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Effects of unsteady blowing through a spanwise
slot on a turbulent boundary layer
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The effects of localized periodic blowing on a turbulent boundary layer were investi-
gated by direct numerical simulation. Time-periodic blowing was applied through a
spanwise slot by varying the wall-normal velocity in a cyclic manner from 0 to 2A+.
Time-periodic blowing was applied at frequencies in the range 0 � f + � 0.08 at a
fixed blowing amplitude of A+ = 0.5. Simulations of a spatially evolving turbulent
boundary layer were carried out for two Reynolds numbers, Reθ,in = 300 and 670.
Before investigating the effects of periodic blowing, the effects of steady blowing
were examined. A new parameter, σ+, was proposed for describing local blowing; the
usefulness of this parameter was that the responses of the flow variables at the two
Reynolds numbers were the same for the same σ+. The effects of varying the
blowing frequency were scrutinized by examining the phase- or time-averaged
turbulent statistics. For both Reynolds numbers, application of blowing at a frequency
of f + =0.035 was found to give the maximum increases in Reynolds shear stress,
streamwise vorticity fluctuations and energy redistribution. Analysis of the Reynolds
stress budget showed that this effective blowing frequency induced the greatest
enhancement of the pressure–strain term, which is closely related to the energy
redistribution. Analysis of the phase-averaged stretching and tilting terms revealed
that the stretching term is significantly enhanced in the ‘downward’ motion that
is induced by the spanwise vortical motion. The correlation between the streamwise
vorticity and the stretching term changed in magnitude and length scale as the blowing
phase was varied, whereas the correlation between the streamwise vorticity and the
tilting term did not.

1. Introduction
Advances in the understanding of the coherent structure of wall-bounded turbulent

flow have intensified interest in controlling near-wall turbulence. Many attempts have
been made to devise a practical method for controlling wall-bounded flows. These
include the modification of the wall surface by installing riblets (Choi, Moin & Kim
1993), as well as the use of a compliant wall (Choi et al. 1997), wall deformations
(Kim et al. 2003a) or a spanwise oscillating wall (Choi, Xu & Sung 2002). These are
discussed in Gad-el-Hak (2000). Among the approaches considered to date, the use
of local suction/blowing deserves more detailed study because it provides an efficient
and simple means for locally actuating the wall-bounded flow. Moreover, the strength
of the actuation can be controlled with relative ease by local suction/blowing. Many
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engineering applications use local forcing to modify a turbulent boundary layer. For
example, local blowing is widely used to protect surfaces from high temperatures in
gas turbines and to cool electronic chips.

Most previous experimental and numerical studies of local suction/blowing have
focused on steady actuation (Sano & Hirayama 1985; Park & Choi 1999; Krogstad &
Kourakine 2000; Kim, Sung & Chung 2002b). It is reported that local steady
blowing shifts near-wall streamwise vortices away from the wall, thereby reducing
the interaction of the vortices with the wall. Steady blowing leads to a reduction in
the skin friction near the wall, combined with an increase in the turbulence intensity
and skin friction far downstream from the slot. In contrast to the numerous studies
that have considered steady blowing, relatively few experimental or numerical studies
have examined unsteady suction/blowing (Tardu 1998, 2001; Park, Lee & Sung 2001;
Rhee & Sung 2001; Park, Park & Sung 2003). Park et al. (2001) performed experiments
to probe the effects of periodic blowing and suction through a spanwise slot on a
turbulent boundary layer. They found that higher forcing frequencies induced greater
changes in the turbulent structures of the boundary layer in their system. In a study
of local oscillating blowing, Tardu (2001) found that when the blowing frequency
exceeded a critical value (f + = f ν/u2

τ =0.008, where ν is the kinematic viscosity
and uτ is the friction velocity), blowing induced a positive wall vorticity layer that
subsequently rolled up into a coherent spanwise vortex. However, the above studies on
unsteady forcing employed very large-amplitude forcings (30 ∼ 40 % of the free-stream
velocity), which change the flow significantly, and hence they focused on the evolution
of a newly generated strong spanwise vortical structure due to the large-amplitude
forcing rather than on the response of the near-wall coherent structure. Kim & Sung
(2003) investigated the effects of localized time-periodic blowing by carrying out
direct numerical simulations for three cases of relatively small blowing amplitude
(less than 5 % of the free-stream velocity). They found that the energy redistribution
is enhanced by periodic blowing. Although it is expected that the turbulence structure
will be more sensitive to the blowing frequency than the blowing strength, they dealt
with only a single blowing frequency (f + = 0.017).

Near-wall streamwise vortices are known to play a dominant role in wall-bounded
flows (Robinson 1991); however, the frequency responses of such vortices to unsteady
periodic blowing have not been studied in detail. In the present work, the effect
of blowing frequency on the flow characteristics of a turbulent boundary layer
was studied, with particular emphasis on the near-wall turbulent-flow structures
downstream of the spanwise slot. Direct numerical simulations were carried out at two
Reynolds numbers, Reθ,in = 300 and 670, based on the momentum thickness and free-
stream velocity. The slot width was approximately 100 in wall units and localized time-
periodic blowing was applied by changing the wall-normal velocity on the spanwise
slot. The blowing frequency was varied in a range of 0 � f + � 0.08 at a fixed blowing
amplitude (A+ = A/uτ = 0.5, where A is the blowing amplitude). Before investigating
the frequency effect, the effects of steady blowing were examined and a new parameter
for localized blowing was formulated. The frequency responses were scrutinized by
examining the phase- or time-averaged turbulent statistics. A blowing frequency of
f + =0.035 gave the greatest increases in Reynolds shear stress, streamwise vorticity
fluctuations and energy redistribution compared to the system without the local
blowing. Reynolds stress budget analysis revealed that this effective blowing frequency
also gave the greatest enhancement of the pressure–strain term. The phase-averaged
stretching and tilting terms were analysed to clarify the increase in streamwise vorticity
fluctuations. Finally, the correlation coefficients between the streamwise vorticity,
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stretching and tilting terms were calculated to generate a quantitative description of
the response of the turbulent coherent structures to periodic blowing.

2. Numerical method
For an incompressible flow, the non-dimensional governing equations are

∂ui

∂t
+

∂

∂xj

uiuj = − ∂p

∂xi

+
1

Re

∂

∂xj

∂ui

∂xj
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∂ui

∂xi
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where xi are the Cartesian coordinates and ui are the corresponding velocity compo-
nents. The free-stream velocity U∞ and the momentum thickness at the inlet θin are
used for non-dimensionalization. The Reynolds number is defined as Re= U∞θin/ν,
where ν is the kinematic viscosity.

The governing equations (1) and (2) are integrated in time by using the fully
implicit decoupling method proposed by Kim et al. (2002a). All terms are advanced
with the Crank–Nicolson method in time, and they are resolved with the second-
order central-difference scheme in space. Based on a block LU decomposition, both
velocity–pressure decoupling and additional decoupling of the intermediate velocity
components are achieved in conjunction with the approximate factorization. The
overall accuracy in time is second-order without any modification of boundary
conditions. Since the decoupled momentum equations are solved without iteration,
the computation time is reduced significantly.

An approximate velocity–pressure decoupling of equations (1) and (2) is made in
the series of operations:

Au∗ = r + mbc, (3)

�tDGδp = Du∗ − cbc, (4)

un+1 = u∗ − �tGδp, (5)

where
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1

2Re
Lun,

δp = pn+1/2 − pn−1/2.

Here, L represents the discrete Laplacian viscous operator, N is the linear discrete
convective operator, G is the discrete gradient operator, D is the discrete divergence
operator, �t is the time increment, and the superscript n denotes the nth time step.
The known velocities at the boundary have been imposed on mbc and cbc.

Next, the aforementioned approximate factorization is further extended to the
velocity components u∗ in equation (3) by using the delta form δu∗ = u∗ − un.
Equation (3) is rewritten as,

Aδu∗ = −Aun + r + mbc ≡ R. (6)

Here, the intermediate terms δu∗ can be calculated separately in the following steps,
which are equivalent to equation (6) with second-order accuracy in time by introducing
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Figure 1. Schematic diagram of computational domain.
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where

M = N − 1

2Re
L.

A significant reduction in computing cost and memory is achieved by avoiding the
direct inversion of the large sparse matrix A. The overall numerical procedure is as
follows:

1. Solve u∗ from equations (7)–(12) through the velocity decoupling procedure.
2. Solve δp from equation (4).
3. Obtain un+1 from equation (5), which is a divergence-free vector field, and then

one time-step marching is finished.
Direct numerical simulations of a turbulent boundary layer for two Reynolds

numbers, Reθ,in =300 and 670, were performed to probe the flow. A schematic diagram
of the computational domain is shown in figure 1. The domain size and mesh
resolution for the present direct numerical simulations (DNSs) are summarized in
table 1. Realistic velocity fluctuations at the inlet are provided based on the method
of Lund, Wu & Squires (1998). An auxiliary simulation of the spatially developing
turbulent boundary layer was carried out separately to obtain the inflow data. The
stored instantaneous plane data of velocity in the inflow simulation are provided at
the inlet of the main simulation per each time step. The convective outflow condition
∂ui/∂t + c∂ui/∂x = 0 is used at the exit, where c is taken to be the mean exit velocity.
A no-slip boundary condition is imposed at the solid wall. At the free stream, the
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Reθ,in Lx/θ in Ly/θ in Lz/θ in Lx+ Lz+ (Nx, Ny, Nz) �x+ �z+ �y+
min �t+

300 200 30 40 3151 630 (257, 65, 129) 12.3 4.92 0.17 0.248
670 150 30 35 4941 1135 (393, 65, 187) 12.6 5.88 0.20 0.243

Table 1. Domain size and mesh resolutions.
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Figure 2. Comparison of mean velocity and turbulent intensities. (a) U+; (b) Reynolds
stresses (Reθ = 300); (c) Reynolds stresses (Reθ = 670). –––, present results; �, Spalart (1988).

conditions u =U∞ and ∂v/∂y = ∂w/∂y = 0 are imposed. Periodic boundary conditions
are used in the spanwise direction.

To ascertain the reliability and accuracy of the present numerical simulation,
comparisons of the turbulence statistics with the DNS data of Spalart (1988) are
made and presented in figure 2. The mean velocity profile normalized by the friction
velocity is shown in figure 2(a) by y+ = yuτ/ν and U+ = U/uτ . Comparisons are
extended to the turbulence intensities and Reynolds shear stress in figures 2(b) and
2(c). The present results are in excellent agreement with the DNS data at both
Reynolds numbers, Reθ,in =300 and 670. This suggests that the resolution of the
present study is sufficient to analyse the second-order turbulence statistics.

The streamwise width of the spanwise slot for localized blowing is b+ ≈ 100 in
wall units, which is comparable to the width used by Park & Choi (1999). It has
been reported that high skin-friction regions on the wall are strongly correlated with
near-wall streamwise vortices and the longitudinal length of highly correlated vortices
is approximately 100 wall units (Kravchenko, Choi & Moin 1993). The periodic
blowing at the slot is generated by varying the wall-normal velocity according to the
equation:

vslot = A(1 + sin 2πf t). (13)

The maximum blowing velocity (vslot = 2A) is imparted at t = 1/4T and the minimum
(vslot = 0) at t =3/4T , where T is the blowing period. At t = 0/4T and 2/4T , the
blowing velocities are the same as those of steady blowing with accelerating and
decelerating phases, respectively. The amplitude of the periodic blowing is A+ = 0.5 in
wall units, which corresponds to the value of vrms at y+ = 15 without blowing. Here,
A+ = A/uτ,in and uτ,in is the friction velocity at the inlet. Hammond, Bewley & Moin
(1998) showed that this relatively small actuation significantly affects the turbulent
structure in the opposition control of turbulent channel flow. The blowing frequency
(f + = f ν/u2

τ,in) varies in the range 0 � f + � 0.08. Note that f + =0 denotes steady
blowing (vslot =A). Details regarding the localized blowing conditions are summarized
in table 2.
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Reθ,in xslot b/θ in b+ A+ A
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(
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U∞θslot
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slotb
+) f +

(
=

f ν

u2
τ,in

)
f θin

U∞

300 79 6.25 98.5 0.5 0.0263 0.14 50 0 ∼ 0.08 0 ∼ 0.066
670 75 3.06 101 0.5 0.0246 0.064 50 0 ∼ 0.08 0 ∼ 0.130

Table 2. Localized blowing conditions.

The imposition of periodic blowing may lead to periodic variations in the global
physical quantities of the flow. Hence, it is necessary to represent each flow quantity
as a superposition of three components

q(x, y, z, t) = q̄(x, y) + q̃(x, y, t/T ) + q ′(x, y, z, t), (14)

where the instantaneous quantity q is decomposed into a time-mean component q̄ , an
oscillating component q̃ , and a random fluctuating component q ′. The time-average
is

q̄(x, y) =
1

TtotLz

Ttot∫
0

Lz∫
0

q(x, y, z, t) dz dt, (15)

where Ttot(=NT ) is the time over which the quantity is averaged and N is the total
number of periods. The oscillating component q̃ is obtained from the relation

q̃(x, y, t/T ) = 〈q〉 (x, y, t/T ) − q̄(x, y), (16)

where 〈q〉(x, y, t/T ) is the phase-average, which is defined as

〈q〉(x, y, t/T ) =
1

NLz

N∑
n=1

Lz∫
0

q(x, y, z, t + nT ) dz. (17)

Accordingly, the random fluctuation component q ′ is expressed as

q ′(x, y, z, t) = q(x, y, z, t) − 〈q〉(x, y, t/T ), (18)

and it follows that 〈q ′2〉 = 〈q2〉 − 〈q〉2 and 〈q ′〉 = ¯̃q = 0.

3. Localized steady blowing
Before investigating the effect of blowing frequency on a turbulent boundary layer,

it is helpful to examine first the effect of steady blowing. Figure 3 shows the streamwise
distributions of the skin friction coefficient, pressure coefficient, r.m.s. wall pressure
fluctuations and maximum value of the Reynolds shear stress for two Reynolds
numbers, Reθ,in = 300 and 670. To validate the grid resolution over the slot, we
performed a local steady blowing simulation for Re= 670 with doubled streamwise
grid points (Nx = 785), which allocates 16 grid points over the slot. Note that 8 grid
points are located over the slot in the original simulation (Nx = 393). The simulation
data for two cases are shown in figure 3, where the flow quantity variations with the
finer mesh (Nx = 785) are almost the same as those with the original one (Nx = 393).
This suggests that the present grid resolution is enough to resolve the turbulent
statistics for localized blowing as well as the unperturbed case (figure 2).
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Figure 3. Variation of flow quantities in the streamwise direction owing to localized
steady blowing (A+ = 0.5, b+ = 100). Here, subscript ‘o’ denotes no blowing case and
ξ+ = (x − xslot)uτ,in/ν. (a) cf /(cf )o; (b) cp/2; (c) p′

w,rms/(p
′
w,rms)o; (d) uvmax/(uvmax)o.

As shown in figure 3(a), Cf decreases rapidly near the slot and increases on
moving further downstream. However, the reduction in skin friction near the slot is
accompanied by a slight increase in the skin friction downstream of the slot owing to a
blowing-induced increase in the turbulence. An adverse pressure gradient is observed
upstream and downstream of the slot, whereas a favourable pressure gradient occurs
above the slot (figure 3b). The overall characteristics of the mean wall variables are
in good agreement with previous results (Park & Choi 1999; Kim et al. 2002b). The
r.m.s. wall pressure fluctuations (figure 3c) and maximum of the Reynolds shear
stress (figure 3d) significantly increase downstream of the slot. Considering that high-
amplitude wall pressure fluctuations are linked with streamwise vortices and turbulent
kinetic energy production, the increase in p′

w,rms downstream of the slot may be caused
by the activated streamwise vortices and turbulent fluctuations induced by the wall
blowing. The similarity of the responses of p′

w,rms and |u′v′|max in the downstream
suggests that, as was found previously for a turbulent boundary layer with an adverse
pressure gradient and separation (Na & Moin 1998), the local maximum Reynolds
shear stress may be a good quantity for normalizing wall pressure fluctuations in a
locally forced turbulent boundary layer.

Previous studies on systems with localized blowing or suction have employed the
parameter σ as a principal parameter to define the local blowing or suction rate:

σ =
vslotb

U∞θslot

, (19)

where vslot is the blowing velocity, b is the streamwise width of the spanwise slot, and
θslot is the momentum thickness of the unperturbed flow at the slot location. Thus, σ

represents the blowing-induced gain in the momentum flux of the incoming boundary
layer. In the present study, σ+(=v+

slotb
+) = 50 was chosen for both Reθ,in = 300 and

670, while the value normalized by outer variables (U∞ and θ slot) is σ = 0.14 for
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Reθ,in = 300 and σ = 0.064 for Reθ,in =670. Note that σ+ can be written as

σ+ = v+
slotb

+ =
vslot

uτ

buτ

ν
=

(
vslotb

U∞θslot

)(
U∞θslot

ν

)
= σReθ,slot , (20)

which reflects the Reynolds-number effect. In figure 3, where the streamwise distance
from the centre of the slot is normalized by the viscous length scale (ν/uτ ), the
downstream evolution of Cf , Cp and |u′v′|max is almost the same for the two Reynolds
numbers. The magnitude of the increase in p′

w,rms differs slightly between the two Re
values; however, the streamwise location of the maximum increase in p′

w,rms is almost
the same for the two Re values (ξ+ = 400). The similarity of the responses of the flow
variables for the same σ+ implies that σ+ can be used as a parameter for defining
local blowing on a low-Reynolds-number turbulent boundary layer. However, the
normalization of the evolution distance (ξ+) by the viscous length scale suggests that
the forcing is given at a low amplitude and the use of σ+ is limited.

The mean velocity profiles for the Reθ,in = 300 and 670 systems with steady blowing
(SB) are shown in figure 4. For reference, the velocity profiles with no-blowing (NB)
are also drawn. For both Reynolds numbers, the velocity profiles of steady blowing
show upward shifts above the slot and downward shifts in the downstream. This
behaviour is consistent with the results of Park & Choi (1999). These upward and
downward shifts are related to the decrease and increase in skin friction induced
by the local blowing shown in figure 3(a). Furthermore, the spatial evolution of the
velocity profile for Reθ,in = 300 is similar to that for Reθ,in = 670, which is consistent
with the very similar recoveries of Cf for the two Reynolds numbers observed in
figure 3(a).
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Figure 5 shows contour plots of the differences between the r.m.s. velocity fluctua-
tions (u′

rms, v
′
rms, w

′
rms and −u′v′) for the systems with and without blowing. Imposition

of the local forcing leads to a decrease in the velocity fluctuations and Reynolds
shear stress near the slot because the fluctuating fluid is lifted away from the wall
by the blowing. However, the blowing causes a significant increase in the velocity
fluctuations and Reynolds shear stress downstream of the slot. For Reθ,in = 300
(figure 5a), the global features of v′

rms, w
′
rms and −u′v′ are similar, but u′

rms shows
different behaviour. The maximum increase of u′

rms is located closer to the slot than
those of v′

rms, w
′
rms and −u′v′. The response of the turbulent intensities observed

for Reθ,in = 670 (figure 5b) is similar to that for Reθ,in = 300. This provides further
evidence that σ+ is an appropriate quantity for parameterizing the local blowing.

To see the relative contributions to the turbulent kinetic energy of the streamwise
turbulent intensity and the intensities normal to the mean flow, the energy partition
parameter, K∗ = 2u′2/(v′2 + w′2), was calculated. Above the slot (ξ+ = 0; figure 6a),
the peak location of K∗ is shifted away from the wall because of the blowing. In
the downstream, K∗ significantly decreases near the wall for both Reθ,in = 300 and
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670 in comparison with the no-blowing case. The smaller value of K∗ indicates that
the energy redistribution is more active. Senda et al. (1981) showed by examining
the integral length scale that turbulence tends to be close to isotropy with injection.
Chung, Sung & Krogstad (2002) found that surface blowing activates the transverse
components of velocity fluctuations and decreases the anisotropy of the near-wall
turbulence significantly. Sumitani & Kasagi (1995) reported that surface blowing
enhances the redistribution mechanism of the pressure–strain terms. In figure 6, it is
found that the localized blowing applied in the present work also enhances the cross-
stream components of the turbulent intensity more than the streamwise component.

Figure 7 shows the variations of the streamwise vorticity fluctuations (ω′
x) due

to the local blowing. The location of the local maximum in ω′
x corresponds to the

average location of the centre of the streamwise vortices (Kim, Moin & Moser
1987). When blowing is applied, the local maximum of ω′

x moves away from the
wall above the slot (figure 7a), indicating that the quasi-streamwise vortices are lifted
up by the blowing. As a result, the magnitude of ω′

x increases in the downstream.
Similar behaviour was observed by Park & Choi (1999) in DNSs of steady blowing
in a turbulent boundary layer with Reθ,in = 300; they explained their observations
in terms of a strengthening of the lifted vortices in the downstream owing to less
viscous diffusion (above the slot) and more tilting and stretching (downstream of the
slot). Furthermore, Kim, Kim & Sung (2003b) reported that the activated streamwise
vortices and the relevant motions in the viscous sublayer are responsible for the
increase in wall pressure fluctuations, which are detected in figure 3(c). Jeong et al.
(1997) proposed an energy transfer scenario to account for the behaviour of the
streamwise vortices, whereby the pressure–strain rate terms in v′2 and w′2 budgets are
closely related to the vortical motion around the streamwise vortices. This is consistent
with our observation that local blowing enhances both the streamwise vortices and
the energy redistribution (figure 6). The previous DNS studies on localized blowing
showed that streamwise vortices are consistently enhanced by localized blowing with
different blowing conditions: several blowing rates (σ ) with the same spanwise slot
width (Park & Choi 1999); and different blowing magnitudes at a fixed blowing
rate (Kim et al. 2002b). Considering that the near-wall streamwise vortices play a
dominant role in wall-bounded flows (Robinson 1991), the activation of streamwise
vortices can be regarded as one of the most important effects of localized blowing on
a turbulent boundary layer.
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4. Localized time-periodic blowing
To investigate the effects of periodic blowing on near-wall turbulence, it is important

to elucidate the effect of this type of blowing on the streamwise vorticity fluctuations.
The relative increase in the local maximum of streamwise vorticity fluctuations is
defined as �ω′

x,max = (ω′
x,max − ω′

x,max,o)/ω
′
x,max,o × 100, where the subscript ‘o’ denotes

‘no blowing’. Figure 8 shows the relative increase in ω′
x,max versus the blowing

frequency. Here, f + = 0 corresponds to steady blowing. For both Reθ,in = 300 and
670, ω′

x,max is significantly increased by the periodic blowing up to a maximum at
f + = 0.035. For Reθ,in =300, ω′

x,max is increased by up to 60 % for periodic blowing,
compared to 35 % increase induced by steady blowing. These results suggest that
periodic blowing enhances the near-wall streamwise vortices to a greater degree than
steady blowing, and that there exists an optimal blowing frequency (f + = 0.035 in the
present study) for the activation of streamwise vortices by localized blowing.

Figure 9 shows the variations of the local maximum values of the streamwise
vorticity fluctuations in the streamwise direction. The local maximum of ω′

x is
significantly higher in the downstream for the system with local blowing compared
with the no-blowing system. The response of ω′

x,max to local blowing is nearly the
same as that of the local maximum of the Reynolds shear stress (figure 3). The effect
of blowing frequency on the evolution of ω′

x,max is clearly seen in the downstream
direction. In the frequency domain where f + is lower than the effective frequency
(f + < 0.035), ω′

x,max in the downstream becomes larger for both Reθ,in = 300 and 670 as
f + increases (figure 9a, c). For f + > 0.035, however, ω′

x,max decreases with increasing
f + and converges to that of the steady blowing system (figure 9b, d). The effect of
periodic blowing on ω′

x,max is confined to the streamwise region of 0<ξ+ < 1000.
It is clear that ω′

x,max is most increased at a blowing frequency of f + = 0.035 for
both Reθ,in =300 and 670, as shown in figure 8. The maximum increase in ω′

x,max is
observed at ξ+ ≈ 300.

Figure 10 shows the variation of time-averaged skin friction along the streamwise
direction owing to periodic blowing. Three blowing frequencies are examined, the
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effective blowing frequency f + = 0.035, as well as f + =0.01 and 0.08. Blowing
at frequency f + = 0.035 gives the maximum increase in the streamwise vorticity
fluctuations. Similarly to steady blowing, Cf for periodic blowing decreases rapidly
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near the slot and increases in the downstream. For both Reθ,in = 300 and 670, the
skin friction for f + =0.035 increases to a higher value in the downstream than other
cases. Furthermore, the increasing rate of Cf is largest at f + = 0.035. Note that the
maximum increase of Cf occurs at the effective blowing frequency (f + = 0.035) for
enhancement of ω′

x,max. This suggests that in the presence of localized blowing, the
increase of skin friction far downstream is closely related to the enhancement of the
near-wall streamwise vortices. Close inspection of Cf recovery near the slot indicates
that the skin friction of f + = 0.01 is larger than that of the steady blowing for both
Reynolds numbers. Kim & Sung (2003) reported by examining the time-averaged x

momentum equation at the wall, that the Cf reduction by periodic blowing is smaller
than that by steady blowing. The present results further show that the reduction of
skin friction increases with increasing f + and converges to that of steady blowing.

The distributions of the time-averaged streamwise velocity at three locations (ξ+ = 0,
300 and 900) are shown in figure 11. Compared to the no-blowing system, a region of
retarded flow is observed near the wall (ξ+ =0). As the flow moves downstream,
this region of retarded flow gradually shifts away from the wall and finally
decays. However, the time-averaged streamwise velocity is insensitive to the blowing
frequency.

Figure 12 shows the velocity profiles of the r.m.s. of the oscillating component for
Reθ,in =670, which are defined as

ũrms =

√
(ũ)2 =

√
(〈u〉 − ū)2,

ṽrms =

√
(ṽ)2 =

√
(〈v〉 − v̄)2.

This quantity shows a clear dependence on blowing frequency, in contrast to the
insensitivity of the mean velocity to unsteady blowing. As the blowing frequency
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increases, ũrms and ṽrms decrease. At ξ+ =300, ũrms exhibits a double peak whereas
ṽrms has a single peak. Examination of the phase of ũ revealed that the double peaks
of ũrms have a π phase difference, indicating that ũ has opposite signs above and
below the location of the local minimum in ũrms. Closer inspection of ũrms at ξ+ =300
reveals that, for f + = 0.035, the second peak is more distinct than is the case for
other frequencies. It is also observed that the y location of the minimum in ũrms for
f + =0.035 is closer to the wall than in the f + =0.01 system. Similar behaviour is
observed for the Reθ,in = 300 system. The behaviour of ũ and ṽ is consistent with that
of the spanwise vortical motion (figure 13); that is, ũ undergoes the most intensive
change, with opposite signs just above and below the centre of the spanwise vortical
motion. However, the maximum values of ṽ are located just upstream and downstream
of the vortical motion at the same y location. The centre of the spanwise vortical
motion coincides with the maximum ṽrms, which further shows a close agreement with
the location of the local minimum of ũrms (Park et al. 2001).

Figure 13 shows contour plots of the difference between the phase-averaged
spanwise vorticity for periodic blowing 〈ωz〉 and the time-averaged spanwise vorticity
for the system without blowing, ω̄z,o, during one period (1T ) in the Reθ,in =670
system. For all three blowing frequencies considered (f + =0.01, 0.035 and 0.08),
a region of negative �〈ωz〉 appears above the slot because the blowing causes a
negative spanwise vorticity layer in the vicinity of the wall to be shifted upward.
Note that the negative (positive) value of �〈ωz〉 represents an increase (decrease) of
the magnitude of the spanwise vorticity because ω̄z,o is negative inside the boundary
layer. For f + = 0.01, a region of strong negative vorticity is formed above the slot and
convects downstream with time. During the accelerating phase (t = 0/4T ∼ 1/4T ), a
region of strong negative vorticity forms above the slot owing to the blowing-induced
lifting of the wall vorticity layer. This region of strong negative spanwise vorticity
convects downstream during the decelerating phase (t =2/4T ∼ 3/4T ), during which
the adverse pressure gradient decreases above the slot. For f + = 0.035, a newly
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generated region of strong spanwise vorticity coexists with the weaker prior one
which convected in the decelerating phase of the previous period. The negative �〈ωz〉
region has a streamwise wavelength λ+

x = 200. The convection velocity of the region
of �〈ωz〉 < 0 is 7.28uτ,o in figure 13(b), which is close to the relation of the phase
velocity V +

c = f +λ+ = 7. For f + = 0.08, however, the phase difference is so small that
the aforementioned responses, such as the convection of the negative �〈ωz〉, are not
observed.

Figure 14 shows the profiles of the time-averaged turbulent intensities and Reynolds
shear stress for Reθ,in = 670 at ξ+ = 300, the location where the maximum increase
in ω′

x,max occurs. The velocity fluctuations and Reynolds shear stress are increased
by application of blowing. The increase in u′

rms for f + = 0.035 is smaller than those
for other frequencies, whereas the increases in v′

rms, w′
rms and −u′v′ for f + = 0.035

are larger than those for other frequencies. This suggests that f + = 0.035 is the
most effective blowing frequency in terms of promoting energy transfer between the
components of the velocity fluctuations. The same conclusion is drawn for Reθ,in = 300.

Power spectra of the velocity fluctuations, Euu, Evv and Eww at ξ+ =300 for
Reθ,in =670 are shown in figure 15. To examine the effect of periodic blowing
(f + = 0.035), the spectra for steady blowing and no blowing are plotted together. The
spectra show that the flow is reasonably well resolved. As seen in figure 15(a), the
spectra of Euu are increased by both periodic and steady blowing. Euu of f + = 0.035
is nearly the same as that of steady blowing at high wavenumber. Around kzθin = 1.5,
however, Euu of f + = 0.035 is slightly smaller than that of steady blowing. This is
consistent with the smaller increase of u′

rms by f + =0.035 than that by steady blowing
(figure 14a). For the cross-stream components, both Evv and Eww are increased in the
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low wavenumber, as well as high wavenumber, by the blowings (figures 15b, c). The
increase of energy in the low wavenumber byf + =0.035 is larger than that by steady
blowing. Evv is significantly changed by the periodic blowing in the low wavenumber.
For no blowing, Evv has a dominant peak at kzθin = 2.0, which corresponds to the
wavelength λ+

z = 103. However, for f + = 0.035, the spectrum Evv is much increased at
low wavenumber (kzθin < 1.0) where the peak is not clearly detected.

The transport equations for Reynolds stress can provide additional information on
the effect of periodic blowing on the near-wall turbulence transport. The transport
equation for the phase-averaged Reynolds stress components can be written as

0 = −
∂〈u′

iu
′
j 〉

∂t
− 〈uk〉

∂〈u′
iu

′
j 〉

∂xk︸ ︷︷ ︸
Cij

−
(

〈u′
iu

′
k〉∂〈uj 〉

∂xk

+ 〈u′
iu

′
k〉∂〈uj 〉

∂xk

)
︸ ︷︷ ︸

Pij

−
∂〈u′

iu
′
ju

′
k〉

∂xk︸ ︷︷ ︸
Tij

− 2

Re

〈
∂u′

i

∂xk

∂u′
j

∂xk

〉
︸ ︷︷ ︸

εij

+
1

Re

∂2〈u′
iu

′
j 〉

∂x2
k︸ ︷︷ ︸

Dij

−
〈

u′
i

∂p′

∂xj

+ u′
j

∂p′

∂xi

〉
︸ ︷︷ ︸

Πij

. (21)
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The terms on the right-hand side of (21) represent: Cij = convection, Pij = production,
Tij = turbulent transport, εij = dissipation, Dij = viscous diffusion and Πij = velocity
pressure-gradient. Note that Cij represents the rate of change of the Reynolds stress
following a point moving with the local phase-averaged velocity 〈u〉. To investigate the
greater increase of the cross-stream components of the turbulent intensity compared
to the streamwise component at f + = 0.035, we calculated the budget terms for the
Reynolds normal stresses in (21). Figure 16 shows the budget terms in the phase-
averaged Reynolds stress transport equation at ξ+ =300 for f + = 0.035 (Reθ,in =670).
The budgets normalized by u4

τ,o/ν are displayed during one period (1T ). The 〈u′2〉
budgets (figure 16a) show that the production term is dominant, similar to the
behaviour of the unperturbed turbulent boundary-layer flow (Spalart 1988). The
velocity pressure-gradient term becomes significant near y+

o =25, where the magnitude
of Π11 is even larger than that of dissipation at t/T = 2/4. The budgets of the wall-
normal stress component 〈v′2〉 are shown in figure 16(b). In the absence of blowing,
the dissipation term ε22 is the dominant consuming term and the velocity pressure-
gradient term Π22 is the dominant producing term (Na & Moin 1996). The increase
in Π22 is most significant at f + = 0.035 compared to other blowing frequencies (not
shown here). The production term, which is negligible through the layer without
forcing, becomes dominant at the phase of t/T = 2/4. This increase in P22 is closely
related to the spanwise vortical motion of the phase-averaged velocity field (Kim &
Sung 2003). As seen in figure 13(b), the negative spanwise vortical structure induces
a ‘downwash’ at ξ+ = 300 in t/T = 2/4, which gives ∂〈v〉/∂y < 0 at the right-hand
bottom of the vortical structure. The oscillating components of the strain rate enhance
the production term P22 = −2(〈v′2〉(∂〈v〉/∂y) + 〈u′v′〉(∂〈v〉/∂x)). However, the time-

averaged production term P22 in the v′2 budgets is negligible compared with the
velocity pressure-gradient term. In the budget of 〈w′2〉 (figure 16c), the velocity
pressure-gradient term is dominant and is balanced by the dissipation term except
very near the wall where the viscous diffusion is very important; this behaviour is
similar to that of the no-blowing system. Similar to Π22, the increase in Π33 is greater
at f + = 0.035 than at other blowing frequencies (not shown here).

To see the contribution of the oscillating strain rate due to periodic blowing to
the production term of the Reynolds stress, the time-averaged production term
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forf + = 0.035 is examined. The time-averaged production term for the periodic
blowing can be expressed as

Pij = −
(

u′
iu

′
k

∂ūj

∂xk

+ u′
ju

′
k

∂ūi

∂xk

)
−

[
ũ′

iu
′
k

∂ũj

∂xk

+ ũ′
ju

′
k

∂ũi

∂xk

]
. (22)

Here, the second group in brackets represents the interaction between the oscillating
components due to periodic blowing. Figure 17 shows the time-averaged production
terms P11, P22 and P12 for the Reθ,in = 670 system subjected to blowing at frequency
f + =0.035. The interaction between the oscillating components is much smaller than
the first bracketed group in (22). The terms in (22) giving the greatest contributions to
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P11, P22 and P12 are −2u′v′∂U/∂y, −2v′2∂V /∂y and v′2∂U/∂y, respectively. Note that
these dominant terms contain the wall-normal gradient of the mean velocity. Tardu
(1998) reported that the interactions between oscillating components in the production
term are non-negligible, since the time mean flow characteristics in his experiments
were affected by the imposed unsteadiness. However, our DNS results show that the
contribution of the interaction to the time-averaged production is negligible, although
the time-averaged production terms for periodic blowing (f + = 0.035) are larger than
those for steady blowing. Considering the insensitivity of the time-mean velocity to
the imposed unsteadiness (figure 11), these larger values of Pij in the present periodic

blowing systems may be attributed to the fact that the periodic blowing enhances v′2

and −u′v′ more than the steady blowing does (figure 14). For more details on the
turbulence statistics budgets, see Kim (2005).

To investigate the inter-component energy transfer among the Reynolds-
stress components, the time-averaged pressure–strain correlation terms
φij = p′(∂u′

i/∂xj + ∂u′
j /∂xi) near the wall were examined (figure 18). It is known

that the pressure–strain term φij plays a dominant role in the energy redistribution
among the components. In the turbulent kinetic energy budget, there is no net
contribution from the pressure–strain term. Therefore, a negative sign of φkk (no
summation on k) indicates a loss of energy from u′2

k or a transfer of energy from
this component to other components, whereas a positive sign denotes an energy gain.
A previous DNS study of turbulent channel flow with blowing found that φij was



442 K. Kim and H. J. Sung

(a)

(b)
0

0.2

0.4 (i) (ii) (iii)

(i) (ii) (iii)

0.2

0.4

0.2

0.4

0 20 40 60

20 40 60

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

y+
o

0 20 40 60
y+

o

0 20 40 60

0 20 40 60 0 20 40 60

y+
o

0.035
f + = 0.01

0.08
SB ( f + = 0)
NB (A+ = 0)

Figure 19. Root time–mean square of the vorticity fluctuations at ξ+ =300. (a) Reθ = 300;
(b) 670. (i) ω′

x,rmsθin/U∞; (ii) ω′
y,rmsθin/U∞; (iii) ω′

z,rmsθin/U∞.

significantly enhanced in the downstream by local blowing (Chung & Sung 2001).
The present results show that φij is enhanced by periodic blowing and is strongly
dependent on the blowing frequency. The magnitude of φij is increased to the greatest
extent by the effective blowing frequency f + = 0.035. Note that the enhancement of
φij for f + = 0.035 is nearly twice that achieved using steady blowing, and φij for
f + =0.08 is nearly the same as that for steady blowing. This indicates that the energy
redistribution is most enhanced atf + = 0.035, in agreement with the behaviour of the
turbulent intensities shown in figure 14.

The intensities of the vorticity fluctuations as a function of y+
o are shown in figure 19.

All of the components of the vorticity fluctuations (ω′
x , ω′

y and ω′
z) are enhanced by

localized blowing. It is clearly seen that ω′
x is enhanced to the greatest extent by the

blowing frequency of f + = 0.035. The location of the local maximum is several wall
units closer to the wall in the system with blowing compared to that without. In
contrast, varying the blowing frequency has no discernible effect on ω′

y and ω′
z.

To examine the response of the streamwise vorticity fluctuations to periodic blowing,
we examined the phase-averaged streamwise vorticity fluctuations during one period
(1T ). A sequence of contour plots of 〈ω′

x〉1/2 is shown in figure 20. Vector plots of
the oscillating velocity components are superimposed to gain a better understanding
of the flow evolution. The response of ω′

x is closely related to the oscillating velocity
field. Immediately downstream of the slot, a downward motion is induced at ξ+ =200
in t/T = 0/4, where ω′

x starts to increase and convects downstream. This downward
motion enhances the stretching term of the ω′

x transport equation (see below). On the
other hand, the blowing also induces an upward motion at ξ+ = 300 in t/T = 0/4.
This upward motion lifts the strengthened layer of ω′

x formed as a result of the
downward motion, thereby weakening the interaction between the strengthened layer
of ω′

x and the wall, and causing the lifted vortices to become stronger. For the blowing
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Figure 20. Contours of phase-averaged streamwise vorticity
√

〈ω′2
x 〉θin/U∞ and vector plots

of oscillating velocities for f + =0.035 (Reθ,in = 670). The contour levels are from 0.30 to 0.45
by increments of 0.015.

frequency of f + = 0.035, the streamwise wavelength of the downward and upward
motions is approximately 200 wall units, which matches well with the streamwise
length scale of near-wall vortical structures (Jeong et al. 1997). This suggests that one
streamwise vortex undergoes both the downward and upward motions, and that this
phenomenon is responsible for the maximum increase in ω′

x at the optimal blowing
frequency (f + = 0.035).

To investigate the increase in the streamwise vorticity in the aforementioned upward
and downward motion in greater detail, the transport equation of the strength of the
streamwise vorticity is examined. The streamwise vorticity equation can be written as

Dωx

Dt
= ωx

∂u

∂x
+ ωy

∂u

∂y
+ ωz

∂u

∂z
+

1

Re
∇2ωx, (23)

where D/Dt = ∂/∂t + uj∂/∂xj . The four terms on the right-hand side represent the
enhancement of ωx due to stretching, the tilting of ωy , the twisting of ωz, and viscous
diffusion, respectively. Substituting in (23) for ωy and ωz yields

Dωx

Dt
= ωx

∂u

∂x
− ∂w

∂x

∂u

∂y
+

∂v

∂x

∂u

∂z
+

1

Re
∇2ωx. (24)

Multiplying (24) by ωx gives the dynamic equation for the strength of the streamwise
vorticity (Park & Choi 1999),

1

2

Dω2
x

Dt
= ω2

x

∂u

∂x︸ ︷︷ ︸
ST

− ωx

∂w

∂x

∂u

∂y︸ ︷︷ ︸
TT1

+ ωx

∂v

∂x

∂u

∂z︸ ︷︷ ︸
TT2

+ωx

1

Re
∇2ωx. (25)

By examining each term on the right-hand side of (25), we can determine which term is
dominant in producing the blowing-induced enhancement of the streamwise vorticity.
The first three terms on the right-hand side of (25) represent: ST= contribution
due to stretching of ωx , TT1 = net contribution due to the tilting of ωy , TT2= net
contribution due to the twisting of ωz on the enhancement of the streamwise vorticity
strength. Figure 21(a) shows the time-averaged values of the stretching and tilting
terms in the absence of blowing. TT2 is negligible compared with the other terms (ST
and TT1), consistent with the results of Brooke & Hanratty (1993). For y+

o < 10, the
tilting term dominates, whereas the stretching term has nearly the same magnitude
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Figure 21. Stretching and tilting terms of streamwise vorticity transport equations at the loc-
ation of ξ+ = 300 for Reθ,in = 670. (a) Time-averages for NB, (b) Time-averages for f + =0.035,
(c) Phase-averages at t = 0/4T for f + =0.035, (d) Phase-averages at t = 2/4T for f + = 0.035.

as the tilting term for y+
o > 20. The time-averaged values of the stretching and tilting

terms at ξ+ =300 are shown in figure 21(b) for the system with periodic blowing at
the optimal frequency (f + = 0.035). Note that the stretching and tilting terms for the
periodic blowing are about twice as large as those for the system without blowing
(figure 21a). The stretching term is significantly enhanced and dominates even near
the wall (y+

o < 10), in contrast to the behaviour of the system without blowing. For
the phase at which the upward and downward motions take place at ξ+ = 300, the
phase-averaged stretching and tilting terms are represented in figures 21(c) and 21(d),
respectively. At the phase of the upward motion, the stretching and tilting terms are
increased compared with the corresponding terms for the no-blowing system; however,
the relative contribution of each term is nearly the same as for the system without
blowing. At the phase of the downward motion, on the other hand, the stretching term
is increased to such an extent that it is larger than the tilting term TT1 at y+

o = 20. In
the downward motion, the streamwise vortices move closer to the wall and a negative
ṽ toward the wall indicates that the flow spreads out near the wall, which enhances
the stretching term owing to the increased ∂u/∂x > 0 as the flow spreads out.

A quantitative statistical description of the relationship between the streamwise
vorticity ω′

x and each term in the ω′
x transport (24), is obtained from the correlation

coefficients Rωxωx
, RωxST and RωxTT1, which are defined as

Rωxωx
(�x, y, �z) =

〈ω′
x(xref, yref, z) × ω′

x(xref + �x, y, z + �z)〉
ω′

x,rms(xref, yref) × ω′
x,rms(xref + �x, y)

, (26)
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(b)(i)–(iii), Upward motion phase at ξ+ =300 for f + = 0.035 (t = 0/4T ); (c)(i)–(iii), Downward
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zero contours are not drawn.

RωxST(�x, y, �z) =

〈
ω′

x(xref, yref, z) ×
(

ω′
x

∂u

∂x

)′

(xref + �x, y, z + �z)

〉
ω′

x,rms(xref, yref) ×
(

ω′
x

∂u

∂x

)′

rms

(xref + �x, y)

, (27)

and

RωxTT1(�x, y, �z) =

〈
ω′

x(xref, yref, z) ×
(

−∂w

∂x

∂u

∂y

)′

(xref + �x, y, z + �z)

〉
ω′

x,rms(xref, yref) ×
(

−∂w

∂x

∂u

∂y

)′

rms

(xref + �x, y)

, (28)

respectively. Using the database of the DNS of a turbulent boundary layer at
Reθ,in =670, the correlation coefficients are obtained and the reference location
(xref, yref) is (ξ+ = 300, y+

ωx,max
), where y+

ωx,max
is the wall normal location of maximum

ω′
x,rms .
Contours of the two-point autocorrelation coefficient of ω′

x are shown in figure 22.
For the phases when the upward and downward motions take place at ξ+ = 300,
the correlation coefficients are displayed in figures 22(b) and 22(c), respectively. For
reference, the correlation coefficients for no-blowing are shown in figure 22(a). For
no blowing, the correlation shows an elongated positive region in the streamwise
direction, which corresponds to the well-known streamwise vortical structure. The



446 K. Kim and H. J. Sung

(ii) (ii)

(i)

(ii)

(i)(i)

(a) (b) (c)

(iii) (iii) (iii)

0

50

100

0

50

100

–50

0

50

y+
o

y+
o

∆z+

–100 0 100
∆x+

–100 0 100
∆x+

–100 0 100
∆x+

–100 0 100
∆x+

–100 0 100
∆x+

–100 0 100
∆x+

–100 0 100
∆x+

–100 0 100
∆x+

–100 0
∆x+
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streamwise structure with positive correlation has a streamwise extent of 200 wall
units and a diameter of 25 wall units. The inclination angle of the structure is about
8.3◦, which is close to the value of 9◦ obtained by Jeong et al. (1997) for a turbulent
channel flow (Reτ = 180). The negative correlation near the wall is due to the opposite
signed ω′

x induced by the streamwise vortices as a result of the no-slip condition at
the wall. The correlation also shows a negative value above the streamwise vortical
structure (y+ > 30). This is consistent with the educed streamwise vortical structure
observed by Jeong et al. (1997), in which the positive-signed and negative-signed
streamwise vortices overlap each other in the streamwise direction. In the upward
motion (figure 22b), the head of the vortical structure is considerably shortened and
the streamwise length scale of Rωxωx

decreases significantly. The negative correlation is
enhanced compared to the system without blowing, suggesting that the overlapping of
positive- and negative-signed streamwise vortices is increased in the upward motion.
In the downward motion (figure 22c), the streamwise length scales of Rωxωx

are slightly
decreased compared with the no-blowing condition.

Contour plots of the two-point cross-correlation coefficient between the streamwise
vorticity ω′

x and the stretching term (ωx∂u/∂x)′ are shown in figure 23. For no blowing,
the correlation shows an elongated positive region in the streamwise direction, similar
to Rωxωx

. However, RωxST does not show negative regions. The inclination angle of
RωxST in the (x, y)-plane is about 6.4◦, which is slightly smaller than that of Rωxωx

.
Ong & Wallace (1998) showed by examining the quadrants of ωx and ωx∂u/∂x

that Q1 (ωx > 0, ωx∂u/∂x > 0) and Q3 (ωx < 0, ωx∂u/∂x < 0) are dominant in the
rate of increase of streamwise vorticity fluctuations. This suggests that ∂u/∂x > 0 is
important in the stretching term ω2

x∂u/∂x. Jeong et al. (1997) reported that positive
∂u/∂x occurs at the centre of the streamwise vortical structure regardless of its sign,
since ejection (sweep) occurs upstream (downstream) of the streamwise vortex. This
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is consistent with the present observation that the region of positive RωxST is located
inside the region of the streamwise vortical structure. For periodic blowing, as shown
in figures 23(b) and 23(c), the negative correlation which is not detected for no
blowing, is observed above (below) the streamwise vortex in the upward (downward)
motion, respectively. It is clearly seen that in the downward motion (figure 23c), RωxST

is significantly increased compared to both the upward motion and the no-blowing
condition, indicating that the downward motion enhances the stretching term due to
∂u/∂x > 0 as the flow spreads out. This is consistent with the enhancement of the
phase-averaged stretching term in the downward motion in figure 21(d).

Figure 24 shows the contour plots of the two-point cross-correlation coefficient
between the streamwise vorticity ω′

x and the tilting term (−(∂w/∂x)(∂u/∂y))′. The cor-
relation RωxTT1 behaves differently from RωxST. Specifically, for no blowing (figure 24a),
a region of positive correlation is located between regions of negative correlation in
the streamwise direction, with the maximum correlation being observed at �x+ = −17
(i.e. slightly upstream of the reference position). The inclination angle of the region
of positive RωxTT1 in the (x, y)-plane is about 16.5◦, which is twice that of Rωxωx

.
Brooke & Hanratty (1993) investigated the evolution of the conditional averaged
streamwise vortices by using (−∂w/∂x)(∂u/∂y) as a criterion for conditional averaging.
They showed that conditionally sampling for positive (−∂w/∂x)(∂u/∂y) yields a
positive streamwise vortex in the downstream. In the present study, in the region
y+ < 10, the correlation has a positive value for �x+ < 0 and a negative value
for �x+ > 0 (figure 24a). The positive (negative) (−∂w/∂x)(∂u/∂y) indicates that
the positive streamwise vortex exists in the downstream (upstream). In the upward
motion (figure 24b), the streamwise extent of the positive RωxTT1 in the region y+ < 10
is decreased and is shifted to less upstream as compared with that of no blowing.
Similar behaviour is observed in the downward motion (figure 24c). The correlation
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RωxTT1 did not show any significant difference on going from the upward to the
downward motion, whereas RωxST changed in magnitude and in length scale.

5. Conclusions
A detailed numerical analysis has been performed to elucidate the effects of localized

periodic blowing on a turbulent boundary layer. Time-periodic blowing was applied
through a spanwise slot by varying the wall-normal velocity in a cyclic manner
from 0 to 2A+. The time-periodic blowing was applied with frequencies in the range
0 � f + � 0.08 at a fixed blowing amplitude of A+ =0.5. Direct numerical simulations
of a spatially evolving turbulent boundary layer were carried out for two Reynolds
numbers, Reθ,in = 300 and 670. The results for the steady blowing showed that the local
blowing enhanced both the streamwise vortices and the energy redistribution in the
system. For the systems with Reθ,in = 300 and 670, the flow variables showed almost
the same response for the same σ+, which implies that σ+ can be used as a general
parameter for local blowing on a low-Reynolds-number turbulent boundary layer.
For the periodic blowing, application of blowing at a frequency of f + = 0.035 was
found to give the maximum increases in Reynolds shear stress, streamwise vorticity
fluctuations and energy redistribution. The time-averaged streamwise velocity was
invariant with the blowing frequency. However, the blowing frequency effect was
clearly observed in the phase-averaged velocities; specifically, as the blowing frequency
increased, ũrms and ṽrms decreased. Application of periodic blowing caused the velocity
fluctuations and Reynolds shear stress to increase compared to the no-blowing case.
The increase of u′

rms for f + = 0.035 is smaller than those for other frequencies,
whereas the increases of v′

rms, w′
rms and −u′v′ for f + = 0.035 are larger than those for

other frequencies. Reynolds stress budget analysis revealed that the effective blowing
frequency (f + = 0.035) induces the greatest enhancement of the pressure–strain term.
Analysis of the phase-averaged streamwise vorticity and its stretching and tilting
terms showed that the ‘downward’ motion of the phase-averaged velocity enhanced
the stretching term and the ‘upward’ motion lifted the strengthened layer of ω′

x ,
thereby causing the interaction between the strengthened layer of ω′

x and the wall to
become weaker, and the lifted vortices to become stronger. The correlation coefficients
Rωxωx

, RωxST and RωxTT1 were calculated to quantitatively describe the response of the
turbulent coherent structures to the periodic blowing. In the upward motion, the
streamwise length scale of Rωxωx

decreased significantly. In the downward motion,
RωxST increased significantly compared with both the ‘upward’ motion and the no-
blowing case, suggesting that the stretching term is the dominant contributing term in
the periodic blowing-induced increase in streamwise vorticity. The correlation RωxST

changed in magnitude and in length scale from the upward to the downward motion,
whereas RωxTT1 did not show any significant difference.
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Krogstad, P.-Å. & Kourakine, A. 2000 Some effects of localized injection on the turbulence
structure in a boundary layer. Phys. Fluids 12, 2990–2999.

Lund, T. S., Wu, X. & Squires, K. D. 1998 Generation of turbulent inflow data for spatially-
developing boundary layer simulation. J. Comput. Phys. 140, 233–258.

Na, Y. & Moin, P. 1996 Direct numerical simulation of turbulent boundary layers with adverse
pressure gradient and separation. Rep. TF-68. Department of Mechanical Engineering,
Stanford University.

Na, Y. & Moin, P. 1998 The structure of wall-pressure fluctuations in turbulent boundary layers
with adverse pressure gradient and separation. J. Fluid Mech. 377, 347–373.

Ong, L. & Wallace, J. M. 1998 Joint probability density analysis of the structure and dynamics of
the vorticity field of a turbulent boundary layer. J. Fluid Mech. 367, 291–328.

Park, J. & Choi, H. 1999 Effects of uniform blowing or suction from a spanwise slot on a turbulent
boundary layer. Phys. Fluids 11, 3095–3105.

Park, S.-H., Lee, I. & Sung, H. J. 2001 Effect of local forcing on a turbulent boundary layer. Exps.
Fluids 31, 384–393.

Park, Y.-S., Park, S.-H. & Sung, H. J. 2003 Measurement of local forcing on a turbulent boundary
layer using PIV. Exps. Fluids 34, 697–707.

Rhee, G. H. & Sung, H. J. 2001 Numerical prediction of locally-forced turbulent boundary layer.
Intl J. Heat Fluid Flow 22, 624–632.

Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech.
23, 601–639.

Sano, M. & Hirayama, N. 1985 Turbulent boundary layer with injection and suction through a slit.
Bull. JSME 28, 807–814.

Senda, M., Kawaguchi, Y., Suzuki, K. & Sato, T. 1981 Study on a turbulent boundary layer with
injection. Bull. JSME 24, 1748–1755.



450 K. Kim and H. J. Sung

Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Reθ = 1410. J. Fluid
Mech. 187, 61–98.

Sumitani, Y. & Kasagi, N. 1995 Direct numerical simulation of turbulent transport with uniform
wall injection and suction. AIAA J. 33, 1220–1228.

Tardu, S. 1998 Near wall turbulence control by local time periodic blowing. Exp. Thermal Fluid
Sci. 16, 41–53.

Tardu, S. F. 2001 Active control of near-wall turbulence by local oscillating blowing. J. Fluid Mech.
439, 217–253.


