and denote it as
Tk > Tl. ni is always a start node of a thread T because
it is a non-deterministic operation as defined in 131. We
define T(nT) as a thread that starts from 7x5.

The problem can be stated as two folds. First, partition
the graph into threads and determine threads that can be
executed in parallel with the hardware such that the paral-
lelism is maximally exploited while preserving the seman-
tics of the original system specification. Second, schedule
the candidate threads such that the speedup is maximized
while giving as soon as possible response for the synchro-
nization with hardware.

IV. Task Decomposition and Scheduler Gener-

This section presents the solution to the previous men-
tioned two problems in Section 111. The task decomposi-
tion is oriented toward finding out candidate threads for
execution in parallel with the hardware execution and re-
structuring the CDFG for efficient scheduling. After the
task decomposition, we generate a low overhead scheduler
which performs both static and dynamic scheduling.
A. Task Decomposition

There is a trade-off between the number of threads and
the average length of a thread. To reduce the cost of
scheduling, it is important to keep the number of threads
small. But it is also important to have a sufficient number
of threads which are neither directly nor indirectly depen-
dent on the result of hardware operation, so that they can
be executed while the scheduler is waiting for the com-
pletion of the corresponding hardware operation having
unbounded delay. Task decomposition consists of thread
partitioning and clustering which are performed in four
steps described below.

Step 1: Find P’(nf) for each n,T
We define P(ni) to denote a set of nodes which have

paths neither from ni nor to ni. It can be defined recur-
sively as follows.

ation

Pred(ni) = U Pred(nj) U {nil

Succ(ni) = U Succ(nj U {ni 1

(1)

(2)

(3)

nj>ni

nj <ni

P(ni) = N - Pred(n i) - Succ(ni)

Successors of nT can be fired only after the comple-
tion of the corresponding hardware execution because ni

99

(a) (b)

Fig 2 An example of P’(nr)

is assumed to be synchronized with the execution of the
hardware Nodes in P(n:) found by the above formulas
can be fired even when the execution of n: and its suc-
Lessorb is blocked due to unavailability of data from the
hardware. In other words, P(n1) is a set of nodes which
are candidate operations to be executed concurrently with
hardware components.

When there are two read nodes, nf and n;, there are
four cases based on which hardware resources are accessed
by the nodes and what kind of dependency relation exists
between the two nodes.

1. n: >t n;, HW(n;) # HW(n,T)
n: >t n;,HW(n;) = HW(n5)

3. n: 3t n;,n: p t n J , H W (n f) # HW(n5)
2

4. nf 3t n;,n: # t n;,HW(n:) = HW(n;)
In case 1 and 2, there is an implicit ordering between

two nodes because of transitive dependency relation. In
case 3, there is no ordering between two nodes, but because
nT and n; access different hardware resources they need
not be serialized. Serialization should be guaranteed in
case 4 because there are no implicit ordering between two
nodes and they access the same hardware resource. Not to
cause hardware contention in case 4, we compute P’(n:)
as follows. n; is a node which satisfies condition in case 4.

P’(n:) = P(nC) - U Succ(n?) (4)
nr >nT

An example of the CDFG is shown in Fig.a(a). If the
two multiplication nodes depicted as shaded circles in the
figure are implemented as a single hardware multiplier, the
resultant CDFG of software parts becomes as in Fig.P(b).
P’(nT1) and P’(ny2) are found by formula (4) as follows.

S t e p 2: Find T(nT) for each nf
After finding P’(nf), we construct a thread for each n:

which starts from n: node. From the successor nodes of
n: we find recursively candidates which can be included
in T(nf) . The algorithm for the construction of T(n:) is
shown in Fig.3.

Our strategy for scheduling is based on the indepen-
dency relation between a set of threads constructed from
P‘(nf) and T(nf). This guarantees semantically correct
reordering of threads between two sets. In the procedure
NodeSerzalzze of Fig.3, the first condition for inclusion of

BuildThreadofNr(nr) {
create a new thread T ; T = {n:};
for (all immediate successors nj of nT)

NodeSerial ize(nj , P‘(nI), T) ;
1
NodeSerial ize(nj , P’(nI), T) {

//condition for inclusion of nj in T
if ((Vnk > nj, n k $! P’(nr)) and

(Vnk > nj,3Tmlnk E Tm) and (125,1 # T)) {

for (all immediate successors n k of nj)

NodeSeriaZize(nr,, P’(nl), T)

TU{%);

1
Fig. 3. Algorithm for construction of T(nf) . 1

T ’ T ’

, I ,..,
(4 (b) (C)

Fig. 4. Situation where deadlock is inhibited by Lemma 1

nj in T is necessary for this reason. The second condi-
tion guarantees a deadlock-free thread generation as ex-
plained in Lemma 1 below. A read node always starts a
new thread, and this is the third condition.

Lemma 1: A sufficient condition for node nj to be in-
cluded in the thread T currently under construction with-
out causing a deadlock situation is

V‘nk > nj ,327, Ink E Tm
Let’s prove this lemma informally using an example

shown in Fig.4. A deadlock between two threads occurs
when there is a cyclic dependency relation as depicted in
Fig.4(a). However, this situation is inhibited by applying
the above condition. Let’s assume that T has not been
constructed yet and T’ is currently under construction as
shown in Fig.$(b). By the above condition, n2 can not be
included in T’, because ni which is an immediate prede-
cessor of n 2 is not included in any thread yet. Now, let’s
assume that T’ has not been constructed yet and T is cur-
rently being constructed as shown in Fig.il(c). Again, nj
can not be included in T , because 723 which is an imme-
diate predecessor of nj is not included in any thread yet.
Therefore, the deadlock situation such as that in Fig.4(a)
never occurs.

Step 3: Build Basic Segments
In case P’(n1) and P’(n,’) have intersections, some

threads constructed from P’(n:) may be further parti-
tioned during the construction of threads from P’(n1).
Fig.5 shows this situation. Fig.5(a) shows case 1 or 2 in
Step 1, where we can obtain P’(n:) = {n1,n2,n3, n4} and
P‘(n;) = {nz,n4}. From P’(nf), we can construct thread
TI = {n1,n~,n3,n4}, whereas, from P’(n;), we can con-
struct thread T2 = {n3,n4} In this case, TI is further
partitioned to Tl = {n1,n2} and T2 = {n3,n4}. Fig.5(b)
shows case 4.

100

(a) (b)
Fig. 5. Examples of situation where further partitioning is needed.

ClusterThreads() {
while (there exist T, and T3 that can be merged) {

In(T,) = {T3 IT3 > Tz}; Out(T,) = {T3 IT3 < T,};
if ((STnr(Tt) == sTnr(T3)) and

(T, and T3 exist in the same subgraph))
if ((In(T,) == In(T,)) or

((Out(T,) == T3) and (T, E In(T3))))
MergeThreads(T,, T3);

1
Fig. 6. Thread clustering algorithm. 1

In our implementation, not to cause these complicated
situations, we do not take construct-and-partition strategy,
but take divide-and-merge strategy. For this purpose, we
define a basic segment as a set of continuously connected
nodes which have explicit ordering between any two nodes.
This is similar as the definition of a basic block used in
compiler discipline. The header node of a basic segment
is a node with multiple incoming edges or a immediate
successor node of a node with multiple outgoing edges.
We define ST(^:) as a set of threads(the basic segments)
constructed from P'(n:).

Step 4: Cluster Threads
The number of threads found by the previous step is

usually too big to be scheduled efficiently. However, we can
decrease the number drastically through thread clustering,
thereby reducing the scheduling overhead. The clustering
process must be performed with care to ensure that the
resultant threads are deadlock-free. For this purpose, we
define S T ~ ~ (T ,) as a set of threads T(n,') such that Tz is an
element of ST(^,'). ST~~(T,) is formally defined as follows.

STnr(Tz) = {T(n,')lTz C ST(n;)} (5)

Two threads T, and T3 are merged only when the two
sets sTnT(Tz) and S T ~ ~ (T ~) are identical. The thread clus-
tering algorithm is shown in Fig.6.
B. Generation of Thread Scheduler

We generate a mixed static and dynamic scheduler
which statically schedules threads that can be given static
orders. When the hardware starts its execution, the sched-
uler dispatches and fires a candidate thread from S ~ (n r) .
The thread can be executed without regard to the result of
the hardware execution. After the completion of execution
of a selected thread, the scheduler checks the completion
signal from the hardware. If this signal is not asserted,
the scheduler repeats the above mentioned procedure un-
til there are no candidates or the signal is asserted. If the

(C)

Oschedullng overhead E3 polling overhead
Fig. 7. Comparison of straight line schedule and proposed schedule

signal is asserted, T(n:) is scheduled for the synchroniza-
tion with hardware and then the list of threads whose value
of ST^^ (T,) are 1 is flushed by firing all of them. Execution
overlap between software and hardware is achieved by this
dynamic scheduling, thereby tolerating interface commu-
nication overhead.

All threads in ST(^:) and threads T(n:), 1 5 i 5 m,
are scheduled dynamically. The remaining threads which
neither are in S ~ (n l) nor are T(n:) are scheduled stati-
cally. This combined approach minimizes the number of
threads to be scheduled dynamically and therefore reduces
the total scheduling overhead. The sufficient condition for
the threads that can be scheduled statically i s justified by
the following lemma. Refer to [5] for the proof.

sat-
isfies both T3 > Ti and Ti > Tk, then Ti should be in

We assign a priority to each thread in ST(^:) and the
priorities remain static during runtime. Candidate threads
are put in a list ordered by the priority. Dynamic achedul-
ing selects the candidate with highest priority from the or-
dered list. Priority is assigned by three ordered rules. The
first rule is based on dependency relations among threads.
If T, > T3, then T, gets higher priority. The second rule is
based on a path length to T(nT) in S ~ (n 1) . By the path
length to T(nz), we mean the minimum number of threads
from a thread to T(n,'). Note that T(n,') accesses a differ-
ent hardware resources from that of T(n:) by formula (4).
A thread whose path length is shorter is assigned a higher
priority. When the hardware consists of multiple resources,
we can maximize the hardware utilization by concurrently
executing as many resources as possible. This justifies the
second rule. The third rule assigns a thread of which the
number of threads in STnr(Tz) is smaller with a higher
priority. The number of threads of ST^^ (T,) indicates how
many times T, can be a candidate that can be executed in
parallel with the hardware. Therefore, a thread with less
chances gets a higher priority.

Fig.7 compares two schedule sequences, a schedule with
a "busy-wait" type synchronization(straight line schedule)
and a schedule generated by our algorithm, Assume a
task is decomposed and the dependency relations are built
as shown in Fig.7(a). Typical schedule with a busy-wait
polling is shown in Fig.7(b). Fig 7(c) shows a schedule
generated by our algorithm. With a given hardware delay,
the schedule generated by our algorithm exhibits shorter
execution time due to the execution overlap.

Lemma 2: For any T3,Tk E &-(n:), if a thread

ST(4).

101

V. Experimental Results
We have performed two experiments to see the effec-

tiveness of our algorithm. The first experiment is to com-
pare the execution time and communication overhead be-
tween the code generated by our synthesis algorithm and
the straight-line code. By straight-line code, we mean the
code that enters idle wait state and remains there while
the hardware is performing some task.

The second experiments are mixed implementation of
Lempel-Ziv data compression algorithm. We have co-
designed this example in [2], but in this paper we per-
formed software synthesis algorithm to the software part.
We have compared three kind of implementation, all-
software solution, codesign which assumes mutual exclu-
sion between software and hardware execution, codesign
whose software part is restructured by our synthesis algo-
rithm.

A. Experimental CO-design Environment
We implemented our synthesis algorithm in the C++

programming language on a SUN Sparc workstation. Our
target architecture consists of an Intel 80486 processor and
a prototyping board. The prototyping board contains Xil-
inx FPGAs(one 4025 and one 4010) and some glue logic for
programming the FPGAs. Hardware components which
are synthesized and prototyped with an FPGA communi-
cate with software components via ISA Bus.

B. Example 1: Elliptical wave filter
For t,his experiment, we partitioned the filter design

such that the multiplication operation is performed by
hardware and the rest is performed by software. We in-
tentionally put a variable delay element which asserts the
completion signal to software after counting given FPGA
clock cycle into the hardware part so that we can gather
experiment.al dat,a for various situations. The multiplier
and the delay element were synthesized with an FPGA.

Fig.8 shows the experimental results. In this figure, TC
indicates the code generated by our algorithm and SLC in-
dicates the straight line code. Fig.8(a) compares the num-
ber of polling operations for various delay values. As the
hardware delay increases, there are more polling opera-
tions wasting more processor time. Fig.8(b) compares the
total execution time. As the hardware delay increases, TC
shows better performance than SLC. This improvement is
achieved by the execution overlap of software and hard-
ware.

Usually, as the hardware delay increases, TC has more
gain over SLC. This is because TC can execute more thread
while waiting for the completion signal from the hardware,
whereas SLC just polls the completion signal in an idle
state. In our example, however, the gain saturates be-
cause there are not many threads to be executed during
the hardware delay. We can have more gain for a larger
system.
C. Example 2: Lempel-Ziv data compression

In this experiment, we have partitioned the system in
such a way that the stream input data is handled by soft-
ware and the core compression operation is performed by

File1
File2

4 TC
I SLC

exclusion algorithm
1320 0.28 0.17 0.11
2293 0.44 0.27 0.17

2

8 1 5

8 1 I SLC

Ho 5

. TC

Fig. 8. E x p e r i m e n t a l resu l t s for a n ell iptical wave fi l ter .

TABLE I
COMPARISON OF EXECUTION TIME OF THREE IMPLEMENTATION

Execution time(sec)

our

hardware. The hardware components are synthesized with
FPGAs and the detailed description can be found in [2]

We have compared three kinds of implementation and
the results are shown in Table 1. By comparing the data
for the mutual exclusion strategy and our strategy, we can
see that about 30% speedup is obtained by our synthesis
algorithm.

VI. Conclusions and Future Works
In this paper, we presented a soft,ware synthesis tech-

nique which generates codes based on threads. Our
methodology tries to execute as many operations as possi-
ble before the completion of unbounded delay operations
of hardware or environment, thereby reducing the total
execution time. The software executions of operations
are scheduled efficiently through thread partitioning and
thread scheduling. It has been experimentally shown that
the total execution time can be effectively reduced. The
approach is more effect.ive for larger systems. We are cur-
rently experimenting with several embedded system exam-
ple.

We plan to extend our work to hardware-software code-
sign where a system is specified with mixed VHDL, C, and
Ptolemy.

References
[I] F. Thoen, M. Cornero, G. Goossens, and H. De Man, “Real-time

multi-tasking in software synthesis for information processing sys-
tems,” tn Proc. of 8th Int . Symposzum on System Synthesis, pp. 48-53,
1995.
K. Kim, Y . Kim, Y. Shin, and K. Choi, “An integrated hardware-
software cosimulation environment with automated interface genera-
tion,” in Proc. of 7th IEEE Int . Workshop on Rapid Systems Prototyp-
zng , pp. 66-71, June 1996.

[3] Rajesh K. Gnpta , Co-Synthesis of Hardware and Software fo. Dzgital
Embedded Systems, Ph.D. thesra, Stanford University, Dec. 1993.

[4] R. E m s t , J. Henkel, and T. Benner, “Hardware-software cosynthesis
for micro-controllers,” IEEE Design B Test of Computers, pp. 64-75,
Dec. 1993.

[SI Y. Shin and K. Choi, “Thread-based software synthesis for embedded
system design,” in Proc. of the European Desrgn # Test Conf . , pp. 282-
286, Mar. 1996

[6] 3 . Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: a
framework for simulating and prototyping heterogeneous systems,”
Int. J . of Computer Simulation, vol. 4, pp. 155-182, Apr. 1994.

[Z]

102

