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Application of Kalman Gain for Minimum
Mean-Squared Phase-Error Bound
in Bang-Bang CDRs

Joon-Yeong Lee and Hyeon-Min Bae, Member, IEEE

Abstract—This paper presents the minimum bound of the mean-
squared phase-error of a bang-bang (BB) clock-and-data recovery
(CDR) circuit under the condition of random phase tracking. An
analogy between the Kalman filter and a linearized BB CDR is uti-
lized for the derivation. The effects of demultiplexing, loop latency,
and granular jitter are considered in the analysis to reflect reality.
The validity of the theoretical analysis is supported by behavioral
time domain simulation results.

Index Terms—Bang-Bang PLL, Kalman filter, Markov process.

I. INTRODUCTION

NALOG domain CDRs implemented in nanometer

CMOS technologies suffer from low voltage headroom,
low output impedance of transistors, and large process varia-
tions [1]. Digital domain BB CDRs are being employed in serial
links to overcome such challenges. Since the transfer function
of a BB phase detector is nonlinear, the selection of design
parameters and performance estimation have been performed
empirically, based on behavioral time domain simulation results
[2].

In this paper, we present the analytical minimum bounds
of the mean squared phase error of a bang-bang (BB)
clock-and-data recovery (CDR) circuit under the condition
of random phase tracking. The analogy between the Kalman
filter and a BB CDR is utilized for the derivation. The Kalman
filter is a well-known optimal solution in tracking problems
and the application of the Kalman filter to a PLL requires the
acceptance of two assumptions: (i) the system is linear and
(ii) the posterior mean squared error (MSE), defined as the
phase difference between the desired and the output clock, at
every time step is parameterized by the current MSE and the
means and covariances of the non-accumulative period and
accumulation jitter [3], [4]. The statistical quantities of such
jitter can be estimated from the input signal with adaptive
filtering techniques [5], [6]. The relationship between a linear
PLL and the Kalman filter was initially discovered in [7], [8].
We have extended the previous works and applied the Kalman
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filter to a nonlinear BB CDR by linearizing the BBPD with
the Markov chain method proposed in [9]. The optimal phase
tracking performance of a BB CDR under various nonidealities,
including loop latency and granular jitter, is estimated. The
MSE is used to quantify the tracking performance of the BB
CDR throughout the paper.

A phase rotator-based BB CDR was chosen for the analysis
instead of a VCO-based counterpart since the phase rotator is
digital-friendly and generally preferred in high speed parallel
CDR designs [10]-[12]. Typically a phase rotator-based BB
CDR has a first order loop because a frequency lock is achieved
by a separate closed loop system as shown in Fig. 1. However,
the proposed analysis can also be applied to any VCO-based
type-2 designs because the second order loop is often over-
damped, and hence behaves very similarly to a first-order loop
[13].

Section II describes the linearization procedure and the esti-
mated MSEs of a BB CDR with and without demultiplexing.
Then, Section II-C presents the Kalman gain of a BB CDR and
demonstrates the resulting minimum MSE bound. Section III
offers in-depth analysis on the impact of implementation non-
idealities such as control latency and the finite precision of the
phase rotator to the minimum MSE bound. Finally, Section IV
summarizes the discussion.

II. BB CDR AND THE KALMAN FILTER

Fig. 1 shows the Z-domain block diagram of a conventional
rotator-based BB CDR. A clock generator provides frequency
locked clocks to a digitally controlled phase rotator. Our anal-
ysis is restricted to the phase rotator loop shown in the shaded
area. The CDR model consists of a BBPD, a loop filter with the
gain and delay of # and D, respectively, and a digitally con-
trolled phase rotator. The gain of a phase rotator 8, is related
to its resolution, as given by

U1

92 Rotator Resolution :

61)7‘ =

)

The input jitter of a CDR can be modeled as the sum of
the accumulation and non-accumulative period jitter. The non-
accumulative period jitter does not accumulate over time and
has bounded variance in general. Data-dependent deterministic
jitter is a subset of the non-accumulative jitter. The accumu-
lation jitter, on the contrary, is unbounded in nature and in-
creases indefinitely with time, thus a CDR has to track it for
bit-error-free operation [7], [14], [15].
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Fig. 1. Z-domain block diagram of a typical rotator-based BB CDR with a clock generator.
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Fig. 2. Discrete time model of input jitter.

Fig. 2 shows the discrete time jitter model of a BB CDR.
®4.» and IV,, denote the accumulation and non-accumulative pe-
riod jitter, respectively, at time index n. The accumulation jitter
is modeled by a discrete time random walk process. By using
the Z-transform, the power spectral density of the accumulation
jitter is given by

E[W?
(1—2"1)(1 = 2)lz=ei277/fData

E[W?

4sin?( =)

fpata

S(f) =

2)

where E[W?] is the variance of random period jitter W, and
fData 1s the data rate. By taking the bilinear transformation of
(2) for simplicity, we get

E[w?
sty < EI

fr
fData
()

fpata

)?)

)

Note that S(f) decreases by —20 dB/decade as frequency
increases.

A jitter tolerance mask provides the information on the accu-
mulation and random non-accumulative period jitter of a serial
link. Fig. 3 shows a typical jitter tolerance mask [16]-[18]. The
accumulation jitter dominates at low frequencies and decreases
by —20 dB/decade as frequency increases. In a SONET jitter
tolerance mask, the magnitude of random non-accumulative pe-
riod jitter intersects with the accumulation jitter at 1/2500th of
the data rate [16].

The magnitude of S(f) can be estimated with the jitter tol-
erance mask since it represents the maximum permissible jitter
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Fig. 3. Typical shape of jitter tolerance mask.

present in a communication link. Even if the practical jitter in a
link is hardly composed of sinusoids, the jitter tolerance specifi-
cation is defined with sinusoids for testing purposes. In practice,
the jitter in serial links carrying real traffic is more like random
noise [16].

Appropriate values for oy and o can be estimated by
matching the variances of the modeled jitter in Fig. 2 with
that of a sinusoid defined in the jitter tolerance mask. Let the
magnitude of the jitter tolerance mask be J(f), and W and
N are white Gaussian processes. |S(f)| should then satisfy
S(f)] = |J(f)|?/8. For a SONET jitter mask, oy3- and o are
(0.67/v2) x 107*U I, and 0.053U I,.,,., respectively, and
note that oy > ow .

A. Phase Domain MSE of a BB CDR

Fig. 4 shows the phase-domain discrete-time block diagram
of a linearized BB CDR including input jitter. A nonlinear
BBPD is linearized by using a Markov chain analogy in phase
lock [9]. The linearized BBPD consists of linear gain Ky
with quantization noise ¢pppq. The equivalent gain Kppyq is
given by

1
V2rog

1+ 6—(1/2)(/361”‘/0._])2] w

Kbbpd =
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Fig. 4. Phase-domain discrete-time model of a linearized BB CDR and input jitter.

where o 7 is the standard deviation of the relative input Gaussian

jitter 5 = @iy — Pour. According to [19], ¢pspa can be modeled

by a white random process uncorrelated with ¢y if o7 > 56,

The standard deviation of ¢pppq is approximately 0.750 ;. In

case o5 < 0.5(30,,, the dynamics of a BB CDR are merely

nonlinear, and hence, this case is not considered in this paper.
Let the n-th prediction error, ¢,,, be

(&)

where ¢4 ,, and ¢,.+,,, are the n-th desired and the output clock
phases, respectively. If we neglect computational latency D, for
simplicity, the n + 1-th prediction error, e,,41, is recursively
given by

Cn = ¢d,n - (ybout,n

En+1 = (,ZSrl,n-‘,-l - ¢ou,t,n+1
= (1 - Kbbpdﬂap'r’)en + Wy,

- Kbbpdﬂ()p'r(Nn + (bbbpd,'rL)' (6)

The MSE of the n 4+ 1-th prediction error is
Elep 1] = (1 = Kyppafipr)* Eleq] + W]

Q

K alP02, (EINZ] + < 0%)
where E[¢7,,4.,] & 907/16 under phase lock [19]. Provided
that the CDR bandwidth is sufficiently large to track the accu-
mulation jitter, 0% is approximately E[W?]+ E[N2]. By setting
EleZ ] = E[e%] = E[eZ,], the steady state MSE is given by
(L4 5§ Kihpa 305 ) EIW |+ 35K ih,a 8207, EIN?]
2K yipa B0pr — K3y, 0202,

(®)
E[W?] and E[N?] E[N?]. In
case E[W? = 0, by using (4), (8) is simplified to
El[e2)] =~ 25/(16v27)8,,.80y, which coincides with the
previous result presented in [19].

Fig. 5 shows the analytical and simulated MSEs of a BB CDR
with oy = (0.6#/\/5) X 107U 1, . The gain of the loop
filter is set 5 = 1. The behavioral simulation results validate
the theoretical analysis in the meaningful o range.

(M

B2, =

where E[W?2] =

B. MSE Under Demultiplexed Phase Update

High-speed digital domain CDRs typically make parallel de-
multiplexed subrate phase updates due to timing constraints of
digital logic blocks. Fig. 6 shows the linearized discrete time
block diagram of a 1 : M demultiplexed BBPD. A demulti-
plexer is modeled by parallel BBPDs with a subsequent sum-
mation block.
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Fig. 5. Output MSE of the single BB CDR with oy = (0.67/v2) x
107U s

Parallel BBPD

-M~M

Fig. 6. Linearized discrete-time block diagram of a 1 : A demultiplexed par-
allel BBPD.

Let e, n, be the n-th prediction error of the 712-th channel in
the set of parallel BBPDs as given by €, m = @d,n.m — Pout,n,m-
The time and channel indexes satisfy —oc < n < oo and
0 < m < M, respectively, where M is the level of paral-
lelization. The linearized gain of the m-th BBPD, Kyppd,m, is

2m(mo¥, + 0%), since the random jitter W is accumu-
lated for m cycles. In the case of oy < oy, this linearized
gain becomes insensitive to the channel index #»: and can be ap-
proximated as Kyppi m = 2/(V2roN) = Kippa.
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A recursive equation for the n 4 1-th prediction error of the
first channel, ¢,,41.1, is given by

M
(Mena+ Y (M 41— k)W, 1
k=2

Cn+1,1 = Cn, M + W/n,l -

M
+ Z( ok + Gvopd.n k) Koopd $0pr. (9)

k=1

en,m 1s related to e, 1 by

Tr

=€n, + § anl,k
k=2

(10)

€n,m

since the phase updates occur every M -th input signal. By sub-
stituting (10) into (9), we get
M
E€nt+1,1 = €n,1 + Z anl,k + Wn,l

k=2
M

— (Mepg+ Y (M+1-E)W, 14

k=2
M
+ Z(Nn,k« + Povpd,nk ) ) Koppa 80pr. (1)
k=1
The MSE of the first channel is given by
E[Gyzy,+171] =(1- iMKbbpdﬁHpr)2E[e12z,1]
M-1
+ Z 1- ]w* k)Kbbpdﬁgpr) E[ n—1 k+1]
k=1
9 M(M+1)(2M +1)
2 ) K02, B
-+ E[sz] + M/BZKbbdeprE[]\Tz] (12)
where E[(Z;}d’:l Povpdn k)] = (9/16) M ( ox + K ofy)

under phase lock [19]. By defining the MSE atn + 1-th clock
cycle as the average MSE among M parallel channels, we get

M
> E[82+1 i)
. - T . M-1 .
Bl ) = S = B[]+ S B,
(13)
By substituting (12) into (13), we get
Elep 1] = (1 = MKypafi,,)  Ele}]
9 MM+ 1)(2M+1)
M+ (=
+ (M (16 6
MM -1)(M+1), . . .
R AL
+ Mﬂ Khbpda [7\]2] (14)
where E[VV2 1. ,\] E[Wf’k] = E[W?] and E[N? o 1k] =

E[N? ] = E[N?]. The steady state MSE is given by
Bl ] ME[W?] +Mﬁ2KEbpd 021

T OM Ky — MPK3, 0702,

(15)
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Fig. 7. Output MSE of the demuxed BB CDR versus A, with oy =
(0.67/v/2) x 107U 1,,... andon = 0.138U1,,....

where 7 = AE[W?2] + (25/16)E[N2] and A = (9/16)((M +
1(2M +1)/6) — (M — 1)(M + 1)/6).

Fig. 7 shows the simulation result of the MSE with re-
spect to M when oy = (0.67/v/2) x 10 *U1,,,, and
0.158U1,,,s. The MSE increases in proportion to
M since the phase update latency degrades the tracking
performance.

ON =

C. Minimum MSE Bound With Kalman Gain

The Kalman filter is a discrete time minimum MSE estimator
that finds the optimum Kalman gain by minimizing the poste-
rior MSE recursively. The tracking error in a BB CDR can be
minimized by incorporating the Kalman filter algorithm in se-
lecting the optimum forward gain 8. The optimum Kalman gain
achieves the optimum balance between tracking the accumula-
tion jitter and filtering the non-accumulative period jitter.

Let B, be 8 at time index n. By taking the derivative of
EleZ 4] in (14) with respect to B,,, we get

dE[e2
% = Z2(1 — MKuppiBubyr )M Kppilyr E[e2]
(2 M(M +1)(2M +1)
16 3
M(M —1)(M +1)
N 3 VB K}y 02, E[W?)
25 s
+ g‘MB”KbbpdeprE[N ] (16)

Optimum Kalman gain B,, satisfying dE[eZ_,]/dB,, = 0 is

1 Ele?

n = . 17
Kopalyr MEZ] + AEW2] + BENG )

B, =

By substituting (17) into (14) for simplicity, we get

E[€121+1] (1

Equation (17) and (18) yield the recursive procedure that con-

— M B, Kypafpr)E[2] + MEW?2].  (18)

stitutes the Kalman filtering algorithm. The steady state MSE is

_ ME[W? + /M2EW?]2 + 4y E[W?]
- 2

Ele3.) (19)
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Fig. 8. Analytical and simulated MSEs of a 1:8 demultiplexed BB CDR under
various gains with oy = (0.67/v/2) x 107407 I,.,,,.,and D = 0.

where E[W?] = E[W?] and F[N?2] = E[N?]. Equation (19)
indicates the minimum MSE bound of a BB CDR.

Fig. 8 shows the analytical and simulated MSEs of a 1:8 de-
multiplexed BB CDR with Kalman gain. The theoretical and
simulated results show close agreement, and the MSEs are min-
imized when the Kalman gains are applied.

III. MSE UNDER IMPLEMENTATION NONIDEALITIES

In the previous section, implementation nonidealities such
as latency in the loop filter and quantization noise from the
phase rotator are neglected for simplicity in the analysis. Con-
trol latency, however, degrades the tracking performance of a
CDR by decreasing the closed loop phase margin [20]. Digitally
controlled phase rotators have limited resolution for the output
phase. Reduced resolution relaxes the complexity of a rotator
[10]-[12] while degrading the jitter performance of a CDR [21].

A. Latency in the Loop Filter

In case delay in the loop filter IJ is nonzero, (11) is modified
as

M
€n+1,1 = €nl + Z anl,k: + VVn,l
k=2
M
—(Me,—p1+ Z(M +1-kKW,_p_1x
k=2

+ Z(]\rnvak + (/)bbp(],,'nfD,k:))KbbdenepT' (20)

According to [20], Kpypg can be approximated as Kpppg
2q0/(V27ay) if 05 < Bn/Kpypd, where qo is 1/2, 1/3, and
1/5 for D = 0, 1 and 2, respectively. However, in the case
of o5 > DB, /Kppa, which is the main focus of this paper,
Kypa = 2/(v/2701) and is independent of the loop delay.

In order to calculate the MSE under nonzero loop delay, the
correlation between e, ; and e,_p 1 should be considered.
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Fig. 9. Simulated autocorrelation of €, ., wWithon = 0.138U [ 5.

Fig. 9 shows the simulated autocorrelation of ¢, ,, for various
levels of parallelization, loop delays, and input accumulation
jitters when gain B,,, defined in (17), is used. The autocorrela-
tion R, (k) is given by Elerr(Mn+m)err(Mn+m+E)),
where err(Mn+m) = €n,m. It clearly demonstrates that e,, p,
can be approximated as a white process except in the vicinity
of the origin. Small Ele, 1€, -p 1] makes B, remain close to
the optimum value under nonzero loop delay.

Close examination of Fig. 9 reveals that the slope of the auto-
correlation near the origin is close to £[W?], irrespective of D
and M. By using this observation result, the expectation value
of ep 1€,—p,1 can be approximated as

Elenaen-pal = Elel ] — MDE[W]]. ©3))

By using (21), E[(en.1 — M BpoKpppaOpren—p.1)?] becomes

E[(fin:l — AMBDnKbbpdgprenfD,l)2]
=(1- MBDnKbbpdgpr)2E[€'3L,1]

+ ZMQDBDn,KbbpdngE[Ws]' (22)

From (20) and (22), the recursive MSE equation with nonzero
Dis

Ele} 1] = (1 = MKypaBpn by ) Elel]
9 M(M+1)(2M + 1)

M+ (=
+(M+ (16 6
MM —1)(M +1)
- 6 )B%n,KbedeIQ)T)E[WQ]
25 ‘
+ E]\/[BZDILKI?bprIe}QNE[NZ]
+ 2M?*DBp, Kippabpr E[W?] (23)
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Fig. 10. Analytical and simulated MSEs of a 1:8 demultiplexed BB CDR with
Kalman gain with oy = 47 x 107*UL,.,,,, D = 2.

where B p,, denotes the Kalman gain with loop delay. By taking
a similar approach to (16), Kalman gain Bp,, is

1 B3] - MDE[W?]
Eripabyr ME[E3] + \E[W2] + ZENZ]

Bp, = (24)

The Kalman gain under control latency is smaller than (17),
because only low frequency prediction error is valid. By the
way, in most cases, the tracking error satisfies E[e2] > E[W?]
in the locked condition, than Bp,, = B, . By substituting (24)
into (23), we get

E[ n—l—l] (1 - MBD?IKbbpdepr) [ ]

(]\4 + MQDBDnKbbpdep'r)E[WS] (25)

and the steady state MSE is

(2D + 1) M E[W?]
2
. VMZ(AD + DE[W?]2 + 4nE[W?]
2

B[] =

(26)

where E[W?] = E[W?] and E[N?] = E[N?]. Equation (26)
represents the generalized minimum MSE bound of a BB CDR.
This bound is equal to (19), when D = 0.
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Fig. 10 shows the analytical and simulated MSEs with var-
ious loop gains. The analytical results match strongly with the
simulated results, and it is clear that the MSE is at a minimum
when the optimum gain Bp,, is employed.

Fig. 11 shows the relationship between the minimum MSE
bound and loop delay D under various demultiplexing ratios
when oy = (0.67/v/2)x 10 *U s and oy = 0.158U 5.
The minimum MSE bound increases in proportion to 10 and M.

Fig. 12 shows the optimum value of Bp,,f,,, for the minimum
MSE with respect to o and U%V in steady state. Bpp 8. is in-
versely proportional to I} and M and proportional to the vari-
ances of the non-accumulative period and accumulation jitter.

By substituting (26) into (24), the optimum forward gain
Bp,, 0, is given by see equation (27) at the bottom of the page.

Va2noy
BDT‘LH[JT = ToN

(Mo, +/MEAD + T)ofy + o, )

2 (@D+ )Mo}, + MYMPAD = T)of, + Ao, + 200t + 2o}

27
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Fig. 13. Ratio between the output MSEs simulated with (29), (30) and optimum
gain Bp,,8,, versus M Dow and on.

In the case of o < on, VM2(4D + L)ofy, + 4nod, =~
(5/2)ow o n, and hence, (27) can be simplified to

2 5
Moy + 3owon
=
2Moyw + %0‘ N

By ~ (28)

By using a Taylor series, (28) can be further simplified as given
by
2]VTOWV

Bpn0,, ~ (1 —
bnZr ( 50’N

(29
(30)

Yow

"OWwW.

Because a PLL is designed to track the accumulation jitter, the
forward gain, which represents the bandwidth of a PLL, should
be mainly related to the accumulation jitter; the optimum band-
width is approximately the standard deviation of the step size of
the accumulation jitter.

Fig. 13 shows the ratio between the output MSEs simulated
with (29), (30), and optimum Bp,,8,,.. The MSE using (29) is
greater than the minimum bound by 1% for o5 > 0.02U 1,5
and M Dow < 0.02U1,.,,,,. The MSE using (30) deviates even
further from the minimum bound but the difference is still less
than 4% for o > 0.02U1,.,,,s and M Doy < 0.02U1,.,,5.

B. Limited Phase Rotator Resolution

The quantization noise of the phase rotator is inversely pro-
portional to its resolution and degrades the MSE. Fig. 14 shows
the simulated MSE of a BB CDR with M = 8 and D = 0
versus the input non-accumulative period jitter under various
phase rotator resolutions. Kalman gains are adjusted to achieve
Bpnb, =~ ow. The MSE is dominated by the quantization
noise if the resolution of the phase rotator is less than 7 bits.
The degradation of the MSE caused by non-accumulative pe-
riod jitter is negligible in this case.

Fig. 15 shows the simulated probability mass function (PMF)
of the prediction error (e = ¢g — $out) under various resolu-
tions of the phase rotator. Small non-accumulative period jitter
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Fig. 16. Modeling of the PMF with a triangular PDF.

of o = 0.05U1,,,, is chosen to highlight the quantization ef-
fect. The shape of the PMF broadens as the resolution decreases.
The PMF of the output prediction error can be modeled by a tri-
angular probability density function (PDF), as shown in Fig. 16.
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Fig. 17. 02 and the simulated and estimated output MSE of 1:8 demultiplexed
BB CDR with Kalman gain versus various phase rotator resolutions with o 5 =
0.05U7,,ns, C = (0.65/v/2) x 107U 1,.,.,,and D = 2.

The analytical variance of the prediction error calculated with
the triangular model is

ron [Tk e
g, = (& 912” ae = 6 .

q
J0 Hp'r'

Our model overestimates the variance by 6.67%. The variance
of the prediction error is equal to the output MSE since the pre-
diction error is unbiased and has zero mean [22].

Total output MSE considering both nonzero loop delay and
the quantization noise of the phase rotator can be approximated,
by using (26) and (31), as

62 2D+ YME[W?2
]\/fSE%%-‘r( +)2 W]

| VAP(D + DEW + 4n B[]
: .

(32)
Fig. 17 shows 03 and the simulated and estimated output
MSE under various resolutions of the phase rotator at oy =
0.05U I,.1,s. The simulated MSE converges asymptotically to
03 at low resolutions since the quantization noise dominates the
output MSE. The resolution of the phase rotator should be set
to greater than 7 bits to make the quantization effect negligible
when o = (0.67/v/2) x 102U L,.

IV. SUMMARY

The optimum forward gain and the resulting minimum phase
error bounds of a BB CDR are presented. The optimum gain is
approximately oy . Provided that oy is estimated in real time,
a BB CDR can adaptively accomplish the optimum balance be-
tween tracking and filtering the input jitter. The resolution of
the phase rotator should be set greater than 5 bits to suppress
the output jitter to below 0.02U I,.,,, s under practical input jitter
conditions.
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Fig. 19. Z-domain block diagram of a VCO-based type-2 digital BB CDR.
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Fig.20. The analytical and simulated MSEs ofa 1:8 demultiplexed VCO-based
BB CDR with Kalman gain with 3/a = 100, oy, = 47 x 107U 1,.,,.,
D =DI =2,

APPENDIX
MINIMUM MSE BOUND OF A VCO-BASED TYPE-2 BB CDR

Fig. 18 shows the block diagram of a conventional type-2
VCO-based digital BB CDR. The proportional and integral path
gains are ( and «, respectively, and DI denotes the integral path
delay. The proportional gain should be greater than the integral
step gain to ensure stable operation [1].

Fig. 19 shows the Z-domain block diagram of a highly over-
damped VCO-based type-2 digital BB CDR [2]. The phase step
of the loop is given by

Bup = M[U}]
fo
where Ky oo and fp denote the VCO gain and nominal fre-
quency, respectively. In the case of &« = 0, the only difference
between the phase rotator-based and VCO-based BB CDR is
the location of a phase accumulator. Therefore, (24) can also be
applied to a VCO-based design by replacing 8, with 8.

(33)

1 » Poutns1
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Fig. 21. Analytical and simulated MSEs of a 1:8 demultiplexed VCO-based
BB CDR with Kalman gain with ow = 47 X 107U, D = DI = 2.
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Fig. 22. Simulated MSE of a 1:8 demultiplexed VCO-based BB CDR with
Kalman gain with 3/« = 10, 0y = 47 x 107U I,.,,,, D = DI = 2.

Fig. 20 shows the analytical and simulated MSEs with the
Kalman gain, when the loop is highly over-damped (3/a >
100). The analytical results match strongly with the simulated
results, and it is clear that the MSE is at a minimum when the
Kalman gain By ¢o ., is employed.

The MSE is inversely proportional to 3/a, owing to an os-
cillatory overshoot [13], and hence the minimum MSE can be
achieved by designing a highly over-damped BB CDRs. Fig. 21
shows the analytical and simulated MSEs with various stability
factors when By oo, 1s employed. The MSE is degraded as
3/« decreases. By the way, we have noticed through simula-
tion that the MSE has a local minimum around 3 =~ Byvcon
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even in a system with a low damping and Fig. 22 validates our
observations.
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