
162 IETE TECHNICAL REVIEW | VOL 29 | ISSUE 2 | MAR-APR 2012

A MapReduce Framework for Mining Maximal
Contiguous Frequent Patterns in Large DNA

Sequence Datasets
Md. Rezaul Karim, Md. Azam Hossain, Md. Mamunur Rashid, Byeong-Soo Jeong and Ho-Jin Choi1

Department of Computer Engineering, Kyung Hee University, 1Department of Computer Science, Korea Advanced
Institute of Science and Technology (KAIST), Republic of Korea

Abstract

Current DNA sequence datasets have become extremely large, making it a great challenge for single‑
processor and main-memory-based computing systems to mine interesting patterns. Such limited hardware
resources make the performance of most Apriori‑like algorithms inefficient. However, recent implementation
of a MapReduce framework has overcome these limitations. Furthermore, mining with maximal contiguous
frequent patterns to express the function and structure of DNA sequences is a useful technique, capable
of capturing the common data characteristics among related sequences. In this paper, we proposed an
efficient approach for mining maximal contiguous frequent patterns in large DNA sequence data using
MapReduce framework which can handle a massive DNA sequence datasets with a large number of nodes
on a Hadoop platform. Our extensive experimental results show that the proposed approach can mine the
complete set of maximal contiguous frequent patterns very efficiently.

Keywords
DNA sequence datasets, Hadoop, MapReduce, Maximal contiguous frequent patterns.

From: Md. Rezaul Karim [mailto:asif_karim@khu.ac.kr]
Sent: Wednesday, April 11, 2012 7:52 PM
To: Proofs @ Medknow [HS]
Subject: Re: IETE TR Page proof of your article for recheck 346_11

Dear Sir,

The attached file('Proofs corrections.PDF') is the proof correction to my article. I would like to
change the title of my article to "A MapReduce Framework for Mining Maximal Contiguous
Frequent Patterns in Large DNA Sequence Datasets ".

1. Introduction

In living organisms, DNA does not usually exist as a
single molecule, but instead as a pair of molecules that
are held tightly together, so one of the most interesting
challenges is to discover sequences that are similar or
identical between different genomic locations or different
genomes.

Similar sequences may be present because they have
been conserved or selected during evolution due to some
mediating important biological functions. Because of
the size of the DNA sequence, data are very large, and
the character set is small; the short patterns are almost
frequent without exception. From them, biologists
assemble whole genome of species based on frequent
contiguous sequences.

How to efficiently discover long frequent patterns poses
a great challenge for existing sequential pattern mining
algorithms. The reason of the maximal contiguous
frequent pattern mining is that it is also the frequent
pattern, the boundary of frequent pattern set.

Therefore, in this paper we proposed a MapReduce and
Hadoop based technique for mining maximal contiguous
frequent patterns in a large DNA sequence dataset for

the first times ever. This paper is organized as follows.
Section II surveys related works. Section III represents
the problem regarding the maximal contiguous frequent
pattern mining. Section IV represents our proposed
MapReduce framework for mining maximal contiguous
frequent patterns and The MCFP algorithm. Section
V represents experimental results. And finally, we
conclude our paper at section VI.

In this paper, we used the term “sub-sequences” and
“patterns”; “database” and “datasets”; “concatenated”,
and “contiguous” interchangeably. And, we also used
the acronym PDB for Projected Database; BPs for Base
Pairs; CFP for Contiguous Frequent Patterns, and MCFP
for Maximal Contiguous Frequent Patterns.

2. Related Works and Background Study

Many researches have been done in the field of biological
sequence mining. The problem in finding the maximal
contiguous frequent pattern is of substantial importance to
bioinformatics and is widely examined in the literature [1-3].
Based on the idea of Apriori [4], a more efficient
algorithm called PrefixSpan [5] has been proposed in
recent years. Its general idea is to examine only the prefix
sub-sequences and project only their corresponding
postfix sub-sequences into PDBs. In each PDB, sequential

Karim MR, et al.: Mining Maximal Contiguous Frequent Patterns using MapReduce Framework

163IETE TECHNICAL REVIEW | VOL 29 | ISSUE 2 | MAR-APR 2012

sequences are grown by exploring local length-1
frequent sequences. Moreover, a main-memory-based
pseudo-projection technique was developed to save
the cost of projection when the PDB and its associated
pseudo-projection processing structure could be fit in
the main memory. However, when mining long frequent
concatenated sequences, this method is inefficient.
Therefore, it is impractical to apply PrefixSpan [5] to
mine long contiguous sub-sequences from biological
sequence datasets.

Pan et al. [6] first introduced the concept of the variable
length spanning tree method to mine maximal concatenated
frequent sub-sequences. They, proposed two algorithms
called MacosFSpan and MacosVSpan based on PrefixSpan
[5], that effectively reduces the recursive process. Although
the MacosVSpan algorithm is very efficient for mining long
concatenated frequent sub-sequences, the MacosFSpan
have some limitations making it unsuitable for mining long
contiguous frequent patterns; first, it constructs length-4
fixed length sub-sequence candidates; then, candidates of
length-5, length-6, etc. It is very time-consuming process.
Second, it did not consider about the size of PDBs and
reality is that the size of physical PDBs are very large
compared to the original datasets and in most of the cases,
these PDBs will not fit into the main memory. Third,
fixed length scanning method is very inefficient for large
sequence datasets, because of millions of BPs. Fourth
problem is that both MacosVSpan and MacosFSpan uses
in-memory pseudo PDBs using pointer-offset pairs only;
but only pointer-offset pair are not enough for processing
all the prefix and suffixes.

In literature [7], the authors claimed that their proposed
algorithm is more efficient than MacosVS algorithm;
but for mining long frequent concatenated sequence,
MacosVS algorithm is much more efficient than
MacosFSpan algorithm and basically literature [7] was
proposed based on [6] and needs multiple times database
scanning. Although this approach reduces the recursive
execution process for expanding sub-sequences, but
it also has the problem of creating and processing
with projected databases. Thus, this approach is also
inefficient to produce the result in a faster way.

Therefore, from the above surveys, it is clear that
the traditional contiguous frequent pattern mining
algorithms [5-7] usually takes a DNA sequence database
and generates candidate item sets using fixed length
spanning tree or suffix tree-based algorithm [1,2,8].
Surprisingly, all of the previous works [1,2,4-9] assumed
that the DNA sequence datasets, associated tree
structure, and all the associated projected databases
could be fit into the main memory, but many practical
DNA sequence database size is huge, sometimes 100 GBs.
So, certainly, these will not fit into the main memory.

On the other hand, parallel and partitioning approaches
in distributed environments also been introduced
to mine frequent patterns from sequence databases;
however, in distributed environments, communication
cost is huge because of many message passing,
data sharing, and I/O operations. These poses very
impractical to use distributed systems for mining
large datasets. That is why MapReduce [10-12] is
a very suitable framework to mine these sorts of
datasets, where it only needed to share and pass the
support of individual candidate item set rather passing
the candidate item set itself. Therefore, definitely
communication cost is very low compared to the
distributed environments.

2.1 MapReduce

MapReduce was developed within Google [9] as a
mechanism for processing large amounts of raw data,
for example, crawled documents or web request logs.
These data are so large; it must be distributed across
thousands of machines in order to be processed in a
reasonable time. This distribution implies parallel com-
puting since the same computations are performed on
each CPU, but with a different dataset. The user of the
MapReduce library expresses the computation as two
functions: Map and Reduce [10-12]. It merges together
these values to form a possibly smaller set of values.
Typically, just zero or one output value is produced per
reduce invocation. The intermediate values are supplied
to the user’s reduce function via iterator. This allows us
to handle lists of values that are too large to fit in the
main memory. MapReduce provides an abstraction that
involves the programmer defining a “mapper” and a
“reducer,” with the following signatures [12]:
• Map: (value 1, key1) → list (key2, value2)
• Reduce: (key2, list (value2) → list (value2).

2.2 Hadoop and the Hadoop Distributed File System

Hadoop is a popular open source implementation of
MapReduce, which is a powerful tool designed for
deep analysis and transformation of very large datasets
which is inspired by Google’s MapReduce and Google
File System [10]. It enables applications to work with
thousands of nodes and petabytes of data.

Hadoop uses a distributed file system called Hadoop
Distributed File System (HDFS) [13], which creates
multiple replicas of data blocks and distributes them
on computer nodes throughout a cluster to enable
reliability and has extremely rapid computations to
store data as well as the intermediate results [14].
The Hadoop runtime system coupled with HDFS
manages the details of parallelism and concurrency to
provide ease of parallel programming with reinforced
reliability. In a Hadoop cluster, a master node controls

Karim MR, et al.: Mining Maximal Contiguous Frequent Patterns using MapReduce Framework

164 IETE TECHNICAL REVIEW | VOL 29 | ISSUE 2 | MAR-APR 2012

a group of slave nodes on which the Map and Reduce
functions run in parallel.

3. Problem Statement

In this section, first we define the problem of maximal
contiguous frequent pattern mining and then present
some preliminary knowledge that will be used in our
algorithm.

Let ∑ = {A, C, G, T} be a set of DNA alphabets where
A, C, G, and T are called DNA characters or four bases;
A is for Adenine, C for Cytosine, G for Guanine, and T for
Thiamine. A DNA sequence S is an ordered list of DNA
alphabets. S is denoted by <s1, s2…sn> where si ∈ ∑ and
S denotes the length of sequence S. A sequence with
length n is called an n-sequence.

A DNA sequence database D is a set of tuples
<Sid, S> where Sid is a sequence identifier and S is the
corresponding sequence. A sequence α = <a1,a2,…,an>
is called contiguous sub-sequence of another sequence
β = <b1,b2,…,bm> and β is a contiguous super-sequence of
α, denoted as α ⊆	β, if there exists integers 1≤j1≤j2≤…
≤jn≤m and ji+1=ji+1 for 1≤I≤n-1, such that a1=bj1,
a2=bj2,…,an=bjn. We can also say that α is contained by
β. A contiguous frequent sub-sequence X is said to be
maximal if none of its super-sequence Y is frequent.

Given a DNA sequence database D and a minimum
support threshold δ, the problem of maximal contiguous
frequent sub-sequences mining is to find the complete
set of maximal contiguous frequent patterns from that
database.

For example, suppose minimum support threshold δ
is 2 for DNA sequence database in Table 1. Sequence
<ATCGTGACT> is 9-sequence since its length is 9.
Sequence <ATCG> is contiguous frequent sub-sequence
because it is contained by sequences ID 10, 20, and 30.
S=<CGTGATT> is a contiguous frequent sub-sequence
of length 7 since both sequence identifier 40 and 50
contains it. Moreover, it is one of the maximal contiguous
frequent sub-sequences because there is no contiguous
frequent super-sequence of <CGTGATT> with minimum
support 2.

4. The Proposed MapReduce Framework

4.1 Programming Model

Two important functional programming primitives in
MapReduce are Map and Reduce. The Map function is
applied on application-specific input data to generate
a list of intermediate <key, value> pairs. Then, the
Reduce function is applied to the set of intermediate
pairs with the same key. The master node assigns a task

to a slave node that has any empty task slot. Typically,
computing nodes and storage nodes in a Hadoop cluster
are identical from the hardware’s perspective [15].
Such a homogeneous configuration of Hadoop allows
the MapReduce framework to effectively schedule
computing tasks on an array of storage nodes where data
file are residing, leading to a high aggregate bandwidth
across the entire Hadoop cluster.

An input file passed to Map functions resides on the
HDFS on a cluster. After that, HDFS splits the input
file into even-sized fragments automatically, which are
distributed to a pool of slaves for further MapReduce
processing.

4.2 Proposed Framework

We know that DNA sequence datasets are usually very
large and the number of items is relatively smaller
than that of transactional databases. Since every item
(Nucleotide) is frequent, there is nothing to mean by
1-itemset; hence, we cannot use MapReduce framework
directly for mining these kind of datasets as we can
on transactional databases. Therefore, to deal with
DNA sequence datasets with MapReduce on Hadoop
platform, we need special care like handling big data.
DNA sequence datasets in disk files are splitted into
smaller segments automatically after they are stored on
HDFS. The Hadoop components perform job execution,
file staging, and workflow information storage and use
the files replace the database to store datasets [13,14].

So, after splitting the DNA datasets into smaller
segments, the master node assigns task to idle worker
nodes. Table 2 has shown the input/output schemes for
the proposed framework. After that, assigned worker
nodes scan the sequences in smaller data segments as
<ID, Sequence> pairs and produce <A>, <T>, <C>, and

Table 1: A DNA sequence database
Sid Sequence
10 ATCGTGACT
20 CATCGATTG
30 CATCGTGAGA
40 TCGTGATTG
50 GCGTGATTACT

60 AGTCGATTG

Table 2: Key/value for the proposed MapReduce framework
I/O Map-1 Map-2 Reduce-1 Reduce-2
Input:
Key/value
pairs

Key: Sid
Value: DNA
Sequence

Key: Serial
Value: Suffix

Key: CP
Value: Support

Key: CFP
Value: Support

Output:
Key/value
pairs

Key: Serial
Value: Suffix

Key: Support
Value: CP

Key: CFP;
Value: Support

Key: MCFP
Value: Support

Karim MR, et al.: Mining Maximal Contiguous Frequent Patterns using MapReduce Framework

165IETE TECHNICAL REVIEW | VOL 29 | ISSUE 2 | MAR-APR 2012

<G> suffixes with serial number (i.e., suffixes starting
with four nucleotide A, T, C, and G) as <serial, suffix>
pairs. This phase is considered as map phase 1. For
example, for a DNA sequence CTGACT, a worker
produces five contiguous suffixes with prefix <A>,
<T>, <C>, and <G> as: ACT, TGACT, CTGACT, CT,
and GACT and will be written in the local disk using
serial number as <serial, suffix> pairs. These values are
inputted to the map phase 2. For our ease, we designed
the map function such that it takes input as <serial,
suffix> pairs and perform prefix matching among <A>
suffixes, then <T> suffixes, <C> suffixes, and finally
<G> suffixes. For example, if we perform the prefix
matching for <A> suffixes, then suffix ATTG will match
up to ATTG of suffix ATTGCT; so, the map function
will produce three new candidate contiguous suffixes as
<ATTG, 2> and <ATTGCT,1> pairs, since the support of
ATTG will be 2. After having all the required suffixes, the
map function executes on these suffix sequences again
and generates contiguous candidate suffixes and written
as <candi_pattern, support> pairs. This is the end of
map phase 2. These <candi_pattern, support> pairs will
be treated as intermediate values, where candi_pattern
indicates a contiguous candidate suffix.

The reduce function adds up all the intermediate values
and produce a support for candidate contiguous suffixes
as a one-time synchronization by adding local supports.
In the reduce phase, each worker needs extra work for
finding maximal contiguous frequent patterns and it
is treated as second reduce phase. After having all the
contiguous frequent patterns by sharing supports of

Figure 2: Proposed MapReduce framework for mining maximal contiguous frequent patterns.

Figure 1: MCFP algorithm on Hadoop using MapReduce.

MCFP Algorithm on Hadoop MapReduce

Input: A DNA sequence database on HDFS and a minimum support
threshold	δ
Output: The complete set of maximal contiguous frequent patterns
Map Phase: Assigned worker nodes scan the splitted segments and
maps the output as <candi_pattern, support> pairs
Map Phase-1:
	1.		Generate	<A>,	<T>,	<C>,	and	<G>	suffixes	and	write		the	

invoked	values	on	the	local	disk	as	<serial,	suffix>	pairs
Map Phase-2:
	2.		Worker	nodes	take	input	as	<serial,	suffix>	pairs	and	maps	these	

values as <candi_pattern, support> pairs.
	3.	Write	the	<candi_pattern,	support>	pairs	on	the	local	disks
Reduce Phase:	Assigned	worker	nodes	find	the	complete	set	of	
MCFPs as <max_pattern, support> pairs
Reduce Phase-1:
	1.		Worker	nodes	take	input	as	<candi_pattern,	support>		pairs	and	

share	the	support	of	each	candidate	suffix		with	other	workers	
and	find	the	set	of	CFP	as		<freq_pattern,	support>pairs

Reduce Phase-2:
 2. Output from the Reduce phase-1 is inputted to idle worker

nodes to check the maximality criteria and write these MCFPs as
<max_pattern,	support>	pairs	in	the	output	files

different worker nodes as <freq_pattern, support> pairs,
each worker just checks the maximality criteria among
the contiguous frequent patterns and writes maximal
contiguous frequent patterns on the output files as
<max_pattern, support> pairs.

Actually, in map phase and reduce phase, this algorithm’s
advantage is that it does not exchange data between
data nodes, it only exchanges the supports. Figure 1
describes the algorithm of our proposed approach and
Figure 2 shows the data flow and the phases of the

Segment 1

Segment 2

Segment 3

Segment …

Segment n

Worker

Worker

MCFS
algorithm

Worker

Master

Disk

Disk

Worker

Worker

Worker Output
fileDB

Map-1:
Contiguous

suffix
sequences

Map-2:
Contiguous
candidate
patterns

Reduce-1:
Contiguous

frequent
patterns

Reduce-2:
Maximal

contiguous
frequent patterns

Sorting
&

shuffle

Karim MR, et al.: Mining Maximal Contiguous Frequent Patterns using MapReduce Framework

166 IETE TECHNICAL REVIEW | VOL 29 | ISSUE 2 | MAR-APR 2012

Table 3: Output suffixes from worker 1 in map phase-I
Serial Suffixes
1-10 ATCGTGACT, ACT, ATCGATTG, ATTG,

ATCGTGAGA, AGA, ATTACT, AGTCGATTG
11-17 TCGTGACT, TGACT, TCGATTG, TTG, TG,

TCGTGAGA, TGAGA
18-23 CGTCACT, CT, CATCGATTG, CGATTG,

CATCGTGAGA, CGTGAGA

24-29 GTGACT, GACT, GATTG, GTGAGA, GAGA, GA

Table 4: Output suffixes from worker 2 in map phase-I
Serial Suffixes
1-5 ATTG, ATTACT, ACT, AGTCGATTG, ATTG
6-15 TCGTGATTG, TGATTG, TTG,TG, TGATTACT,

TTACT, TACT, TCGATTG, TTG, TG
16-19 CGTGATTG, CGTGATTACT, CT, CGATTG

20-23 GTGATTG, GATTG, GCGTGATTACT, GATTACT

Table 5: Intermediate values – From worker 3 in map phase-II
Candi_pattern Support Candi_pattern Support
ACT 1 CT 1
ATCG 3 CGATTG 1
ATTG 1 CGT 2
ATCGTGA 2 CGTCACT 1
ATCGTGAGA 1 CGTGAGA 1
AGA 1 CATCG 2
ATCGTGACT 1 CATCGATTG 1
ATCGATTG 1 CATCGTGAGA 1
TTG 1 GACT 1
TGA 2 GATTG 1
TGACT 1 GAGA 1
TGAGA 1 GTGA 2
TCGTGA 2 GTGACT 1
TCGTGACT 1 GTGAGA 1
TCGTGAGA 1 GA 3

TCGATTG 1 GTG 2

Table 6: Intermediate values – From worker 4 in map phase-II
Candi_pattern Support Candi_pattern Support
ACT 1 CT 1
ATTG 2 CG 3
ATTACT 1 CGATTG 1
AGTCGATTG 1 CGTGATT 2
ATT 2 CGTGATTG 1
TTG 2 CGTGATTACT 1
TTACT 1 GATT 2
TGATTG 1 GATTG 2
TGATT 2 GATTACT 1
TGATTACT 1 GT 2
TCG 2 GTGATTG 1
TCGTGATTG 1 GTCGATTG 1

TCGATTG 1 GCGTGATTACT 1

Table 7: Frequent pattern – Temporary output from worker
5 in reduce phase-I
Freq_pattern Support Freq_pattern Support
AT 3 CG 6
ATCG 3 CGT 4
AG 2 CT 2
ACT 2 CATCG 2
ATCGTGA 2 CGTGATT 2
ATTG 3 CGATTG 2
TTG 3 GA 5
TGA 2 GTGA 2
TCG 6 GATT 2

TCGATTG 2 GATTG 3

MapReduce framework for mining maximal contiguous
frequent patterns. Multiple iterations of MapReduce
computations are necessary for the overall computation.
The iteration continues until there are not any maximal
frequent item sets further found.

4.3 Step-by-step Example

4.3.1 Map Phase

i. Suppose the minimum support threshold is 2 and
the DNA sequence database are in Table 1 has been
splitted into two segments with each three sequences;
sequence 10, 20, and 30 in first segment and sequence
40, 50, and 60 are in the second segment. Let, worker
nodes 1, 2, 3, 4, 5 and 6 are idle and the master node
assigned segment 01 to 1st worker and segment 02
to 2nd worker. Tables 3 and 4 have shown the suffix
sequences with serial number using a notation like

1-5 instead of 1, 2, 3, 4, and 5; for the page limitations.
These <serial, suffix> pairs are stored on the local disk
of worker 1 and 2. These values will be used as input
to the map function in map phase 2

ii. Now, in Map phase-2, <serial, suffix> pairs are input-
ted to the mapping function. Then, the map function
runs the prefix matching among the related suffixes
and produce results as <candi_pattern, support>
pairs. Tables 5 and 6 have shown the <candi_pattern,
support> pairs from two workers.

4.3.2 Reduce Phase

i. In Reduce phase-1, the master node assigns reduce
task to idle worker nodes. Each worker node takes
input as <candi_pattern, support> pairs and shares
the support of contiguous candidate suffix sequences
and combines the output after that emits the results as
<freq_pattern, support> pairs and writes the output
pairs in the local disks. Table 7 has shown the contigu-
ous frequent patterns with corresponding supports
as <freq_pattern, support> pairs; usually, it takes
relatively less space since the number of contiguous
frequent patterns set is small

ii. In reduce phase 2, worker 6 checks for the maximality
criteria among the <freq_pattern, support > pairs and

Karim MR, et al.: Mining Maximal Contiguous Frequent Patterns using MapReduce Framework

167IETE TECHNICAL REVIEW | VOL 29 | ISSUE 2 | MAR-APR 2012

therefore, writes the complete set of maximal con-
tiguous frequent patterns in the output files. Table 8
has shown the maximal contiguous frequent patterns
with corresponding supports as <max_pattern, sup-
port> pairs. Finally, we have six maximal contiguous
frequent patterns, they are as follows: ACT, AG,
ATCGTGA, TGATTG, CATCG, and CGTGATT.

5. Experimental Results

We used Hadoop version 0.20.0, running on a cluster
with 6 machines (1 master, 5 workers). Master node
has 3.7 GHz Intel Core 2 Duo processor with 4 GB of
RAM and each worker machine has a processor with
2.60 GHz and 2 GB RAM. All programs were written
in Java using MapReduce library functions and for this
we configured the HDFS on Ubuntu-11.04. We applied
our MapReduce framework on Human genome (Homo
Sapiens GRCh37.64 DNA Chromosome Part 1) and
Bacteria DNA sequence datasets downloaded from the
NCBI website. The Human genome database contains
112 000 sequences; average length is 60; on the other
hand, the Bacteria dataset consists of 20 000 sequences
with average length of 1040 bp. Datasets were splited
across 3 and 5 worker nodes for the first and second
experiment respectively; and the load balancing was
adopted from the literature [15].

We did not compare our results with any existing
contiguous frequent pattern mining algorithm, since
all of the previous works were implemented on main
memory-based single processor machine. Figure 3 shows
the running time of MCFP algorithm on Bacteria dataset
and Figure 4 shows the running time of MCFP algorithm
on Human genome dataset and from the graph, it is clear
that our MapReduce is fast as well as scalable scalable in
terms of increasing loads. We speed up the framework by
adding more worker nodes. Figure 5 shows the running
time after speeds up the framework by increasing worker
nodes from 3 to 5.

6. Conclusion

In this paper, we have proposed an efficient approach
for mining maximal contiguous frequent patterns using
MapReduce on Hadoop. Our performance study shows
that our MCFP algorithm can find the complete set of
maximal contiguous frequent patterns very efficiently.
The results also indicate the correctness and scalability
in terms of increasing load. Since, mutations are essential
to evolution; a mutation is a change in DNA. Hence,
organism's DNA affects how it looks, how it behaves,
and its physiology so, a change in an organism's DNA
can cause changes in all aspects of its life. Therefore, in
future our target is to extend this work by including gaps
and execute it on real biological datasets.

Figure 3: Runtime with the change of minimum support
(bacteria dataset).

Figure 4: Runtime with change of minimum support (human
genome).

Figure 5: Speed up by increasing worker nodes (on human
genome dataset with 5 worker nodes).

0

50

100

150

200

R
un

 ti
m

e(
S)

Minimum support
144 6 8 10 12

Table 8: Maximal contiguous frequent patterns – From
worker 6 in reduce phase-II
Max_pattern Support
ACT 2
AG 2
ATCGTGA 2
TCGATTG 2
CATCG 2

CGTGATT 2

Karim MR, et al.: Mining Maximal Contiguous Frequent Patterns using MapReduce Framework

168 IETE TECHNICAL REVIEW | VOL 29 | ISSUE 2 | MAR-APR 2012

AUTHORS
Md. Rezaul Karim received the BS degree from the
Dept. of Computer Science and Engineering, University
of Dhaka, Bangladesh, in 2009. Currently, he is an MS
degree candidate at the Dept. of Computer Engineering,
Kyung Hee University, Korea. His research interest
includes data mining, ubiquitous data management,
and bioinformatics.

E-mail: asif_karim@khu.ac.kr

Md. Azam Hossain received the BS degree from the
Dept. of Computer Science and Engineering, University
of Dhaka, Bangladesh, in 2008. Currently, he is an MS
degree candidate at the Dept. of Computer Engineering,
Kyung Hee University, Korea. His research interest
includes knowledge discovery, data mining, and
database systems.

E-mail: azam@khu.ac.kr

Md. Mamunur Rashid received the BS degree from the
Dept. of Electronics and Communication Engineering,
Khulna University of Engineering and Technology,
Bangladesh, in 2007. Currently, he is an MS degree candidate
at the Dept. of Computer Engineering, Kyung Hee University,
Korea. His research interest includes data mining,
computation biology, molecular biology, and Bioinformatics.

E-mail: mamun@khu.ac.kr

DOI: 10.4103/0256-4602.95388; Paper No. TR 346_11; Copyright © 2012 by the IETE

Byeong-Soo Jeong received the BS degree in Computer
Engineering from Seoul National University, Korea, in
1983. He received MS degree in Computer Science from
the Korea Advanced Institute of Science and Technology
in 1985, and the PhD in Computer Science from the
Georgia Institute of Technology, Atlanta, in 1995. From
1996, he is a professor at the Department of Computer
Engineering, Kyung Hee University, Korea. From 1985

to 1989, he was on the research staff at Data Communications Corporation,
Korea. From 2003 to 2004, he was a visiting scholar at the Georgia Institute
of Technology, Atlanta. His research interests include database systems, data
mining, and mobile computing.

E-mail: jeong@khu.ac.kr

Ho-Jin Choi received the BS degree in Computer
Engineering from Seoul National University, Korea,
in 1985. He received MS in Computing Software and
Systems Design from Newcastle University, UK and
the PhD in Artificial Intelligence from Imperial
College, London, in 1995. Between 1995 and 1996,
he was a post-doctoral researcher at IC-PARC,
Imperial College, London. From 1997 to 2002, he

worked as an assistant professor of Computer Engineering at Korea
Aerospace University. Currently, he is an associate professor at the Dept.
of Computer Science at KAIST, Korea. His research interests include
artificial intelligence, data mining, software engineering, and biomedical
informatics.

E-mail: hojinc@kaist.ac.

7. Acknowledgement

This work was supported by the National Research Founda-
tion (NRF) grant (No. 2011-0018264) of Ministry of Education,
Science and Technology (MEST) of Korea.

References

1. D. Hirschberg, “Algorithms for the longest common subsequence
problem” (JACM, 1977).

2. S. Tata, R.A. Hankins, and J.M. Patel “Practical Suffix Tree
Construction” 30th VLDB International Conference, Toronto, Canada,
2004.

3. H. Huo, and V. Stojkovic “A Suffix Tree Construction Algorithm for
DNA Sequences”, IEEE International. Conference, 2007.

4. R. Agrawal, and R. Srikant “Fast algorithms for mining association
rules”, 20th International Conference on VLDB, Santiago, 1994.

5. J. Pei, J. Han, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.C.Hsu
“PrefixSpan: Mining sequential sequences efficiently by prefix-
projected pattern growth”, In proc. of the IEEE International
Conference on Data Engineering, Germany, 2001.

6. J. Pan, P. Wang, W. Wang, B. Shi, and G. Yang, "Efficient
Algorithms for Mining Maximal Frequent Concatenate Sequences
in Biological Datasets" In proceedings of the 5th International
Conference on Computer and Information Technology(CIT,2005),
Shanghai, China, vol. 1. pp. 98-104, Sept. 2005.

7. T.H. Kang, J.S. Yoo, and H.Y. Kim, “Mining Frequent Contiguous
Sequence in Biological Sequences”, In Proc. of the 7th IEEE
International Conference on Bioinformatics and Bioeng, 2007.

8. R. Chvatal, and D. Sankoff, “Longest Common Subsequences of
two random Sequences” Journal of Applied Probability, Vol. 12,
No. 2, pp. 306-315, Jun. 1975.

9. Available from: http://www.google.com/ [Last cited on 2011 Oct 15].
10. J. Dean, and S. Ghemawat, “MapReduce: Simplified data

processing on large clusters”, ACM, Jan. 2008
11. B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo, “PLANET:

Massively Parallel Learning of Tree Ensembles with MapReduce”,
Journal of the Proceedings of VLDB (PVLDB), Vol. 2, No. 2, pp.
1426-1437, Sep. 2009.

12. T. Elsayed, J. Lin, and D.W. Oard, “Pairwise Document Similarity
in Large Collections with MapReduce,” In Proceedings of the 32nd
International ACM Conference on Research and Development
Ret, 2009.

13. Available from: http://hadoop.apache.org/hdfs/ [Last cited on
2011 Oct 15].

14. J. Ekanayake, S. Pallickara, and G. Fox, “MapReduce for data
intensive scientific analyses”, In proceedings of the 4th IEEE
International Conference on e-Science, pp.277-284, Indianapolis,
USA, 7-12 Dec, 2008.

15. J. Xie, A. Manzanares, and X. Qin, “Improving MapReduce
Performance through Data Placement in Heterogeneous
Hadoop Clusters” IEEE Intl. Symposium on PDPW and PhD
Forum, 2010.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

